Policy Evaluation
Announcements

HW0 is out today (due March 2rd, 11:59 pm ET)

(Gradescope entry code: BP3B3N)

Office hours start this week:

Wen: Tuesday and Thursday, 10:55am - 11:30am
Wen-Ding: Friday 3pm-4pm
Hadi: Wednesday 2:30-3:30pm
Recap: Definitions

\[\mathcal{M} = \{S, A, P, r, \gamma\} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \rightarrow [0,1], \quad \gamma \in [0,1) \]
Recap: Definitions

\[\mathcal{M} = \{ S, A, P, r, \gamma \} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1) \]

Policy \(\pi : S \mapsto A \)
Recap: Definitions

\[M = \{ S, A, P, r, \gamma \} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \rightarrow [0,1], \quad \gamma \in [0,1) \]

Policy \(\pi : S \mapsto A \)

Value function \(V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \left| s_0 = s, a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h) \right. \right] \)
Recap: Definitions

\[\mathcal{M} = \{S, A, P, r, \gamma\} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1) \]

Policy \(\pi : S \mapsto A \)

Value function \(V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \Bigg| s_0 = s, a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h) \right] \)

Q function \(Q^\pi(s, a) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \Bigg| (s_0, a_0) = (s, a), a_h = \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h) \right] \)
Recap: Optimal Policy

For Discounted infinite horizon MDP, \(\exists \) a deterministic policy \(\pi^* : S \mapsto A : V^*(s) \geq V^\pi(s), \forall s, \forall \pi \)
Recap: Optimal Policy

For Discounted infinite horizon MDP, ∃ a deterministic policy $\pi^* : S \mapsto A$:

$V^*(s) \geq V^\pi(s)$, $\forall s$, $\forall \pi$

Bellman Optimality (DP):

1. For V^*, we have $V^*(s) = \max_a \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s') \right]$, $\forall s$
Recap: Optimal Policy

For Discounted infinite horizon MDP, ∃ a deterministic policy $\pi^* : S \mapsto A$:

$$V^*(s) \geq V^\pi(s), \forall s, \forall \pi$$

Bellman Optimality (DP):

1. For V^*, we have $V^*(s) = \max_a \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^*(s') \right], \forall s$

2. For V that satisfies $V(s) = \max_a \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V(s') \right], \forall s$, we have $V(s) = V^*(s), \forall s$
Recap: Optimal Policy

For Discounted infinite horizon MDP, \(\exists \) a deterministic policy \(\pi^* : S \mapsto A \):

\[
V^*(s) \geq V^\pi(s), \forall s, \forall \pi
\]

Bellman Optimality (DP):

1. For \(V^* \), we have

\[
V^*(s) = \max_a \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s') \right], \forall s
\]

2. For \(V \) that satisfies

\[
V(s) = \max_a \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s') \right], \forall s,
\]

we have

\[
V(s) = V^*(s), \forall s
\]

In HW0, we will study Bellman Optimality for \(Q^*/Q \)
Recap: State-action distribution

\[\mathbb{P}_h^\pi(s, a; s_0) = \sum_{a_0, s_1, a_1, \ldots, s_{h-1}, a_{h-1}} \mathbb{P}(s_0, a_0, \ldots, s_{h-1}, a_{h-1}; s_h = s, a_h = a) \]
Recap: State-action distribution

\[P_h^\pi(s, a; s_0) = \sum_{a_0, a_1, \ldots, a_{h-1}, s_{h-1}} P_\pi(s_0, a_0, \ldots, s_{h-1}, a_{h-1} s_h = s, a_h = a) \]
Recap: State-action distribution

\[\mathbb{P}_h^{\pi}(s, a; s_0) = \sum_{a_0, s_1, a_1, \ldots, s_{h-1}, a_{h-1}} \mathbb{P}(s_0, a_0, \ldots, s_{h-1}, a_{h-1}; s_h = s, a_h = a) \]

\[d_{s_0}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s, a; s_0) \]
Today: Policy Evaluation

Key Question:

Given MDP $\mathcal{M} = (S, A, r, P, \gamma)$ & a $\pi : S \mapsto A$, how good is π?

i.e., how to compute $V^\pi(s), \forall s$?
Motivation for Policy Evaluation

We want to *evaluate* our strategy against some opponent (we can abstract our strategy as policy π)
Motivation for Policy Evaluation

We want to evaluate our strategy against some opponent (we can abstract our strategy as policy π)

We want to evaluate our recommendation strategy before we release it to users
A more fundamental motivation…

Recall that we have A^S many policies. To select the optimal policy, we need to do evaluation.
Outline:

1. **Exact** Policy Evaluation

2. **Approximate** Policy Evaluation via an Iterative Algorithm
Exact Policy Evaluation

Setup: we have MDP $\mathcal{M} = (S, A, P, \gamma, r)$, and policy π, we want to compute V^π
Exact Policy Evaluation

Setup: we have MDP $\mathcal{M} = (S, A, P, \gamma, r)$, and policy π, we want to compute V^π

We know that for V^π, we have **Bellman equation**:

$$\forall s, V^\pi(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^\pi(s')$$
Exact Policy Evaluation

Setup: we have MDP $\mathcal{M} = (S, A, P, \gamma, r)$, and policy π, we want to compute V^{π}

We know that for V^{π}, we have **Bellman equation**:

$$\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^{\pi}(s')$$

This gives us S many linear constraints
Exact Policy Evaluation

Let’s form linear constraints. Denote $V(s)$ as our estimator for $s \in S$

\[
\forall s, V(s) = r(s, \pi(s)) + \sum_{s' \in S} P(s' | s, \pi(s)) V(s')
\]

\[
V(s_1) = r(s_1, \pi(s_1)) + \sum_{s' \notin S} P(s' | s_1, \pi(s_1)) V(s')
\]

\[
V(s_2) = r(s_2, \pi(s_2)) + \sum_{s' \notin S} P(s' | s_2, \pi(s_2)) V(s')
\]
Exact Policy Evaluation

Let’s form linear constraints. Denote $V(s)$ as our estimator for $s \in S$

$$
\forall s, V(s) = r(s, \pi(s)) + \sum_{s' \in S} P(s'|s, \pi(s))V(s')
$$

Denote $V \in \mathbb{R}^{|S|}$, $R \in \mathbb{R}^{|S|}$, where $R_s = r(s, \pi(s))$, and $P \in \mathbb{R}^{|S| \times |S|}$, where $P_{s',s} = P(s'|s, \pi(s))$,

we can combine all S many constraints together:

$$
V = R + \gamma PV
$$

Correction:

$$
P_{s, s'} = P(s'|s, \pi(s))
$$

i.e., row is indexed by s, column is indexed by s'
Exact Policy Evaluation

\[V \in \mathbb{R}^{|S|}, R \in \mathbb{R}^{|S|}, \] where \(R_s = r(s, \pi(s)) \), and \(P \in \mathbb{R}^{|S| \times |S|} \), where \(P_{s', s} = P(s' | s, \pi(s)) \),

we can combine all constraints together:

\[V = R + \gamma PV \]
Exact Policy Evaluation

Since $V = r + \gamma PV$, we can obtain V as:

$$V = (I - \gamma P)^{-1}R$$
Exact Policy Evaluation

\[V - \gamma P V = R \Rightarrow (I - \gamma P)V = R \]

Since \(V = r + \gamma PV \), we can obtain \(V \) as:

\[V = (I - \gamma P)^{-1}R \]

In HW0, we will show that \((I - \gamma P)\) is full rank (thus invertible)
Summary so far:

\[
V(s) = r(s, \pi(s)) + \gamma P(\cdot | s, \pi(s))
\]

\[
V = (I - \gamma P)^{-1}R
\]
Summary so far:

\[V(s) = r(s, \pi(s)) + \gamma P(\cdot | s, \pi(s)) \]

\[V = (I - \gamma P)^{-1} R \]

Downside: computation expensive: matrix inverse is \(O(S^3) \)
Outline:

1. Exact Policy Evaluation

2. Approximate Policy Evaluation via an Iterative Algorithm

(An approximation solution could be enough, i.e., trade accuracy for computation)
Detour: fix-point solution

Consider $x^* = f(x^*)$, $f: [a, b] \mapsto [a, b]$
Detour: fix-point solution

Consider \(x^* = f(x^*) \), \(f : [a, b] \rightarrow [a, b] \)

Common approach to find \(x^* \):

Initialize \(x^0 \in [a, b] \), repeat: \(x^{t+1} = f(x^t) \)
Detour: fix-point solution

Consider \(x^* = f(x^*), \quad f : [a, b] \mapsto [a, b] \)

Common approach to find \(x^* \):

Initialize \(x^0 \in [a, b] \), repeat: \(x^{t+1} = f(x^t) \)

If \(f \) is a contraction mapping, i.e., \(\forall x, x', \ |f(x) - f(x')| \leq \gamma |x - x'| \), for some \(\gamma \in [0, 1) \), then:

\(x^t \to x^* \), as \(t \to \infty \)
V^π is a fix-point solution:

\[
\forall s, V^\pi(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^\pi(s')
\]
V^π is a fix-point solution:

$$\forall s, V^\pi(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^\pi(s')$$
Iterative Policy Evaluation:

Algorithm (Iterative PE):
Start with some initialization $V^0 \in [0, 1/(1 - \gamma)]^{|S|}$, repeat for $t = 0, \ldots$:

$V^{t+1} \leftarrow R + \gamma PV^t$
Iterative Policy Evaluation:

Algorithm (Iterative PE):
Start with some initialization $V^0 \in [0, 1/(1 - \gamma)]^{|S|}$, repeat for $t = 0$:

$$V^{t+1} \leftarrow R + \gamma PV^t$$
Iterative Policy Evaluation:

Algorithm (Iterative PE):

- Start with some initialization $V^0 \in [0, 1/(1 - \gamma)]^{|S|}$, repeat for $t = 0\ldots$:

$$V^{t+1} \leftarrow R + \gamma PV^t$$

V^t is the value function at iteration t.

Q: What’s computation complexity per iteration?

$O(S^2)$ per iteration.
Iterative Policy Evaluation:

\[V^{t+1} \leftarrow R + \gamma PV^t \]

\[V^{t+1}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^t(s') \]

\[V^\pi(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^\pi(s') \]
Theorem:

Recall $\gamma \in [0,1)$. After t iterations, we have:

$$\forall s, \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty$$
Convergence of Iterative PE

Theorem:
Recall $\gamma \in [0,1)$. After t iterations, we have:

$$\forall s, \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty$$

$$\forall s, \left| V^{t+1}(s) - V^\pi(s) \right|$$
Convergence of Iterative PE

Theorem:

Recall $\gamma \in [0, 1)$. After t iterations, we have:

$$\forall s, \quad \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty$$

$$\forall s, \quad \left| V^{t+1}(s) - V^\pi(s) \right|$$

$$= \left| r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^t(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^\pi(s') \right) \right|$$
Convergence of Iterative PE

Theorem:
Recall $\gamma \in [0,1)$. After t iterations, we have:

$$\forall s, \quad \| V^t(s) - V^\pi(s) \| \leq \gamma^t \| V^0 - V^\pi \|_\infty$$

$$\forall s, \quad \left| V^{t+1}(s) - V^\pi(s) \right|$$

$$= \left| r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,\pi(s))} V^t(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,\pi(s))} V^\pi(s') \right) \right|$$

$$= \gamma \left| \mathbb{E}_{s' \sim P(\cdot|s,\pi(s))} V^t(s') - \mathbb{E}_{s' \sim P(\cdot|s,\pi(s))} V^\pi(s') \right|$$
Theorem:
Recall $\gamma \in [0,1)$. After t iterations, we have:
$$\forall s, \quad \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_{\infty}$$
Convergence of Iterative PE

Theorem:
Recall $\gamma \in [0,1)$. After t iterations, we have:

$$\forall s, \quad \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty$$

$$\forall s, \quad \left| V^{t+1}(s) - V^\pi(s) \right|$$

$$= \left| r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} V^t(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} V^\pi(s') \right) \right|$$

$$= \gamma \left| \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} V^t(s') - \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} V^\pi(s') \right|$$

$$\leq \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left| V^t(s') - V^\pi(s') \right|$$

$$\leq \gamma \left\| V^t - V^\pi \right\|_\infty$$
Convergence of Iterative PE

Theorem:

Recall \(\gamma \in [0,1) \). After \(t \) iterations, we have:
\[
\forall s, \quad \left| V^t(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty
\]

\[
\forall s, \quad \left| V^{t+1}(s) - V^\pi(s) \right| = \gamma \left[r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(.|s, \pi(s))} V^t(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(.|s, \pi(s))} V^\pi(s') \right) \right]
\]

\[
= \gamma \left| \mathbb{E}_{s' \sim P(.|s, \pi(s))} V^t(s') - \mathbb{E}_{s' \sim P(.|s, \pi(s))} V^\pi(s') \right|
\]

\[
\leq \gamma \left| V^t(s') - V^\pi(s') \right| \leq \gamma \left\| V^t - V^\pi \right\|_\infty
\]

\[
\Rightarrow \left\| V^{t+1} - V^\pi \right\|_\infty \leq \gamma \left\| V^t - V^\pi \right\|_\infty
\]

\[
\Rightarrow \quad \forall s, \quad \left| V^{t+1}(s) - V^\pi(s) \right| \leq \gamma^t \left\| V^0 - V^\pi \right\|_\infty
\]

\[
\Rightarrow \quad \exists T \text{ such that } \gamma^T \left\| V^0 - V^\pi \right\|_\infty = 0
\]

\[
\Rightarrow \quad V^t(s) \rightarrow V^\pi(s) \quad \text{as} \quad t \rightarrow \infty
\]
Summary so far:

\[
V^{t+1}(s) \leftarrow r(s, \pi(s)) + \gamma P(\cdot | s, \pi(s))
\]

Convergence:

\[
\| V^{t+1} - V^\pi \|_\infty \leq \gamma \| V^t - V^\pi \|_\infty \leq \gamma^{t+1} \| V^0 - V^\pi \|_\infty
\]
Outline:

1. Exact Policy Evaluation

2. Approximate Policy Evaluation via an Iterative Algorithm
Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s)$, $\forall s$?
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

1. The exact algorithm $V = (I - \gamma P)^{-1}R$ requires matrix inverse $O(S^3)$
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

1. The exact algorithm $V = (I - \gamma P)^{-1}R$ requires matrix inverse $O(S^3)$

1. For iterative PE algorithm, to find a ϵ accurate value function, we need # of iterations:
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

1. The exact algorithm $V = (I - \gamma P)^{-1}R$ requires matrix inverse $O(S^3)$

1. For iterative PE algorithm, to find a ϵ accurate value function, we need $\#$ of iterations:

$$\ln\left(\frac{\|V^0 - V^*\|_\infty}{\epsilon}\right) / \ln(1/\gamma) \leq \frac{\|V^{t} - V^\pi\|_\infty}{\epsilon} \leq \frac{\|V^0 - V^\pi\|_\infty}{\epsilon} \leq \epsilon$$

$$\Rightarrow \gamma^t \leq \frac{\|V^0 - V^\pi\|_\infty}{\epsilon}$$
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

1. The exact algorithm $V = (I - \gamma P)^{-1}R$ requires matrix inverse $O(S^3)$

1. For iterative PE algorithm, to find a ϵ accurate value function, we need # of iterations:

$$\ln \left(\frac{\| V^0 - V^* \|_\infty}{\epsilon} \right) / \ln(1/\gamma)$$

Computation wise, we need $O \left(S^2 \ln \left(\frac{1}{\epsilon} \right) \right)$
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

Bellman Equation

A fix-point equation:

$$V^\pi = R + \gamma PV^\pi$$
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

Bellman Equation

A fix-point equation:

$$V^\pi = R + \gamma PV^\pi$$

Fix-point iteration framework
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

Bellman Equation

A fix-point equation:

$$V^\pi = R + \gamma PV^\pi$$

Alg: Iterative PE

$$V^{t+1} = R + \gamma PV^t$$

Fix-point iteration framework
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^{\pi}(s), \forall s$?

Bellman Equation

A fix-point equation:

$$V^{\pi} = R + \gamma PV^{\pi}$$

Contraction

Alg: Iterative PE

$$V^{t+1} = R + \gamma PV^{t}$$

Fix-point iteration framework
Summary

Key Question today: Given MDP \mathcal{M}, and a policy π, How to compute $V^\pi(s), \forall s$?

Bellman Equation

A fix-point equation:

$$V^\pi = R + \gamma PV^\pi$$

Theorem

$$\|V^t - V^\pi\|_\infty \leq \gamma^t \|V^0 - V^\pi\|_\infty$$

Contraction

Alg: Iterative PE

$$V^{t+1} = R + \gamma PV^t$$

Fix-point iteration framework
Next two lectures:

Given MDP M, how to compute the optimal policy π^*, and V^*

$$V^* = \arg \max_{\pi} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(s|s, a)} V^*(s') \right)$$