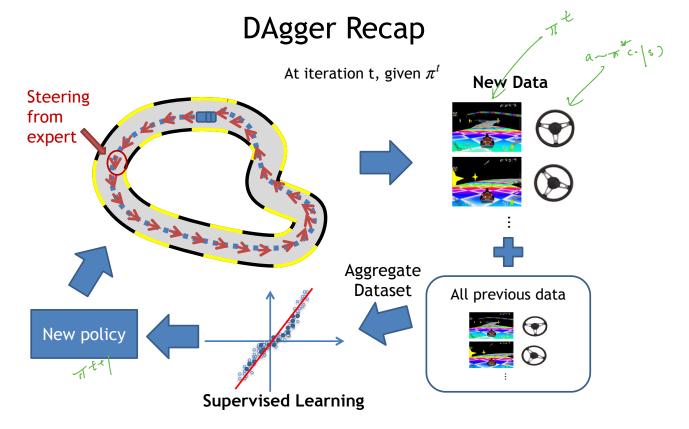
Maximum Entropy IRL



Data Aggregation = Follow-the-Regularized-Leader Online Learner

DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it matches to π^* under its own $d_{\mu}^{\hat{\pi}}$

$$\mathbb{E}_{s \sim d_{\mu}^{\hat{\pi}}} \left[\mathbf{1} \{ \hat{\pi}(s) \neq \pi^{\star}(s) \} \right] \leq \epsilon_{reg} = O(1/\sqrt{T})$$

$$\mathbb{E}_{\#} f \text{ Treerations}$$

DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it **matches to** π^{\star} **under its own** $d_{\mu}^{\hat{\pi}}$

$$\mathbb{E}_{s \sim d_{\mu}^{\hat{\pi}}} \left[\mathbf{1} \{ \hat{\pi}(s) \neq \pi^{\star}(s) \} \right] \le \epsilon_{reg} = O(1/\sqrt{T})$$

If expert herself can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s, a) - V^{\pi^*}(s)|$ is small for all *s*,

$$V^{\pi^{\star}} - V^{\pi^{\star}} \leq O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{reg}\right)$$

Priveat
BC: $(1 - \gamma)^{\gamma} \leq \frac{1}{2}$

DAgger Performance Recap:

DAgger finds a policy $\hat{\pi}$ such that it **matches to** π^{\star} **under its own** $d_{\mu}^{\hat{\pi}}$

$$\mathbb{E}_{s \sim d_{\mu}^{\widehat{\pi}}} \left[\mathbf{1} \{ \widehat{\pi}(s) \neq \pi^{\star}(s) \} \right] \le \epsilon_{reg} = O(1/\sqrt{T})$$

If expert herself can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s, a) - V^{\pi^*}(s)|$ is small for all *s*,

$$V^{\pi^{\star}} - V^{\pi^{t}} \le O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{reg}\right)$$

This is a significant improvement over BC in both theory and practice

Plan for Today:

1. The principle of Maximum Entropy \checkmark

2. Constrained Optimization

2. The Algorithm: Maximum Entropy Inverse RL

Setting
Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$$

 \land Texpere policy

Setting

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

(1) Ground truth cost c(s, a) is unknown;
(2) assume expert is the optimal policy π^{*} of the cost c
(3) transition P is known

Setting

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^{*} of the cost c (3) transition P is known

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Setting

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$$

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^{*} of the cost c (3) transition P is known

We have a dataset
$$\mathscr{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

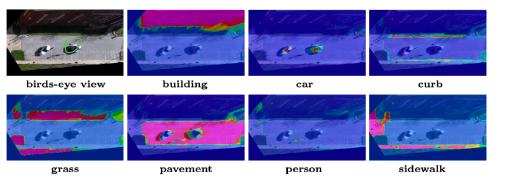


Fig. 4. Classifier feature response maps. Top left is the original image.

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

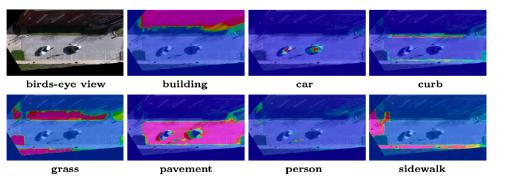


Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

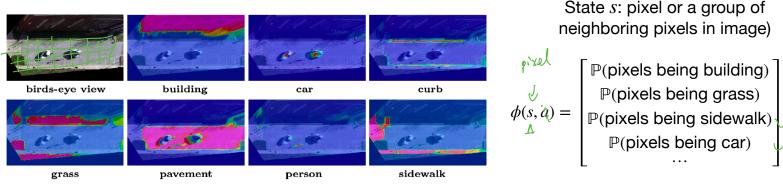
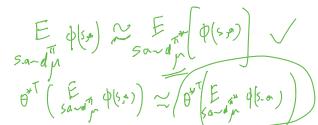


Fig. 4. Classifier feature response maps. Top left is the original image.



Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

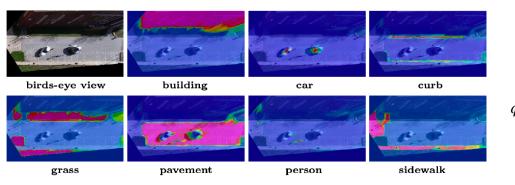


Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

 $\phi(s,a) = \begin{bmatrix} \mathbb{P}(\text{pixels being building}) \\ \mathbb{P}(\text{pixels being grass}) \\ \mathbb{P}(\text{pixels being sidewalk}) \\ \mathbb{P}(\text{pixels being car}) \\ \dots \end{bmatrix}$

Maybe colliding with cars or buildings has **high** cost, but walking on sideway or grass has **low** cost $\tau \phi (s \alpha)$

Notation on Distributions

 $\mathbb{P}_{h}^{\pi}(s, a; \mu)$: probability of visiting (s, a) at time step h following π

$$d^{\pi}_{\mu}(s,a) = \sum_{h=0}^{H-1} \mathbb{P}^{\pi}_{h}(s,a;\mu)/H: \text{ average state-action distribution}$$

 $\rho^{\pi}(\tau) := \mu_0(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)\dots\pi(a_{H-1} | s_{H-1})P(s_H | s_{H-1}, a_{H-1}):$ $\stackrel{\wedge}{\longrightarrow} \text{Likelihood of the trajectory } \tau \text{ under } \pi \text{, i.e., the prob of } \pi \text{ generating } \tau$

Definition of the Entropy of a distribution:

Definition of the Entropy of a distribution: distribution $P \in \Lambda(Y)$ the entropy of Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$Entropy(P) = -\sum_{x} P(x) \cdot \underline{\ln P(x)} = \underbrace{\operatorname{E}}_{\times \sim P} - \operatorname{Im} P(x)$$

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

Entropy(P) =
$$-\sum_{x} P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

Entropy(P) =
$$-\sum_{x} P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:

U(X) is wifern fixe over \bigwedge Uniform distribution has the highest entropy, i.e., Entropy(U(X)) = $-\sum_{x} (1/|X|)\ln(1/|X|) = \ln(|X|) \checkmark$

Definition of the Entropy of a distribution:

Given a distribution $P \in \Delta(X)$, the entropy is defined as:

$$Entropy(P) = -\sum_{x} P(x) \cdot \ln P(x)$$

Higher entropy means more uncertainty, for instance:

Uniform distribution has the highest entropy, i.e., Entropy(U(X)) = $-\sum_{x} (1/|X|)\ln(1/|X|) = \ln(|X|)$ Deterministic distribution has zero entropy: i.e., Entropy($\delta(x_0)$) = $-1 \cdot \ln 1 - \sum_{x \neq x_0} 0 \ln 0 = 0$

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints $\sum_{P \in \Delta(X)} \mathbb{E}_{x \sim P}[x] = \mu, \quad \mathbb{E}_{x \sim P}[xx^{\mathsf{T}}] = \Sigma + \mu\mu^{\mathsf{T}}$

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

$$\max_{P \in \Delta(X)} \text{entropy}(P), \text{ s.t., } \mathbb{E}_{x \sim P}[x] = \mu, \mathbb{E}_{x \sim P}[xx^{\top}] = \Sigma + \mu\mu^{\top}$$

Solution: $P^{\star} = \mathcal{N}(\mu, \Sigma)$
(proof: out of scope)

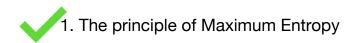
In summary:

Maximum Entropy Principle says that:

Among the distributions that satisfy pre-defined constraints (mean & variance), let's pick the one that is the most uncertain (uncertainty measured in entropy)

P

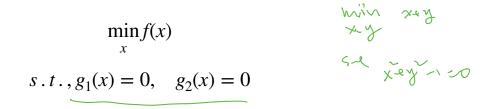
Plan for Today:



2. Constrained Optimization

3. The Algorithm: Maximum Entropy Inverse RL

Consider the following constrained optimization problem:



Consider the following constrained optimization problem:

 $\min_{x} f(x)$

$$s \cdot t \cdot g_1(x) = 0, \quad g_2(x) = 0$$

Denote x^{\star} as the optimal solution here.

Consider the following constrained optimization problem:

 $\min_{x} f(x)$ s.t., g₁(x) = 0, g₂(x) = 0

Denote x^{\star} as the optimal solution here.

How to solve such constrained optimization problem?

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

$$\int_{y_1, w_2} \int_{y_2, w_3} f(x) + w_1 g_1(x) + w_2 g_2(x) \int_{y_3, w_3} f(x) f(x) + w_3 g_3(x) + w_3 g$$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

For any *x* that does not satisfy constraints, i.e., $g_1(x) \neq 0$ or $g_2(x) \neq 0$, we must have: $\max_{w_1,w_2} f(x) + w_1g_1(x) + w_2g_2(x) = +\infty$ $g_1(x) = -5$ $w_1 = -5$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

For any x that does not satisfy constraints, i.e., $g_1(x) \neq 0$ or $g_2(x) \neq 0$,
we must have: $\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = +\infty$
 $\int g_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = 0$,
we must have: $\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = 0$,
we must have: $\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = f(x)$
 $\int_{W_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = f(x)$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right]$$

In other words,

$$\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) = \begin{cases} +\infty & g_1(x) \neq 0 \text{ or } g_2(x) \neq 0 \text{ i.e., infeasible}^{(1)} \\ f(x) & g_1(x) = g_2(x) = 0 \text{ i.e., feasible} \end{cases}$$

Define two Lagrange multiplier $w_1, w_2 \in \mathbb{R}$, we consider the following Lagrange formulation:

$$\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right] \qquad -\infty \quad \text{infeasible}$$
In other words,
$$f(x) + w_1 g_1(x) + w_2 g_2(x) = \begin{cases} +\infty & g_1(x) \neq 0 \text{ or } g_2(x) \neq 0 \text{ i.e., infeasible} \\ f(x) & g_1(x) = g_2(x) = 0 \text{ i.e., feasible} \end{cases}$$

Thus, solving the Lagrange formulation is equivalent to the original formulation: $\arg\min_{x} \left[\max_{w_1,w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right] = x^*$

 \max_{w_1,w_2}

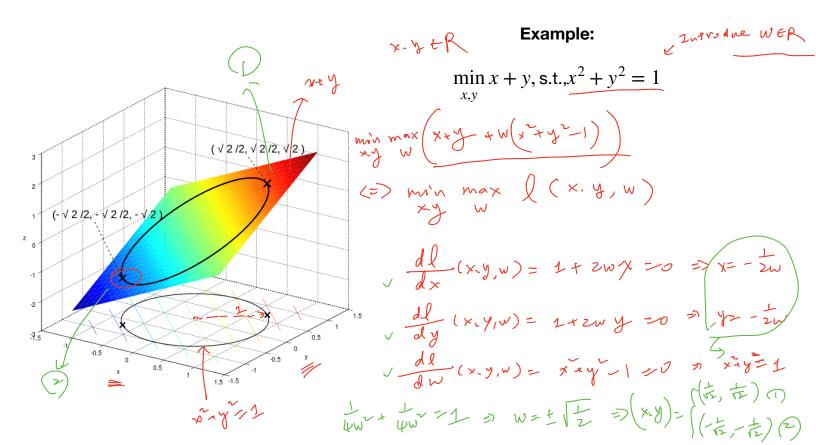
In summary, we have that

$$\arg\min_{x} \left[\max_{w_1, w_2} f(x) + w_1 g_1(x) + w_2 g_2(x) \right] = x^*$$

Where x^{\star} is the optimal solution of the original constrained program:

$$\min_{x} f(x)$$

s.t., g₁(x) = 0, g₂(x) = 0



muls f(x) _____ $w_1, w_2 = x$

 $:=\ell(x,w)$

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} f(x) + w_1 g_1(x) + w_2 g_2(x)$:= $\ell(x, w)$

And one procedure to solve a $max \min$ is the following iterative algorithm:

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} \underbrace{f(x) + w_1 g_1(x) + w_2 g_2(x)}_{:=\ell(x, w)}$

And one procedure to solve a $max \min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} f(x) + w_1 g_1(x) + w_2 g_2(x)$:= $\ell(x, w)$

And one procedure to solve a $max \min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} \underbrace{f(x) + w_1 g_1(x) + w_2 g_2(x)}_{:=\ell(x, w)}$

And one procedure to solve a $max\,min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $x^t = \arg \min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x)$ (# best response: $\arg \min_x \ell(x, w^t)$)

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} f(x) + w_1 g_1(x) + w_2 g_2(x)$:= $\ell(x, w)$

And one procedure to solve a $max \min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $x^t = \arg\min_x f(x) + w_1^t g_1(x) + w_2^t g_2(x)$ (# best response: $\arg\min_x \ell(x, w^t)$) $w_1^{t+1} = w_1^t + \eta g_1(x^t)$ $w_2^{t+1} = w_2^t + \eta g_2(x^t)$ (#incremental update: $w^{t+1} = w^t + \eta \nabla_w \ell(x^t, w)$) $w_2^{t+1} = w_2^t + \eta g_2(x^t)$

We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} f(x) + w_1 g_1(x) + w_2 g_2(x)$:= $\ell(x, w)$

And one procedure to solve a $max \min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $x^{t} = \underbrace{\arg\min_{x} f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x)}_{x} \quad (\text{# best response: } \arg\min_{x} \ell(x, w^{t}))$ $w_{1}^{t+1} = w_{1}^{t} + \eta g_{1}(x^{t}) \quad (\text{# best response: } \arg\min_{x} \ell(x, w^{t}))$ (#incremental update: $w^{t+1} = w^t + \eta \nabla_{u} \ell(x^t, w)$) $w_2^{t+1} = w_2^t + \eta g_2(x^t)$ Return: $\bar{x} = \sum_{t=1}^{T-1} x_t / T$ t=0

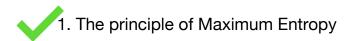
We will often be interested in solving the dual version, i.e.,

 $\max_{w_1, w_2} \min_{x} f(x) + w_1 g_1(x) + w_2 g_2(x)$:= $\ell(x, w)$

And one procedure to solve a $max\,min$ is the following iterative algorithm:

Initialize Lagrange multiplers w_1^0, w_2^0 For $t = 0 \rightarrow T - 1$ $x^{t} = \arg\min_{x} f(x) + w_{1}^{t}g_{1}(x) + w_{2}^{t}g_{2}(x) \quad (\text{# best response: } \arg\min\ell(x, w^{t}))^{(t)}$ $w_1^{t+1} = w_1^t + \eta g_1(x^t)$ $w_2^{t+1} = w_2^t + \eta g_2(x^t)$ (#incremental update: $w^{t+1} = w^t + \eta \nabla_w \mathscr{C}(x^t, w)$) **Return**: $\bar{x} = \sum x_t/T$ Informal theorem: when f, g are convex, $\bar{x} \to x^*$, as $T \to \infty$ t=0

Plan for Today:





мі f(x) St g(x) 20 h wx)=0

3. The Algorithm: Maximum Entropy Inverse RL

Q: we want to find a policy π such that $\mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$

(Note **linear cost assumption** implies π is as good as π^*) But there are potentially many such policies...

(s;*,a;)~dn

Q: we want to find a policy π such that $\mathbb{E}_{s,a\sim d_{\mu}^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d_{\mu}^{\pi\star}}\phi(s,a)$ (Note **linear cost assumption** implies π is as good as π^{\star}) But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

Q: we want to find a policy π such that $\mathbb{E}_{s,a\sim d_{\mu}^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d_{\mu}^{\pi\star}}\phi(s,a)$ (Note **linear cost assumption** implies π is as good as π^{\star}) But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]^{\mathcal{E}}$$

$$s.t, \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a)$$

1 Jacob

Q: we want to find a policy π such that $\mathbb{E}_{s,a\sim d_{\mu}^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d_{\mu}^{\pi\star}}\phi(s,a)$ (Note **linear cost assumption** implies π is as good as π^{\star}) But there are potentially many such policies...

The principle of Maximum Entropy:

Find a policy π that maximizes some entropy while subject to the constraint:

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$
This can be estimated using expert data:
$$s \cdot t, \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi^{\star}}} \phi(s, a)$$
$$\sum_{i=1}^{N} \phi(s_{i}^{\star}, a_{i}^{\star})/N$$

Let's simplify the objective
$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy}(\pi(\cdot | s)) \right]$$
:

Let's simplify the objective $\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy}(\pi(\cdot | s)) \right]$:

$$\mathbb{E}_{s \sim d^{\pi}_{\mu}}\left[\mathsf{entropy}(\pi(\cdot \mid s))\right] = -\mathbb{E}_{s \sim d^{\pi}_{\mu}}\mathbb{E}_{a \sim \pi(\cdot \mid s)}\ln \pi(a \mid s) = -\mathbb{E}_{s, a \sim d^{\pi}_{\mu}}\ln \pi(a \mid s)$$

Let's simplify the objective $\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy}(\pi(\cdot | s)) \right]$:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi}}\left[\mathsf{entropy}(\pi(\cdot \mid s))\right] = -\mathbb{E}_{s \sim d_{\mu}^{\pi}}\mathbb{E}_{a \sim \pi(\cdot \mid s)}\ln \pi(a \mid s) = -\mathbb{E}_{s, a \sim d_{\mu}^{\pi}}\ln \pi(a \mid s)$$

$$\arg \max_{\pi} \mathbb{E}_{s \sim d^{\pi}_{\mu}} \left[\mathsf{entropy}(\pi(\cdot \mid s)) \right] = \arg \min_{\pi} \mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \ln \pi(a \mid s)$$

We arrive at the following constraint optimization problem:

 $\arg\min_{\pi} \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s)$ $s \cdot t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi\star}} \phi(s,a)$

Introduce the Lagrange multiplier $w \in \mathbb{R}^d$ (we have d many constraints), consider the max-min dual version:

$$\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \ln \pi(a \mid s) + w^{\top} \left(\mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi}_{\mu}} \phi(s, a) \right)$$

Introduce the Lagrange multiplier $w \in \mathbb{R}^d$ (we have d many constraints), consider the max-min dual version:

$$\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s) + w^{\top} \left(\mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) - \mathbb{E}_{s, a \sim d_{\mu}^{\pi^{\star}}} \phi(s, a) \right)$$

Next lecture, we will design algorithm (in high level, it is the iterative algorithm framework) for this max - min problem