
Model-based RL  
under the Generative Model Setting
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Policy π : S ↦ A

Q⋆(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) [max
a′￼∈A

Q⋆(s′￼, a′￼)]
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a (r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼))
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Value Iteration:

Qt+1(s, a) ⇐ r(s, a) + max

a
𝔼s′￼∼P(⋅|s,a) max

a′￼

Qt(s′￼, a′￼), ∀s, a

Policy Iteration:

, for all πt+1(s) = arg max

a
Qπt(s, a) s
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Recap: State-action distribution

Given some , and policy , we denote  as:s0 π dπ
s0

(s, a)

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a; s0)

Probability of  visiting  at step  starting 
from the fixed initial state 

π (s, a) h
s0
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A new setting: Generative Model

In VI, PI, DP (for tabular MDP and LQR), we have known P, r

We will focus on generative model setting here:

We can reset to any , and get a sample (s, a) s′￼ ∼ P( ⋅ |s, a)

This is weaker than the known setting, 

and valid for problems such as board games, control/planning in simulation etc
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Questions for Today:  

Under the generative model setting, how we learn to compute ; 


and what performance guarantee we can get?
π⋆

(We will see the first sample complexity analysis..)



Outline:

1. Simulation lemma:  
What is the performance of  under π ( ̂P , r)

2. Algorithm: estimate  from data 

and compute —the optimal policy of 

̂P
̂π ⋆ ̂P

3. Analyzing the performance  under ̂π ⋆ (P, r)
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Motivation for Model-based Approach

While we cannot write out the exact 
analytical dynamics, 


we can learn it from data {s, a, s′￼}

Then we do planning: e.g., 

̂π ⋆ = VI( ̂P , r)

It is a very common and default approach to try in practice

(Often in practice we iterate the above process)
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Summary so far:

Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′￼∼ ̂P (s,a)
̂V π(s′￼) − 𝔼s′￼∼P(s,a) ̂V π(s′￼)]

≤
1

(1 − γ)2
𝔼s,a∼dπ

s0
̂P ( ⋅ |s, a) − P( ⋅ |s, a)

1

Total model disagreement over the real traces



Outline:

1. Simulation lemma:  
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2. Algorithm: estimate  from data 

and compute —the optimal policy of 

( ̂P , ̂r )
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3. Analyzing the performance  under ̂π ⋆ (P, r)
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1. Model fitting:  
: collect  next states, 

; set 

  

∀s, a N
s′￼i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

2. Planning w/ the 
learned model:

 ̂π ⋆ = PI ( ̂P , r)

1. How good is our learned model? I.e., 

 ??̂P ( ⋅ |s, a) ≈ P( ⋅ |s, a)

2. How model error propagates to the 
performance of  (simulation lemma)̂π ⋆
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Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin: 

With probability , it gives +1, and w/ prob 1-p, it gives -1;p

To estimate , we do experiments:

We flip the coin  times independently, get N outcomes, , 

p
N {xi}N

i=1 xi ∈ {−1, + 1}

̂p =
∑N

i=1 1{xi = + 1}

N

W/ probability at least , we will have 


(concentration bound; Hoeffding’s inequality; proof out of scope)

1 − δ | ̂p − p | ≤ O ( ln(1/δ)
N )
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1. Model fitting:  
: collect  next states, 

; set 

  

∀s, a N
s′￼i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

1. How good is our learned model? I.e., 

 ??̂P ( ⋅ |s, a) ≈ P( ⋅ |s, a)

Lemma (proof is out of scope): with probability  we have that for all , 


  

1 − δ, s, a

̂P ( ⋅ |s, a) − P( ⋅ |s, a)
1

≤
S ln(2SA/δ)

N
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We get a confidence ball (under  norm) for : ℓ1 P

W/ probability at least :1 − δ

∀s, a ̂P ( ⋅ |s, a) − P( ⋅ |s, a)
1

≤
S ln(2SA/δ)

N
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2. Planning w/ the learned model:  ̂π ⋆ = PI ( ̂P , r)

Lemma (proof is out of scope): with probability  we have that for all , 
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∥ ̂P ( ⋅ |s, a) − P( ⋅ |s, a)∥1]
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2
(1 − γ)2

S ln(2SA/δ)
N

, wp 1 − δ;

Q: why this is true? 
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Summary so far:

Theorem (Sample Complexity):  


Fix set ; 

with probability at least , we have: 

  

δ ∈ (0,1), ϵ ∈ (0,1/(1 − γ)), N =
4S ln(2SA/δ)

ϵ2(1 − γ)4

1 − δ
V⋆(s0) − V ̂π ⋆(s0) ≤ ϵ;

Key ingredients: 

Confidence Ball construction + Simulation lemma
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Summary for Today:

1. A model-based Algorithm under generative model:

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
, ∀s, a; ̂π ⋆ = PI ( ̂P , r)

2. Simulation lemma allows us to link model error to 
policy’s performance

3. Analysis: W/ simulation lemma, we achieve -near optimality w/ # of 

samples  (improvement is possible, but out of scope)

ϵ

Õ ( S2A
ϵ2(1 − γ)4 )


