Model-based RL
under the Generative Model Setting
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Bellman Equation:
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Bellman Optimality:
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Recap: Planning algorithm for computing 7 *

We assumed that P(s’| s, a), r(s,a) Vs, a, s’ are known
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Value Iteration: —

0™ l(s,a) < r(s,a) + max Eypiisa max 0'(s',a’),V's, a
a a
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Policy Iteration:
t
7T 1(s) = arg max Q" (s, a), for all s

a
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Recap: State-action distribution

Given some s, and policy 7z, we denote ds’;(s, a) as:

di(s,a) = (1 —y) Z y"PI(s, a; sp)
h=0



Recap: State-action distribution

. . ]z' .
Given some s, and policy 7z, we denote dSO(S, a) as:

di(s,a)=(1-7) )

h=0

Probability of 7 visiting (s, a) at step / starting
from the fixed initial state s,



A new setting: Generative Model
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A new setting: Generative Model

In VI, PI, DP (for tabular MDP and LQR), we have known P, r

We will focus on generative model setting here:

We can reset to any (s, a), and get a sample s’ ~ P( - | s, a)

This is weaker than the known setting,
and valid for problems such as board games, control/planning in simulation etc
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and what performance guarantee we can get?



Questions for Today:

Under the generative model setting, how we learn to compute JZ'*;
and what performance guarantee we can get?

(We will see the first sample complexity analysis..)
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Outline:

e
1. Simulation lemma: /
What is the performance of 7z under ( P, r)

S

2. Algorithm: estimate P from data

P

and compute 7 * —the optimal policy of P
= P (7, Y>

3. Analyzing the performance 7* under (P, r)
4
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Motivation for Model-based Approach

It is a very common and default approach to try in practice

While we cannot write out the exact
analytical dynamics,

we can learn it from data {s, a, s’}

Then we do planning: e.g.,
X =VI(P,r)
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Motivation for Model-based Approach

It is a very common and default approach to try in practice

While we cannot write out the exact
analytical dynamics,

e can learn it from data {s, a, s’}

Then we

planning: e.g.,
=VI(P,r)

(Often in practice we iterate the above process)



A key fundamental question in Model-based RL.:

Notations:
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A key fundamental question in Model-based RL.:
Notations:

/V\”(SO) =[E [Z yhr(sh, a,) | m, f’\] ; Visg) =L [Z }/hr(sh, a,) |, P] ;

h=0 h=0

What is the difference between f/\”(so) & V7*(sy)?

In other words, how does the model error propagate to values
P& |e fFio-E Pr(x))
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Simulation Lemma:

1z T Y V7 V(o \6/)
V#so) = VAso) = T By amas Mﬂ

Distribution of 7 under the true model P



Simulation Lemma Explanation
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Simulation Lemma Proof

Simulation Lemma:
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Simulation Lemma Proof

Simulation Lemma:
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Simulation Lemma Proof

Simulation Lemma:
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Outline:

P

1. Simulation lemma:
What is the performance of 7 under any estimator P \/

2. Algorithm: estimate ( P, 7) from data
and compute 7 * —the optimal policy of ( P, 7)

3. Analyzing the performance 7 * under (P, r) «—
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A Model-based Algorithm

Assume reward r is known (just for analysis simplicity):

1. Model fitting:
Vs, a: collect N next states, s; ~ P( - |s,a),i € [N]; set
N '
2 Usi=s} |

?(s’ls,a) = — N X

2. Planning w/ the learned model:
7% =PI (?, r)



Steps of Analysis

1. Model fitting: - G
Vs, a: collect N next states,
s~ P(-|s,a),i € [N]; set
N r
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Steps of Analysis

1. Model fitting:
Vs, a: collect N next states,
s~ P(-|s,a),i € [N]; set
N r
2 Usi=s

P(s'|s,a) = —= v ;

2. Planning w/ the
learned model:

ﬁ*zpl(?,r>

1. How good is our learned model? l.e.,
P(-|s,a)~ P(-|s,a)??




Steps of Analysis

1. Model fitting:
Vs, a: collect N next states,

. 1. H di I d ? l.e.
s~ P(-|s,a),i € [N]; set ow good is our learned model? l.e.,

P(-|s,a)~P(-|s,a)2?

P sy = 2z =5
s'|s,a) = ;
N
2. Planning w/ the 2. How model error propagates to the
learned model: performance of 7> (simulation lemma)

ﬁ*zpl(?,r)
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Detour: estimating mean of Bernoulli distribution

Given: we have a biased coin:
With probability p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate p, we do experiments:
We flip the coin N times independently, get N outcomes, {xl-}i.il, x;e{-1,+1}

S Weo
XY x =+ 1} MR
P = N ¢ - P
. _ R In(1/6)
W/ probability at least 1 — 6, we willhave |p —p| < O v A
o [A
(concentration bound; Hoeffding’s inequality; proof out of scope) A



Steps of Analysis: model error

1. Model fitting:
Vs, a: collect N next states,
s~ P(-|s,a),i € [N]; set 1. How good is our learned model? l.e.,
Zi-\ill{si,:sl} P(-|S,CZ)R«’P(°|S,CZ)??
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Steps of Analysis: model error

1. Model fitting:
Vs, a: collect N next states,

s;~P(-|s,a),i € [N]; set 1. How good is our learned model? l.e.,
~ >V 1{si=s) P(-|s,a)~ P(-|s,a)??
P (s'|s,a) = —— :

(s'| s, a) v

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

” ﬁ(-|S,a)—P(-|S,a) ||1S\/SLIH(35)A/5) . WW




Summary so far: 5

We get a confidence ball (under £; norm) for P:

W/ e

STn(2SA/3)
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Vs, a || ﬁ(- |s,a) — P(-|s,a) || 1 S\/
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Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

|| P(-|s,a)—P(-|s,a) HIS\/SanAfA/é)

2. Planning w/ the learned model: 7* = PI (ﬁ, r)
JAY

T
oyt Lo 7




Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

H P(-|s,a)—P(-|s,a) HIS\/San]\fA/(S)

2. Planning w/ the learned model: 7* = PI (f’\, r)

V*(so) — V' (sp)



Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

H P(-|s,a)—P(-|s,a) ||1S\/Sln(2SA/5)

N
2. Planning w/ the learned model: 7* = PI (f’\, r)

V*(so) — V' (sp)

SV ) = V70 + V59 = VE(s0)



Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,
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V¥ !
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2. Planning w/ the learned model: 7* = PI ( P, r)
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Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

|| P(-|s,a)—P(-|s,a) HIS\/San]\fA/é)

2. Planning w/ the learned model: 7* = PI (f’\, r)

V*(sg) = VZ his is true?
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Steps of Analysis: performance of the learned policy

Lemma (proof is out of scope): with probability 1 — 6, we have that for all s, a,

H P(-|s,a)—P(-|s,a) ||1S\/Sln(2]5A/5)

2. Planning w/ the learned model: 7* = PI (f’\, r)

V*(sp) — V7 (5p) Q: why this is true’; nting o 7 =7 e D
< V*(sp) = V7 (sp) + V7 (s0) = V' (sp) !

| —~
< [Eai I P 15.0) = PC 1, @)+ Byl P s = PC sl
(1 =y - 0

2 \/Sln(ZSA/é) wo 1 — &
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Summary so far:

Theorem (Sample Complexity):

| 48 In(2SA/5)
Fix 5 € (0,1).€ € (0.1/(1 — p)), set N = ;
e*(1 —yp)*

with probability at least 1 — 0, we have:
VX(sp) = VA (sp) < €

¥ &7 \iﬁ . L -
J\&)o VU s> = 7\/_ Q/b/)w e
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Summary so far:

Theorem (Sample Complexity):

. 45 1n(2SA/6)
Fixo € (0,1),e € (0,1/(1 —y)),set N = ,
e2(1 —p)*

with probability at least 1 — 0, we have:
V*(sp) = V7 (sp) < €3

Key ingredients:
Confidence Ball construction +/Simulation lemma
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Summary for Today:

1. A model-based Algorithm under generative model:

>V 1{s;=s)

ﬁ(s’l s,a) = N

,VS,a; 5[\*=PI<?,}”>

2. Simulation lemma allows us to link model error to
policy’s performance

3. Analysis: W/ simulation lemma, we achieve ¢-near optimality w/ # of

—~ S2A
samples O (improvement is possible, but out of scope)
e*(1 —yp)*




