

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Basics of MDP

Understanding those widely used notations and terminologies:

T, V]Z', Qﬂ" 71'*, V*, Q*

PA(s;), d2(s)

Basics of MDP

Bellman Equation and Bellman Optimality:

Vs,a: Q%s,a) =r(s,a) +yEg pisa)V(s)

Q*(S9 a) — }"(S, Cl) + /4 _S'NP(-‘S,CI) ma/X Q*(Sla al)a VSa a
a

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 1: Value Iteration

Vs, a: QH_I(S, a) = r(s,a) + VEgnp(-|s,q) MAX Q'(s’,a’)
d

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 1: Value Iteration

Vs,a: O™ (s,a) = r(s,a) +v = 1 P(-]5,q) AX O'(s',a’)
a

Why it works?

Contraction + Q™ being a fixed point

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 1: Value Iteration

Vs, a: QH_I(S, a) = r(s,a) + VEgnpP(-|s5,q) AR Q'(s’,a’)
d

Why it works?

Contraction + Q™ being a fixed point

10 = 0"l = 170" = TO*|lo, £ 710" = O™l

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 2: Policy lteration

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 2: Policy lteration

1. Policy Evaluation: Q7 (s, a), Vs, a

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 2: Policy lteration
1. Policy Evaluation: Q7 (s, a), Vs, a

2. Policy Improvement z'*!(s) := arg max Q”t(s, a), Vs;
d

Planning in MDP

*

Q: When P and r are known, we can compute 7™ via VI or Pl

Algorithm 2: Policy lteration
1. Policy Evaluation: Q7 (s, a), Vs, a

2. Policy Improvement z'*!(s) := arg max Q”t(s, a), Vs;
d

Key Properties:

Monotonic improvement + hit 7~ in at most A many iterations (hw1)

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Learning:

Q: What we do when (P, r) are not known?

Learning:

Q: What we do when (P, r) are not known?

We considered two learning settings:

Learning:

Q: What we do when (P, r) are not known?

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

Learning:

Q: What we do when (P, r) are not known?

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

2. Reset from fixed initial state distribution y;

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:
Vs, a: collect N next states, s; ~ P(- |s,a),1 € [N]; set
N)
2. Hsi=s"} |

i)\(s,l S, Cl) — _Ta

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:
Vs, a: collect N next states, s; ~ P(- |s,a),1 € [N]; set
N)
2. Hsi=s"} |

j)\(s,l S, Cl) — _Ta

2. Planning w/ the learned model:
7* =PI (TD\, r)

Learning:

Q: What we do when (P, r) are not known?

An Important Lemma that is widely used in model-based approach

Simulation Lemma:

V(sy) — V() = ——E

1=y

- /

(I =yp)?

S,angfO [

s,a~dg,

_S’Nj’\(-\s,a) Vﬂ(S,) — =s'~P(¢]s,a) Vﬂ(S/)]

P(-Is.a)-P(-1s.a) ||

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

REINFORCE:

H-1
Vod(my) = E . ,m lR(T) Z V,n ny(a, | Sh)]

h=0

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

REINFORCE:

H—1 H—1 H—1
V /() = = 6 lR(T) Z V,n ny(a, | sh)] = E, [Z V,n ny(a, | Sh)< Z r(s., af))]

h=0 h=0 T=h

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

The Q-version:

Vol(mg) = ——; 4oy [Veln mo(als)(Q™(s,a) — b (S))]

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

The Natural Policy Gradient:
Hl‘-l-l — 6’t -+ ﬂFe_tl V@J(ﬂ'@t)

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy z(a | s), w/ 6 € R

The Natural Policy Gradient:
Hl‘-l-l — 6’t -+ ﬂFe_tl V@J(ﬂ@t)

Instead of using Euclidean distance metric, we use local geometry metric

d(6,6,) := (0 —0)TF,(0 - 6)

Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration..

O~O o
t \O\O o

Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration..

OON o
k » \O\O o

What is the probability of a random policy generating a trajectory that hits the goal?

Learning:

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit
setting:

We have K many arms (or actions): a, ..., dg

Learning:

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit
setting:

We have K many arms (or actions): a, ..., dg

Each arm has a unknown reward distribution,
Le., v: € A([0,1)),

w/ mean y; = —,,Nyi[r]

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean f;

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean f;

2. For all future T-KN rounds, play the best empirical arm IA = arg max ﬂi
i€[K]

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

4,2) + /IKTI3)IN,2)
Fort=0—->T—1:
A1) +/In(KTI8)ND) A3) +/InKTIB)ING)
. In(KT/6) o
I = arg max | /i (i) + , A 1. A
i€[K] \ N(1) AL A/3)
Hi
(# Upper-COnf-bOund of arm l) A1) — /TR TT8)IN,D) 2) —/IRTTVIND) 4.6) — RETTND)

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)

Importance weighting + Reward-sensitive Classification

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)

Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

~ (\N—-1
B ¥ i

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)

Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

~ \N-1 X
{xv l'l 1—() o rt/jp.(.at)
Nl >
2. Call RSC oracle: 7 = argmax) £ [z(x)] o0

eIl
= iz0

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Offline IL: only expert data {5, a*}?

i j;_1 Is available (no other interaction)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Offline IL: only expert data {5, a*}?

i i Is available (no other interaction)

BC: a Reduction to Supervised Learning:

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

* *N

1. Offline IL: only expert data {S a;” j._, is available (no other interaction)

BC: a Reduction to Supervised Learning:

= arg min Z f

nell

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

* *N
d

1. Offline IL: only expert data {S _ Is available (no other interaction)

BC: a Reduction to Supervised Learning:

= argmlnz f)

nell

e.g., Negative log-likelihood (NLL): Z(x, s,a™) = — Inz(a™ | s™) (used in AlphaGo)

Distribution shift!

[Pomerleau89,Daume(09]

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2" = {s;,a’},s; ~ d;ft, a* = n*(s;)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2" = {s;,a’},s; ~ d;ft, a* = n*(s;)

2. Data aggregation: @ = D + P’

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2" = {s;,a’},s; ~ d;ft, a* = n*(s;)

2. Data aggregation: @ = D + P’

3. Update policy via Supervised-Learning: 7’ = gL (@)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2" = {s;,a’},s; ~ d;ft, a* = n*(s;)

2. Data aggregation: @ = D + P’

3. Update policy via Supervised-Learning: 7’ = gL (@)

(Recap the connection to online learning and how it avoids distribution shift..)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

*x kN

3. Hybrid IL: expert data {5, a; }'_,, and access to real transition P(. | s, a)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

*x _*N

3. Hybrid IL: expert data {5, a; }'_,, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

3. Hybrid IL: expert data {s*,a*}"",, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

arg min [In z(a | s)

JU

SaNd”

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

3. Hybrid IL: expert data {s*,a*}"",, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

arg min [In z(a | s)

JU

S . t? _S,ClNdﬁ¢(S’ a) — _SaaNd/]f*¢(S’ a)

SaNd”

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

3. Hybrid IL: expert data {s*,a*}"",, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

arg min [In z(a | s)

JU

s.t,[E S,a,\,dgqb(s, a) = S’ang*¢(S, a)

Assume the ground truth reward r(s, a) = (8*) "¢ (s, a)

saNd”

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

3. Hybrid IL: expert data {S* l* Ai {» and access to real transition P(.|s,a)

Formulation of Maximum Entropy Inverse RL:

max min [ands Inz(als)+w' (= amar (S, a) — g (s, a))
weR? r . o

) - -

= (W)

Imitation:;

Q: what we do when r is not available but we have an expert 7¢(~ 7*)?

3. Hybrid IL: expert data {s*,a*}"",, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

max min [ands Inz(als)+w' (= amarP(S,a) — Eg (s, a))
weR? r . o

) - -

= (W)

+1

terate: w,. =w,+nV, (W,), x'7" = argmin £(w,, , 7) via Soft-VI

JU

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

tQ\o\o\o

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

O0-00

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG
provably converges to global optimal policies!

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

O0-00

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG
provably converges to global optimal policies!

3. Deep Reinforcement Learning

Most of the time, it is Deep nets (e.g., policies) + RL

