
Maximum Entropy IRL

DAgger Recap

New Data

Supervised Learning

New policy

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t, given πt

Data Aggregation = Follow-the-Regularized-Leader Online Learner

DAgger Performance Recap:

DAgger finds a policy such that it matches to under its own ̂π π⋆ d ̂π
μ

"s∼d ̂πμ [1{ ̂π (s) ≠ π⋆(s)}] ≤ ϵreg = O(1/ T)

DAgger Performance Recap:

DAgger finds a policy such that it matches to under its own ̂π π⋆ d ̂π
μ

"s∼d ̂πμ [1{ ̂π (s) ≠ π⋆(s)}] ≤ ϵreg = O(1/ T)

If expert herself can quickly recover from a deviation, i.e., is small for all ,|Qπ⋆(s, a) − Vπ⋆(s) | s

Vπ⋆ − Vπt ≤ O (1
1 − γ

⋅ ϵreg)

DAgger Performance Recap:

DAgger finds a policy such that it matches to under its own ̂π π⋆ d ̂π
μ

"s∼d ̂πμ [1{ ̂π (s) ≠ π⋆(s)}] ≤ ϵreg = O(1/ T)

If expert herself can quickly recover from a deviation, i.e., is small for all ,|Qπ⋆(s, a) − Vπ⋆(s) | s

Vπ⋆ − Vπt ≤ O (1
1 − γ

⋅ ϵreg)
This is a significant improvement over BC in both theory and practice

Plan for Today:

1. The principle of Maximum Entropy

2. The Algorithm: Maximum Entropy Inverse RL

2. Constrained Optimization

Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost is unknown;

(2) assume expert is the optimal policy of the cost

(3) transition P is known

c(s, a)
π⋆ c

Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost is unknown;

(2) assume expert is the optimal policy of the cost

(3) transition P is known

c(s, a)
π⋆ c

We have a dataset) = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost is unknown;

(2) assume expert is the optimal policy of the cost

(3) transition P is known

c(s, a)
π⋆ c

We have a dataset) = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Key Assumption on cost:
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

Running Example: Define feature map
Key Assumption on cost:

, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

Running Example: Define feature map
Key Assumption on cost:

, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of
neighboring pixels in image)

s

Running Example: Define feature map
Key Assumption on cost:

, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Running Example: Define feature map
Key Assumption on cost:

, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Maybe colliding with cars or
buildings has high cost, but
walking on sideway or grass

has low cost

Notation on Distributions

: probability of visiting at time step following ℙπ
h(s, a; μ) (s, a) h π

: average state-action distributiondπ
μ(s, a) =

H−1

∑
h=0

ℙπ
h(s, a; μ)/H

:

Likelihood of the trajectory under , i.e., the prob of generating

ρπ(τ) := μ0(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…π(aH−1 |sH−1)P(sH |sH−1, aH−1)
τ π π τ

Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution , the entropy is defined as:
P ∈ Δ(X)

Entropy(P) = − ∑
x

P(x) ⋅ ln P(x)

Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution , the entropy is defined as:
P ∈ Δ(X)

Entropy(P) = − ∑
x

P(x) ⋅ ln P(x)

Higher entropy means more uncertainty, for instance:

Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution , the entropy is defined as:
P ∈ Δ(X)

Entropy(P) = − ∑
x

P(x) ⋅ ln P(x)

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy,

i.e., Entropy(U(X)) = − ∑

x
(1/ |X |)ln(1/ |X |) = ln(|X |)

Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution , the entropy is defined as:
P ∈ Δ(X)

Entropy(P) = − ∑
x

P(x) ⋅ ln P(x)

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy,

i.e., Entropy(U(X)) = − ∑

x
(1/ |X |)ln(1/ |X |) = ln(|X |)

Deterministic distribution has zero entropy:

i.e., Entropy(δ(x0)) = − 1 ⋅ ln 1 − ∑

x≠x0

0 ln 0 = 0

Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to ,
but there are infinitely many such distributions…

μ, Σ

Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to ,
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy:

Entropy Maximization subject to Moment Matching constraints

Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to ,
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy:

Entropy Maximization subject to Moment Matching constraints

max
P∈Δ(X)

entropy(P), s.t., "x∼P[x] = μ, "x∼P[xx⊤] = Σ + μμ⊤

Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to ,
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy:

Entropy Maximization subject to Moment Matching constraints

max
P∈Δ(X)

entropy(P), s.t., "x∼P[x] = μ, "x∼P[xx⊤] = Σ + μμ⊤

Solution:

(proof: out of scope)

P⋆ = 1(μ, Σ)

Detour: Principle of Maximum Entropy

In summary:

Maximum Entropy Principle says that:

 Among the distributions that satisfy pre-defined constraints (mean & variance),
let’s pick the one that is the most uncertain

(uncertainty measured in entropy)

Plan for Today:

1. The principle of Maximum Entropy

3. The Algorithm: Maximum Entropy Inverse RL

2. Constrained Optimization

Constrained Optimization:

Consider the following constrained optimization problem:

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0

Constrained Optimization:

Consider the following constrained optimization problem:

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0

Denote as the optimal solution here.x⋆

Constrained Optimization:

Consider the following constrained optimization problem:

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0

How to solve such constrained optimization problem?

Denote as the optimal solution here.x⋆

Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)]

Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)]

For any that does not satisfy constraints, i.e., or ,

we must have:
x g1(x) ≠ 0 g2(x) ≠ 0

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = + ∞

Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)]

For any that does not satisfy constraints, i.e., or ,

we must have:
x g1(x) ≠ 0 g2(x) ≠ 0

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = + ∞

For any that satisfies constraints, i.e., and ,

we must have:

x g1(x) = 0 g2(x) = 0
max
w1,w2

f(x) + w1g1(x) + w2g2(x) = f(x)

Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)]

In other words,

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = {+∞ g1(x) ≠ 0 or g2(x) ≠ 0 i.e, infeasible
f(x) g1(x) = g2(x) = 0 i.e., feasible

Constrained Optimization:

Define two Lagrange multiplier , we consider the following Lagrange formulation:w1, w2 ∈ ℝ

min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)]

In other words,

max
w1,w2

f(x) + w1g1(x) + w2g2(x) = {+∞ g1(x) ≠ 0 or g2(x) ≠ 0 i.e, infeasible
f(x) g1(x) = g2(x) = 0 i.e., feasible

Thus, solving the Lagrange formulation is equivalent to the original formulation:

arg min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)] = x⋆

Constrained Optimization:

In summary, we have that

arg min
x [max

w1,w2
f(x) + w1g1(x) + w2g2(x)] = x⋆

Where is the optimal solution of the original constrained program:x⋆

 min
x

f(x)

s . t . , g1(x) = 0, g2(x) = 0

min
x,y

x + y, s.t.,x2 + y2 = 1

Example:

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

xt = arg min
x

f(x) + wt
1g1(x) + wt

2g2(x) (# best response: arg min
x

ℓ(x, wt))

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

xt = arg min
x

f(x) + wt
1g1(x) + wt

2g2(x) (# best response: arg min
x

ℓ(x, wt))

wt+1
1 = wt

1 + ηg1(xt)
wt+1

2 = wt
2 + ηg2(xt)

(#incremental update: wt+1 = wt + η∇wℓ(xt, w))

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

xt = arg min
x

f(x) + wt
1g1(x) + wt

2g2(x) (# best response: arg min
x

ℓ(x, wt))

wt+1
1 = wt

1 + ηg1(xt)
wt+1

2 = wt
2 + ηg2(xt)

(#incremental update: wt+1 = wt + η∇wℓ(xt, w))

Return: x̄ =
T−1

∑
t=0

xt /T

Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max
w1,w2

min
x

f(x) + w1g1(x) + w2g2(x)
:=ℓ(x,w)

And one procedure to solve a is the following iterative algorithm:max min

Initialize Lagrange multiplers w0
1 , w0

2
For t = 0 → T − 1

xt = arg min
x

f(x) + wt
1g1(x) + wt

2g2(x) (# best response: arg min
x

ℓ(x, wt))

wt+1
1 = wt

1 + ηg1(xt)
wt+1

2 = wt
2 + ηg2(xt)

(#incremental update: wt+1 = wt + η∇wℓ(xt, w))

Return: x̄ =
T−1

∑
t=0

xt /T Informal theorem: when are convex, f, g x̄ → x⋆, as T → ∞

Plan for Today:

1. The principle of Maximum Entropy

3. The Algorithm: Maximum Entropy Inverse RL

2. Constrained Optimization

Maximum Entropy Inverse RL:

Maximum Entropy Inverse RL:

Q: we want to find a policy such that

(Note linear cost assumption implies is as good as)

But there are potentially many such policies…

π "s,a∼dπμ
ϕ(s, a) = "s,a∼dπ⋆

μ
ϕ(s, a)

π π⋆

Maximum Entropy Inverse RL:

The principle of Maximum Entropy:
Find a policy that maximizes some entropy while subject to the

constraint:
π

Q: we want to find a policy such that

(Note linear cost assumption implies is as good as)

But there are potentially many such policies…

π "s,a∼dπμ
ϕ(s, a) = "s,a∼dπ⋆

μ
ϕ(s, a)

π π⋆

Maximum Entropy Inverse RL:

The principle of Maximum Entropy:
Find a policy that maximizes some entropy while subject to the

constraint:
π

max
π

"s∼dπμ [entropy (π(⋅ |s))]
s . t, "s,a∼dπμ

ϕ(s, a) = "s,a∼dπ⋆
μ

ϕ(s, a)

Q: we want to find a policy such that

(Note linear cost assumption implies is as good as)

But there are potentially many such policies…

π "s,a∼dπμ
ϕ(s, a) = "s,a∼dπ⋆

μ
ϕ(s, a)

π π⋆

Maximum Entropy Inverse RL:

The principle of Maximum Entropy:
Find a policy that maximizes some entropy while subject to the

constraint:
π

max
π

"s∼dπμ [entropy (π(⋅ |s))]
s . t, "s,a∼dπμ

ϕ(s, a) = "s,a∼dπ⋆
μ

ϕ(s, a)

Q: we want to find a policy such that

(Note linear cost assumption implies is as good as)

But there are potentially many such policies…

π "s,a∼dπμ
ϕ(s, a) = "s,a∼dπ⋆

μ
ϕ(s, a)

π π⋆

This can be estimated
using expert data:

N

∑
i=1

ϕ(s⋆
i , a⋆

i)/N

Maximum Entropy Inverse RL:

Let’s simplify the objective :max
π

"s∼dπμ [entropy(π(⋅ |s))]

Maximum Entropy Inverse RL:

"s∼dπμ [entropy(π(⋅ |s))] = − "s∼dπμ
"a∼π(⋅|s) ln π(a |s) = − "s,a∼dπμ

ln π(a |s)

Let’s simplify the objective :max
π

"s∼dπμ [entropy(π(⋅ |s))]

Maximum Entropy Inverse RL:

"s∼dπμ [entropy(π(⋅ |s))] = − "s∼dπμ
"a∼π(⋅|s) ln π(a |s) = − "s,a∼dπμ

ln π(a |s)

arg max
π

"s∼dπμ [entropy(π(⋅ |s))] = arg min
π

"s,a∼dπμ
ln π(a |s)

Let’s simplify the objective :max
π

"s∼dπμ [entropy(π(⋅ |s))]

Maximum Entropy Inverse RL:

We arrive at the following constraint optimization problem:

arg min
π

"s,a∼dπμ
ln π(a |s)

s . t, "s,a∼dπμ
ϕ(s, a) = "s,a∼dπ⋆

μ
ϕ(s, a)

Introduce the Lagrange multiplier (we have d many constraints),

consider the max-min dual version:

w ∈ ℝd

max
w∈ℝd

min
π

"s,a∼dπμ
ln π(a |s) + w⊤ ("s,a∼dπμ

ϕ(s, a) − "s,a∼dπ⋆
μ

ϕ(s, a))

Maximum Entropy Inverse RL:

Introduce the Lagrange multiplier (we have d many constraints),

consider the max-min dual version:

w ∈ ℝd

max
w∈ℝd

min
π

"s,a∼dπμ
ln π(a |s) + w⊤ ("s,a∼dπμ

ϕ(s, a) − "s,a∼dπ⋆
μ

ϕ(s, a))
Next lecture,

we will design algorithm (in high level, it is the iterative algorithm framework)
for this problemmax − min

