Review

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Basics of MDP

Understanding those widely used notations and terminologies:

T, V]Z', Qﬂ" JZ'*, V*, Q*

P (s M)@

Basics of MDP

Bellman Equation and Bellman Optimality:

/
uv)' €V0~l"l"{"° “

PJD«;
Vs,a: Q%(s,a) =r(s,a) + YEy pi 5.0V (s)

Q*(s,a) = 1(s,a) + YEy p(|s.a) max Q*(s’,a),Vs,a
a
T

“f

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 1: Value Iteration

Vs,a: O™F\(s,a) = r(s,a) + YEy~p(.|s.q) MAX Q'(s’,a’)
a
A

£+ | o~ £

& =T A

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 1: Value Iteration

Vs,a: O™F\(s,a) = r(s,a) + VEg~p(.|s,q) MAX Q'(s’,a’)
a

Why it works?

Contraction + Q™ being a fixed point

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 1: Value Iteration

Vs,a: O™F\(s,a) = r(s,a) + YE ' p(.|s.q) MAX Q'(s’,a’)
a

Why it works?

Contraction + Q™ being a fixed poLnt
2= T&

10! = 0"l = 170" =T Ol % 10" = 0%l

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 2: Policy lteration

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 2: Policy lteration

1. Policy Evaluation: O (s, @), Vs, a

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 2: Policy lteration
1. Policy Evaluation: O (s, @), Vs, a

2. Policy Improvement 7" (s) := arg max Q" (s, a), Vs;
a

Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 2: Policy lteration
1. Policy Evaluation: O (s, @), Vs, a
2. Policy Improvement 7" (s) := arg max Q" (s, a), Vs;

a

2 L Key Properties:

Monotonic improvement\+ hit 7* in at most A® many iterations (hw1)

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Learning:

Q: What we do when (P, r) are not known?

Learning:

Q: What we do when (P, r) are not known?

We considered two learning settings:

Learning:
Q: What we do when (P, r) are not known?
We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

Learning:
Q: What we do when (P, r) are not known?
We considered two learning settings:
1. Generative model, i.e., we can reset to any (s, a)

2. Reset from fixed initial state distribution f;

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:
Vs, a: collect N next states, s; ~ P(- |s,a),i € [N]; set
N '
2 Hsi=5) |

ﬁ(s’ls,a) = — N ;

Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:
Vs, a: collect N next states, s; ~ P(- |s,a),i € [N]; set
N - .
- Yo 1{si ="} . 2
P (s'|s,a) = —= Nl ; CRuo= =

2. Planning w/ the learned model:

7* =PI (?, rf\//\w

¢ o N

Learning:

Q: What we do when (P, r) are not known?

An Important Lemma that is widely used in model-based approach

Simulation Lemma:

A?Z' T y Aﬂ' , A]Z' ,
V) = VA50) = ——E, g | B g5 V6D = Evmpgoay V)
t, T l-r o |

¢ X

SL[Esawd”
(1—y? 0

P(-|s,a)=P(-|s.a) H |

——

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

REINFORCE:

H-1
Ve](ﬂg) = [ETang [R(T) Z Veln ﬂg(ah | Sh)]
h=0

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

REINFORCE: ./

~ N\l H-1
VHJ(EG) = [ETNP”Q @ Vgln ﬂe(ah | Sh) = [ETsztg Z V@ln ﬂe(ah | .Z]—,l
<7 h=0

h=0

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

The Q-version: At pooto” et
S ttes 2 AtP T
e

(5.0)
1
Vol @) = ——Esanqp [Volnzg(als)(Q™(s, a))y b(s))]

Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

Mg “ff&
l
The Natural Policy Gradient: kL <€ 't)

B} B = (good
01 =0, + WFetlve-](ﬂet) B @ 0 F, Q@%%)
/l: FC«W j,,,?o/Ma‘h”,% ;‘go
0

¥

NN .
W omy “wee T Learning:

\

Under/resetting from p

Q: do when (P, 1) are not known?

e learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

////’/@_
\0\¢%"\M &Y (9[_'_1 — 9t + ;/’Fe_tl V@J(]Tgt)

(72
I
d&m)'/@’a‘) G
\)

Instead of using Euclidean distance metric, we use local geometry metric
. T
d,0) =0 -0) FM

The Natural Policy Gradient:

Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration.. .
(/vab‘(/‘” v

t _,OO /°‘(_(/engthH

dx_(»o(st

Lo

Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration..

O*Q]
t \Q% J—

What is the probability of a random policy generating a trajecto t hits the goal?
-\
z NS

Learning:

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit
setting:

We have K many arms (or actions): ay, ..., ag

Learning:

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit
setting:

We have K many arms (or actions): ay, ..., ag

Each arm has a unknown reward distribution,
i.e., v; € A([0,1]),
w/meanu; =k, [7]
¥

< = o "
Ly A

¢

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and C@q/miﬂ//ee algorithm:

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean /21'

Learning:
Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean /21'

2. For all future T-KN rounds, play the best empirical arm I= arg max i,
IE[K]

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

4,2) + /I(KTTB)N.2)

Fort=0—-T-1:

A,3) + /I(KT/3)N,(3)
1) ++/In(KT/8)/IN(1)
. In(KT/6) .
I =argmax |A,(i) +4/|———— i 1. .
j NJ(i A : i\3)
i€lK] (i) A
29 M

(# Upper-conf-bound of arm 1) 1) = FRTIBNCT)

Ragprst O(W)

A(2) = /In(KT/5)IN,2) £iA3) —/In(KTIS)IN,3)

(R

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)

Importance weighting + Reward-sensitive Classification

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)
Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

o

A \N-1

r, 0
{f” =0 T o bim [
yirs A £[7)e v \0/

Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)
Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:
S

S \N-1 0
{‘xi7 ri 1=0 . rt/})‘('a)
N-1 0,
2. Call RSC oracle: # = arg max Z t[7(x;)] 0 |

A O (T% ky%)_

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Offline IL: only expert data {sl.*, al.*}f.\il is available (no other interaction)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Offline IL: only expert data {Si*, al.*}f.\il is available (no other interaction)

BC: a Reduction to Supervised Learning:

Imitation:
Q: what we do when 7 is not available but we have an expert 7(~ 7*)?
* }N

1. Offline IL: only expert data {Si | Is available (no other interaction)

BC: a Reduction to Supervised Learning:

T = argmmZz,” (7, s*,a*)
=1 (/055‘7[‘\”\0{,\“, %{— c{a(fzf@&fvw»/)%/yﬂwv\

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Offline IL: only expert data {Si *}Nl is available (no other interaction)

BC: a Reduction to Supervised Learning:

= arg min Z £\)

mell

e.g., Negative log-likelihood (NLL): #(7, s,a™) = — Inz(a™* | s*) (used in AlphaGo)

Distribution shift!

[
Predictions affect future inputs/

observations
Learned Policy " __-,u--....

Pomerleau89,Daume(9]

Expert’s trajectory

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

L Experk actibv S

1. W/ n', generate dataset @' = {s;,a*}, s, ~ d¥,a* = n*(s))

L 4
Lvews puwt poﬂ\“aa el

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ n', generate dataset @' = {s;,a}, s, ~ d¥, a* = n*(s))

2. Data aggregation: 9 = @ + @'

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ n', generate dataset @' = {s;,a}, s, ~ d¥, a* = n*(s))
2. Data aggregation: 9 = @ + @'
3. Update policy via Supervised-Learning: 7°*! = SL (@)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2 = {s;,a*},s; ~ d/ft, a’ = (s
2. Data aggregation: 9 = @ + @'
3. Update policy via Supervised-Learning: 7'+ = SL (@)

(Recap the connection to online learning and how it avoids distribution shift..)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* é\il, and access to real transition P(. | s, a)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* ﬁil, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* é\;p and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

o max E “W"W(ﬂrb)

argminE, ,_ . Inz(als) T ond”
V4 ’ K

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* é\;p and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

argminE, . Inz(als)
V4 ’ K

s .1, [Es,a,vd;;ﬁb(& a) = [Es’awdﬁ*g/)(s, a)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* é\il, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

argminE, . Inz(als)
V4 ’ K

s .1, [Es,aNd;;ﬁb(S, a) = [Es,a~d;;*¢/)(5a a)

Assume the ground truth reward r(s, a) =(6*)"¢(s, a

i

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {Si*, al.* é\;p and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL: Loguong o
\/\/\IVI"‘F“M)

max minE, . Inz(als) +w' <[E§ amdr®(S,a) — E (s, a)>
weRd 20 A 20 20y

=L (m,w)

Imitation:

Q: what we do when 7 is not available but we have an expert 7°(~ 7*)?

3. Hybrid IL: expert data {Si*, al.* é\;p and access to real transition P(. | s, a)

Q
,(,J\ M‘,M’(
Nl Formulation of Maximum Entropy Inverse RL:
3 Py

(7/\‘ up

{ ~ J Bt Q,/,P_wu
max minE, . Inz(als) +w' ([EY amdr®(S,a) — E (s, a)>
weR? r o K o K - K

=L (m,w)

lterate: w,,, = w, +nV £(w, x), x'! = argmin £(w,, |,) via Soft-VI
T
CS‘(&AA.‘Q\/\& P\SOU\J-& o\ %st P\Q_SG)DVlﬁQ o~ T

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

QﬁO
t O%)

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?
2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG
provably converges to global optimal policies!

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG
provably converges to global optimal policies!

3. Deep Reinforcement Learning

Most of the time, it is Deep nets (e.g., policies) + RL

