Model-based RL
under the Generative Model Setting

Recap: Infinite Horizon MDP

M= {S,A,P,r,v}
P:SxXA- AWN), r:S5xA-|[0,1], ye€]0,1)

Policyn: S+~ A

Bellman Equation:
VE(S) — I"(S, ﬂ(S)) —+ 4 _S/NP(-‘S,E(S))V]T(S,)

Recap: Infinite Horizon MDP

M={S,A,P,r,v}
P:SxXA- AWN), r:S5xA-|[0,1], ye€]0,1)

Policyn: S+~ A

Bellman Equation:

VE(S) — I"(S, 71'(5)) -+ 4 _S/NP(-‘S,E(S))V]T(S,)

Bellman Optimality:

Q*(Sa Cl) — F(Sa Cl) + 4 _S'NP(-\S,a) [maX Q*(S,a a,)]

V*(s) = max (r(s, a)+vy

a'eA

—s'~P(-|5,0) V*(S/))

Recap: Planning algorithm for computing T*

We assumed that P(s’|s, a), r(s,a) Vs, a, s’ are known

Recap: Planning algorithm for computing T*

We assumed that P(s’|s, a), r(s,a) Vs, a, s’ are known

Value lteration:

O™ (s,a) < r(s,a) + max = /(-] 5,q) MAX Q'(s’,a"),Vs,a
A d

Recap: Planning algorithm for computing T*

We assumed that P(s’|s, a), r(s,a) Vs, a, s’ are known

Value lteration:

O™ (s,a) < r(s,a) + max = /(-] 5,q) MAX Q'(s’,a"),Vs,a
A d

Policy Iteration:

7't 1(s) = arg max Q”t(s, a), for all s
a

Recap: State-action distribution

Given some s, and policy 7z, we denote d;(’) (s, a) as:

di(s,a) = (1 =)), V"Pi(s, as5)
h=0

Recap: State-action distribution

Given some s, and policy 7z, we denote d;(’) (s, a) as:

di(s,a) = (1 =)), V"Pi(s, as5)
h=0

\

Probability of 7 visiting (s, a) at step A starting
from the fixed initial state s,

A new setting: Generative Model

In VI, PI, DP (for tabular MDP and LQR), we have known P, r

A new setting: Generative Model

In VI, PI, DP (for tabular MDP and LQR), we have known P, r

We will focus on generative model setting here:

We can reset to any (s, a), and get a sample s ~ P(- | s, a)

A new setting: Generative Model

In VI, PI, DP (for tabular MDP and LQR), we have known P, r

We will focus on generative model setting here:

We can reset to any (s, a), and get a sample s ~ P(- | s, a)

This i1s weaker than the known setting,
and valid for problems such as board games, control/planning in simulation etc

Questions for Today:

Under the generative model setting, how we learn to compute 7*;

and what performance guarantee we can get?

Questions for Today:

Under the generative model setting, how we learn to compute 7*;

and what performance guarantee we can get?

(We will see the first sample complexity analysis..)

Outline:

1. Simulation lemma:
What is the performance of 7 under (P , r)

N

2. Algorithm: estimate P from data

i

and compute 7 *—the optimal policy of P

3. Analyzing the performance 7 * under (P, r)

Motivation for Model-based Approach

It iIs a very common and default approach to try in practice

Motivation for Model-based Approach

It iIs a very common and default approach to try in practice

While we cannot write out the exact
analytical dynamics,

we can learn it from data {s, a, s}

Motivation for Model-based Approach

It iIs a very common and default approach to try in practice

While we cannot write out the exact
analytical dynamics,

we can learn it from data {s, a, s}

Then we do planning: e.qg.,
T =VI(P,r)

Motivation for Model-based Approach

It iIs a very common and default approach to try in practice

While we cannot write out the exact
analytical dynamics,

we can learn it from data {s, a, s}

Then we do planning: e.qg.,
T =VI(P,r)

(Often in practice we iterate the above process)

A key fundamental question in Model-based RL:

Notations:

T/\ﬂ(so) = [E lz Q/hl”(Sh, a,) | m, j’\] ;. Vi(sg) = lz Yh” (> ap) | 7, P] ;
P h=0

A key fundamental question in Model-based RL:

Notations:

/V\”(SO) _F lz yhr(Sh, a) |, ﬁ\] ;. Vi(sg) = lz yhr(Sh, a) | =, P] ;
P h=0

What is the difference between ?N(SO) & V*(s9)?

In other words, how does the model error propagate to values

A key fundamental question in Model-based RL:

Notations:

/V\ﬂ(so) = [E lz J/hl”(Sh, a,) |, j’\] ;. Vi(sg) = lz Vh” (> ap) | 7, P] ;

What is the difference between ?E(SO) & V*(s9)?

In other words, how does the model error propagate to values

Simulation Lemma:

V250) = V0) = T Evamay [Eon s V6D ~ Evmpioa V)

A key fundamental question in Model-based RL:

V (sy) =

|

o0

2

h=0

Notations:

yhr(sha ah) ‘ 7T, ﬁ\] ; VE(S()) — lz yhr(sha ah) ‘ 7T, P])

h=0

What is the difference between f/\”(so) & V*(s9)?

In other words, how does the model error propagate to values

V7(sy) — V(sp) =

1=y

Simulation Lemma:

- N\
s,a~di | “s'~ P (s,a) 4 (S)

—s'~P(s,a) 4 ﬂ(S ,)

Distribution of 7 under the true model P

Simulation Lemma Explanation

V7(sy) — VE(sp) =

1 —vy

Simulation Lemma:

s,a~dg,

—s'~ P (5.0) VAGs) -

—s'~P(s,a) 4 ﬂ(S ,)

V7(sy) — VA(sp) =

Simulation Lemma Proof

1=y

Simulation Lemma:

S,arvd;fo [

—s'~ P (5,0) VAGs) -

—s'~P(s,a) 4 ﬂ(S ,)

V7(sy) — VA(sp) =

V7 (sy) — V(sy) = 7

Simulation Lemma Proof

1=y

—ag~n(-|sp) l

Simulation Lemma:

S,arvd;fo [

S Psa) V) T Benpia) V)

_slNﬁ(So,Clo) V ﬂ(S 1) R _S1NP (SOvao)Vﬂ(Sl)]

V "(s,)

Simulation Lemma Proof

Simulation Lemma:

}/ = P
T . — - TN [T,
- V (SO) T 1 o }/ S,CZNd;TO ¢/~ P (S,Cl) V (S) S/NP(S,CZ) V (S)
V3 s0) = Visp) = VS ag~n(-|so) l_SWﬁ(Soaao) Vs - —s1~P (SOaao)Vﬂ(Sl)]
—51~ P (59,a0) Vﬂ(sl) s ~P(s0,a0) Vﬂ(Sl) T =51~ P(80,00) Vﬂ(sl) - _SlNP(So»do)Vﬂ(Sl)]

=7

_ao"’ﬂ(' |50) l

Simulation Lemma Proof

Simulation Lemma:

~ }/ A~ A~
T 1 _ - - T\ _ [E (o
v (SO) -V (SO) _ 1 —y s,a~dg | =s'~ P (s,a) VAs) s'~P(s,a) VAs)
V7(50) = V7(s5) = PEapratir | Ene Pispan V750 = Egomgan V1)
= TEgertcIsy l'slfvﬁ(so,ao) VA1) = Boepga V70 + Egpispay V1) — ‘S1~P<SOaao>Vﬂ(S1)]
= Vagntlsp l i Plspag) 7 S T Eypigag VS 1)]

Ty =ag~7(-|50),51~P(S0,0p) l 4 E(Sl) - Vﬂ(Sl)]

Summary so far:

Simulation Lemma:

VoGs0) = Vi) = T E s [= 0o V) = Eyopy V ”(s')]

1
S —=E yogr
—_ (1 -]/)2 S,ClNdSO

P(-Is.a)-P(-|s.a) ||

Total model disagreement over the real traces

Outline:

1. Simulation lemma:
What is the performance of & under any estimator P

2. Algorithm: estimate (f’\, 7) from data
and compute 7 *—the optimal policy of (P, 7)

3. Analyzing the performance 7 * under (P, r)

A Model-based Algorithm

Assume reward r is known (just for analysis simplicity):

A Model-based Algorithm

Assume reward r is known (just for analysis simplicity):

1. Model fitting:
Vs, a: collect N next states, s/ ~ P(- |s,a),1 € [N]; set
N .
2. Hsi=ys'} |

j)\(S,‘ S, Cl) — _Ta

A Model-based Algorithm

Assume reward r is known (just for analysis simplicity):

1. Model fitting:
Vs, a: collect N next states, s/ ~ P(- |s,a),1 € [N]; set
N .
2. Hsi=ys'} |

i)\(s,‘ S, Cl) — _Ta

2. Planning w/ the learned model:
7* =PI (i’\, r)

Steps of Analysis

1. Model fitting:

Vs, a: collect N next states,
si~ P(-|s,a),i € [N]; set

- > 1{s{=s)
P (s'|s,a) = B vE—

2. Planning w/ the
learned model:

?z*:Pl(TD\,r)

Steps of Analysis

1. Model fitting:

Vs, a: collect N next states,
si~ P(-|s,a),i € [N]; set

- > 1{s/=s)
P (s'|s,a) = B vE—

2. Planning w/ the
learned model:

?z*:Pl(i)\,r)

1. How good is our learned model? l.e.,
P(-|s,a)~P(-|s,a)??

Steps of Analysis

1. Model fitting:

Vs, a: collect N next states,

. 1. How good is our learned model? l.e.,
s~ P(-|s,a),i € [N]; set J

f’\(- |s,a) ~ P(-|s,a)??

Pl < 2z =5
S|15,d) = —mm.
N
2. Planning w/ the 2. How model error propagates to the
learned model: performance of 7* (simulation lemma)

ﬁ*:Pl(i’\,r)

Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin:
With probabillity p, it gives +1, and w/ prob 1-p, it gives -1;

Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin:
With probabillity p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate p, we do experiments:
We flip the coin N times independently, get N outcomes, {x;}» ., x; € {—1, + 1}

=1’

Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin:
With probabillity p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate p, we do experiments:
We flip the coin N times independently, get N outcomes, {x;}» ., x; € {—1, + 1}

=17
Zi,il 1{x, =+ 1}

b= N

Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin:
With probabillity p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate p, we do experiments:
We flip the coin N times independently, get N outcomes, {x;}» ., x; € {—1, + 1}

=1’

N
N
N | A In(1/0)
W/ probability at least 1 — o, we willhave |p —p| < O N

(concentration bound; Hoeffding’s inequality; proof out of scope)

Steps of Analysis: model error

1. Model fitting:
Vs, a: collect N next states,

si~ P(-|s,a),i € [N]; set 1. How good is our learned model? l.e.,

Zé\ill{si/zsf}. P(“S,Cl)ﬁp(“S,d)??

i)\(S,‘ S, Cl) — _Ta

Steps of Analysis: model error

1. Model fitting:

Vs, a: collect N next states,

si~ P(-|s,a),i € [N]; set 1. How good is our learned model? |.e.,
~ > s/ =) P(-|s,a)~ P(-|s,a)??
P(s'|s,a) = ———;
‘ N

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

Summary so far:

We get a confidence ball (under £, norm) for P:

W/ probability at least 1 — o:

Vs, a f’\(-\s,a)—P(-\s,a) <

1

\/ S In(25A/6)
N

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

2. Planning w/ the learned model: 7* = PI (i’\, r)

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

2. Planning w/ the learned model: 7* = PI (i’\, r)

V*(s9) — V7 (sp)

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

2. Planning w/ the learned model: 7* = PI (i’\, r)

V*(s9) — V7 (sp)

/\/*

< V*(sg)— VZ(s)+ V7 (s5) = VE (sp)

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

2. Planning w/ the learned model: 7* = PI (i’\, r)

V*(sp) = V" (sp) Q: why this is true?

/\/*

< V*(sg)— VZ(s)+ V7 (s5) = VE (sp)

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,

| PCisa-rCisa | sy

2. Planning w/ the learned model: 7* = PI (i’\, r)
V*(s9) = V7 (50) Q: why this is true?
< V*(sp) — T/\ﬂ*(so) + AA*(So) — v (So)

_ |
T (=g L

AP 15.0) = PC 5.l +Egggerl P (- I5.0) = PC- s,y

Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 0, we have that for all s, a,
— S In(285A/0)
| P ls.a)-PCIsa) || </
l N
2. Planning w/ the learned model: 7* = PI (i’\, r)

V*(s9) = V7 (50) Q: why this is true?
< V*(sp) — T/\ﬂ*(so) + AA*(S()) — v (So)

1
< T el P C 15,0 = PC 1)l + Bl P Uss) = PC s, |

L2 \/Sln(ZSA/é)
(I =yp)? N

Summary so far:

Theorem (Sample Complexity):

| 45 In(25A/0)
Fixo € (0,1),e € (0,1/(1 —y)),setN = —;
e*(1 —y)*
with probability at least 1 — o, we have:
V*(s) — V7 (s) < €

Summary so far:

Theorem (Sample Complexity):

| 45 In(25A/0)
Fixo € (0,1),e € (0,1/(1 —y)),setN = ————;
e*(1 — y)*
with probability at least 1 — o, we have:
V*(so) = VZ (s) < €;

Key ingredients:
Confidence Ball construction + Simulation lemma

S
u
m
m
a
ry
for
T
o
d
a

y:

3
. A
m
O
d
e
-
b
a
S
ed
A
Ig
o
rit
h
m u
N
d
e
r
ge
N
e
ra
tiv
e
m
0
d
e
|:

D
ARy
=5’}

P
(s
K
,)
N

, V

\)

X

;Z.*
=P
{
P

P

Summary for Today:

1. A model-based Algorithm under generative model:

> s/ =)
N

i’\(s’ls, a) = ,Vs,a; 7* =Pl (f’\, r)

2. Simulation lemma allows us to link model error to
policy’s performance

Summary for Today:

1. A model-based Algorithm under generative model:

> s/ =)

j’\(s’\ S,a) = N

,VS,CZ; ;T*:P|<j)\,]")

2. Simulation lemma allows us to link model error to
policy’s performance

3. Analysis: W/ simulation lemma, we achieve e€-near optimality w/ # of

— S°A
samples O | —— | (improvement is possible, but out of scope)
e*(1 —p)*

