Maximum Entropy IRL
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DAgger Performance Recap:
DAgger finds a policy 7 such that it matches to 7* under its own df

Eyeqr [HUAS) # 7*()}] < €, = OUA/T)

If expert herself can quickly recover from a deviation, i.e., | Q”*(s, a) — V”*(s) | is small for all s,
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This is a significant improvement over BC in both theory and practice




Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

2. The Algorithm: Maximum Entropy Inverse RL
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Setting
Finite horizon MDP ./ = {S,A,H,c, P, u,n*}

(1) Ground truth cost c(s, a) is unknown;

(2) assume expert is the optimal policy 7* of the cost ¢
(3) transition P is known

*

We have a dataset & = (s*,a*), ~ d”

Key Assumption on cost:
c(s,a) = (0%, ¢(s,a)), linear w.r.t feature ¢ (s, a)
A
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Running Example: Define feature map

Key Assumption on cost:
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Fig. 4. Classifier feature response maps. Top left is the original image.
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Running Example: Define feature map

Key Assumption on cost:
c(s,a) = (0%, ¢(s, a)), linear wrt feature ¢(s, a)

State s: pixel or a group of
neighboring pixels in image)

[ P(pixels being building)
P(pixels being grass)
¢(s, @) = [ p(pixels being sidewalk)

P(pixels being car)

birds-eye view building car curb

grass pavement person sidewalk

Maybe colliding with cars or

buildings has high cost, but

walking on sideway or grass
. has low cost

Q T#? Csto\)

Fig. 4. Classifier feature response maps. Top left is the original image.




Notation on Distributions

P (s, a; p): probability of visiting (s, a) at time step / following 7

H-1
d/ff(s, a) = Z P> (s, a; u)/ H: average state-action distribution
h=0

p*(7) = po(so)n(ag | so)P(sy | S, ag)m(ay | sy)...w(ag_; | Sg_ )Pyl Sy_1> ag_1):
Likelihood of the trajectory 7 under 7, i.e., the prob of & generating 7



Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:



Detour: Principle of Maximum Entropy
O eretr seR
S

Definition of the Entropy 6f a distribution:

Given a distribution P € A(X), the entropy is defined as:

Entropy(P) = — Z Px)-nPx) = [ /9“” v )
x XN?



Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution P € A(X), the entropy is defined as:

Entropy(P) = — Z P(x) - In P(x)

Higher entropy means more uncertainty, for instance:



Detour: Principle of Maximum Entropy
Definition of the Entropy of a distribution:
Given a distribution P € A(X), the entropy is defined as:

Entropy(P) = — Z P(x) - In P(x)

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy,
i.e., Entropy(U(X)) = — Z (1/1XDIn(1/|X|) = In(| X|)



Detour: Principle of Maximum Entropy

Definition of the Entropy of a distribution:

Given a distribution P € A(X), the entropy is defined as:

Entropy(P) = — Z P(x) - In P(x)

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy,
i.e., Entropy(U(X)) = — Z (1/1XDIn(1/|X|) = In(| X|)

Deterministic distribution has zero entropy:
e., Entropy(3(xp) = — 1-In1— )" 0In0 =0

X#Xx,



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to u, %,
but there are infinitely many such distributions...



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to yu, X,
but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to yu, X,
but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints
S C-pogr )

Vet

max entropy(P), s.t., E pxl=pu E pxx"]=2+puu’"
PEA(X) b



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to yu, X,
but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints

max entropy(P),) s.t., E, plxl=u, E _plxx"]=2+puu’

PEAX)

Solution: P* = N (u, X)
(proof: out of scope)



Detour: Principle of Maximum Entropy

In summary:

Maximum Entropy Principle says that:

Among the distributions that satisfy pre-defined constraints (mean & variance),
let’s pick the one that is the most uncertain
(uncertainty measured in entropy)



Plan for Today:

1. The principle of Maximum Entropy

2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL
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Constrained Optimization:

Consider the following constrained optimization problem:
min f(x)
X
s.t.,gx)=0, gkx)=0
Denote x* as the optimal solution here.

How to solve such constrained optimization problem?



Constrained Optimization:
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Constrained Optimization:

Define two Lagrange multiplier w;, w, € R, we consider the following Lagrange formulation:

min |max f(x) + w;g;(x) + w,8,(x)

x Wi, W,y

LV\)?_W b l_,o——
For any x that does not satisfy constraints, i.e., g;(x) # 0 or g,(x) # 0,
we must have: max f(x) + w;g;(x) + wyg,(x) = + oo

W, Wy
J},Qx/\ P\
For any x that satisfies constraints, i.e., g;(x) = 0 and g,(x) =0
we must have: max f(x) + w, gl(x) + wyg,(x) = f(x)

Wi,W, &
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Constrained Optimization:
Define two Lagrange multiplier w, w, € R, we consider the following Lagrange formulation:
min [maXf(x) + w181(%) + Wyg, ()

X Wi, W,

In other words,

max f(x) + w;g;(x) + w,og,(x) =

Wi,W,

+o00  g;(x) #0or g, (x) #0i.e, infeasible
{f(X) g,(x) = g,(x) =0 i.e., feasible



Constrained Optimization:

Define two Lagrange multiplier w, w, € R, we consider the following Lagrange formulation:

min [max Jx) +w g (x) + wzgz(x)] P

X Wy,Wy 4
_g[x) _P_g:..)a“’(—&
In other words,

+00 ) g(x) # 0 or g,(x) # 0 i.e, infeasible
rv?%va (X) + w1 81(x) + wagy(x) = {? gi(x) L) i 0ie. fensible

e

Thus, solving the Lagrange formulation is equivalent to the original formulation:

arg min fmax f(x) + w;g,(x) + wzgz(x)] =x*

X Wi, Wy



Constrained Optimization:

In summary, we have that

arg min [max f(x) + w;g,(x) + w,g,(x)| = x*

Where x* is the optimal solution of the original constrained program:

s.t.,8x)=0, gk =
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Constrained Optimization: iy 15 00)
=<

We will often be interested in solving the dual version, i.e.,

max min f(x) + w;g;(x) + w,g,(x) Fi )0

WLW, X

=C(x,w)
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And one procedure to solve a max min is the following iterative algorithm:
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Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max min f(x) + wyg,(x) + w,2,(x)
wi,Wwy X

=C(x,w)
And one procedure to solve a max min is the following iterative algorithm:

e 1: . 0,,0
Initialize Lagrange multiplers w ', w,

Fort=0->T-1

x' =largmin f(x) + w{g;(x) + wig,(x)| (# best response: argmin #(x, w")
with = wi +ng,(x") |
(#incremental update: w'*! = w' + 5V (', w))
1
Wyt = i+ ngy(x)
-1
Return: x = Z x,/T

=0



Constrained Optimization:
We will often be interested in solving the dual version, i.e.,

max min f(x) + wg,(x) + w,8,(x)
wi,Wwy X

=C(x,w)
And one procedure to solve a max min is the following iterative algorithm:

e 1: . 0,,0
Initialize Lagrange multiplers w ', w,

Fort=0—->T-1

x'=arg mm fx) + wlgl(x) + wzgz(x) (# best response: arg mm £(x, w")) /

1
wi =w + ngy(x") ,
(#incremental update: w'*! = w’ + anf()X, w))
t+1

— t t
Wyt =Wyt 118y(x)
T-1
Return: X = Z x/T  Informal theorem: when f, g are convex, x = x*,as T — 0
1=0
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2. Constrained Optimization
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Q: we want to find a policy z such that E, ,_.¢(s, a)
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(Note linear cost assumption implies 7 is as good as 7
But there are potentially many such policies...
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Q: we want to find a policy 7 such that [E aNdZ,(ﬁ(s, a)=E, , ~¢(s,a)
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Maximum Entropy Inverse RL:

Q: we want to find a policy 7 such that [E aNdZ,(ﬁ(s, a)=E, , ~¢(s,a)
s f 9 (1

(Note linear cost assumption implies 7 is as good as 7*)
But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy & that maximizes some entropy while subject to the
constraint:

on ovwr‘”ﬁ/"w

max [Es~d;; [entropy (7{( : |S))
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Maximum Entropy Inverse RL:

Q: we want to find a policy 7 such that [E aNdZ,(ﬁ(s, a)=E, , ~¢(s,a)
s f 9 (1

(Note linear cost assumption implies 7 is as good as 7*)
But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy & that maximizes some entropy while subject to the
constraint:

This can be estimated
using expert data:

N
Y bisF.a¥)IN

i=1

|5)

max [Es~d;; [entropy (7{( :
T

s .1, [Es,arvd;fd)(s’ a)
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Maximum Entropy Inverse RL:

Let’s simplify the objective max [, _ ;. [entropy(ﬂ( - S))] :
V4 s

[Es~d;f [entropy(ﬂ( : |S))] = - [EsNdﬁ[EaN”(.m In ﬂ(a | S) = — [Es,afvd;{ In JZ'(a | S)

arg max [ s [entropy(ﬂ( - s))] = argmin [ In z(a|s)

s,a~d;{



Maximum Entropy Inverse RL:

We arrive at the following constraint optimization problem:
argminl, , . Inna(als)
s,a~d;
T

S.t, [ES’aNdﬁgl)(s, a) = [Es,a,vdﬁ*q/)(s, a)

Introduce the Lagrange multiplier w € R4 (we have d many constraints),
consider the max-min dual version:

maxminE, . Inz(als) +w' <[ES amdi®(s, @) — E, (s, a))
weRd ’ (] ’ (] o 1



Maximum Entropy Inverse RL:

Introduce the Lagrange multiplier w € R4 (we have d many constraints),
consider the max-min dual version:

max min £, In 7@ ] )+ w7 (Eygub(s,0) = By g, a))

weR? x

Next lecture,
we will design algorithm (in high level, it is the iterative algorithm framework)

for this max — min problem



