
Review

 



What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation



Basics of MDP

Understanding those widely used notations and terminologies: 

π, Vπ, Qπ, π⋆, V⋆, Q⋆

ℙπ
h(s; μ), dπ

μ(s)



Basics of MDP
Bellman Equation and Bellman Optimality:

∀s, a : Qπ(s, a) = r(s, a) + γ$s′ ∼P(⋅|s,a)Vπ(s′ )

Q⋆(s, a) = r(s, a) + γ$s′ ∼P(⋅|s,a) max
a′ 

Q⋆(s′ , a′ ), ∀s, a



Planning in MDP

Algorithm 1: Value Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

∀s, a : Qt+1(s, a) = r(s, a) + γ$s′ ∼P(⋅|s,a) max
a′ 

Qt(s′ , a′ )



Planning in MDP

Algorithm 1: Value Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

∀s, a : Qt+1(s, a) = r(s, a) + γ$s′ ∼P(⋅|s,a) max
a′ 

Qt(s′ , a′ )

Why it works?

Contraction +  being a fixed pointQ⋆



Planning in MDP

Algorithm 1: Value Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

∀s, a : Qt+1(s, a) = r(s, a) + γ$s′ ∼P(⋅|s,a) max
a′ 

Qt(s′ , a′ )

Why it works?

Contraction +  being a fixed pointQ⋆

∥Qt+1 − Q⋆∥∞ = ∥+Qt − +Q⋆∥∞ ≤ γ∥Qt − Q⋆∥∞



Planning in MDP

Algorithm 2: Policy Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆



Planning in MDP

Algorithm 2: Policy Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

1. Policy Evaluation: Qπt(s, a), ∀s, a



Planning in MDP

Algorithm 2: Policy Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

1. Policy Evaluation: Qπt(s, a), ∀s, a

2. Policy Improvement ; πt+1(s) := arg max
a

Qπt(s, a), ∀s



Planning in MDP

Algorithm 2: Policy Iteration

Q: When  and  are known, we can compute  via VI or PIP r π⋆

1. Policy Evaluation: Qπt(s, a), ∀s, a

2. Policy Improvement ; πt+1(s) := arg max
a

Qπt(s, a), ∀s

Key Properties: 

Monotonic improvement + hit  in at most  many iterations (hw1)π⋆ AS



What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation



Learning:

Q: What we do when ( , ) are not known? P r



Learning:

Q: What we do when ( , ) are not known? P r

We considered two learning settings:



Learning:

Q: What we do when ( , ) are not known? P r

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)



Learning:

Q: What we do when ( , ) are not known? P r

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

2. Reset from fixed initial state distribution ;μ



Learning:

Q: What we do when ( , ) are not known? P r
Under generative model setting, we learned a simple model-based RL alg:



Learning:

Q: What we do when ( , ) are not known? P r
Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:  
: collect  next states, ; set 

  

∀s, a N s′ i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′ |s, a) =
∑N

i=1 1{s′ i = s′ }
N

;



Learning:

Q: What we do when ( , ) are not known? P r
Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:  
: collect  next states, ; set 

  

∀s, a N s′ i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′ |s, a) =
∑N

i=1 1{s′ i = s′ }
N

;

2. Planning w/ the learned model: 
 ̂π ⋆ = PI ( ̂P , r)



Learning:

Q: What we do when ( , ) are not known? P r
An Important Lemma that is widely used in model-based approach

Simulation Lemma:
̂V π(s0) − Vπ(s0) = γ

1 − γ
$s,a∼dπs0 [$s′ ∼ ̂P (⋅|s,a) ̂V π(s′ ) − $s′ ∼P(⋅|s,a) ̂V π(s′ )]

≤ γ
(1 − γ)2 $s,a∼dπs0

̂P ( ⋅ |s, a) − P( ⋅ |s, a)
1



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd

REINFORCE:

∇θJ(πθ) = $τ∼ρπθ [R(τ)
H−1

∑
h=0

∇θln πθ(ah |sh)]



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd

REINFORCE:

∇θJ(πθ) = $τ∼ρπθ [R(τ)
H−1

∑
h=0

∇θln πθ(ah |sh)] = $τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
τ=h

r(sτ, aτ))]



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd

The Q-version:

∇θJ(πθ) = 1
1 − γ

$s,a∼dπθμ [∇θln πθ(a |s)(Qπθ(s, a) − b(s))]



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd

The Natural Policy Gradient:
θt+1 = θt + ηF−1

θt
∇θJ(πθt

)



Learning:

Q: What we do when ( , ) are not known? P r

Under resetting from , we learned policy gradient algorithmsμ

Given a differentiable parameterized policy , w/ :πθ(a |s) θ ∈ ℝd

The Natural Policy Gradient:
θt+1 = θt + ηF−1

θt
∇θJ(πθt

)
Instead of using Euclidean distance metric, we use local geometry metric 

d(θ, θt) := (θ − θt)⊤Fθt
(θ − θt)



Learning:

Q: What we do when ( , ) are not known? P r

However, PG fails on problems that require exploration..

s0 …
Length: H

r = 1



Learning:

Q: What we do when ( , ) are not known? P r

However, PG fails on problems that require exploration..

s0 …
Length: H

r = 1

What is the probability of a random policy generating a trajectory that hits the goal?



Learning:
Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit 

setting:

We have K many arms (or actions): a1, …, aK



Learning:
Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit 

setting:

We have K many arms (or actions): a1, …, aK

Each arm has a unknown reward distribution, 
i.e., , 


w/ mean 
νi ∈ Δ([0,1])

μi = $r∼νi
[r]



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean ̂μi



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean ̂μi

2. For all future T-KN rounds, play the best empirical arm ̂I = arg max
i∈[K]

̂μi



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

For :t = 0 → T − 1
It = arg max

i∈[K]
̂μt(i) + ln(KT/δ)

Nt(i)
(# Upper-conf-bound of arm )i

̂μt(2)

̂μt(2) + ln(KT/δ)/Nt(2)

̂μt(2) − ln(KT/δ)/Nt(2)

μ2̂μt(1)

̂μt(1) + ln(KT/δ)/Nt(1)

̂μt(1) − ln(KT/δ)/Nt(1)

μ1

̂μt(3)

̂μt(3) + ln(KT/δ)/Nt(3)

̂μt(3) − ln(KT/δ)/Nt(3)

μ3



Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or -greedy) ϵ

Importance weighting + Reward-sensitive Classification



Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or -greedy) ϵ

Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

{xi, ̂ri}N−1
i=0 ̂r :=

0
0…

rt /p(at)
0,…
0



Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or -greedy) ϵ

Importance weighting + Reward-sensitive Classification

2. Call RSC oracle: ̂π = arg max
π∈Π

N−1

∑
i=0

̂ri[π(xi)]

1. For the first N rounds, randomly try actions to construct a classification dataset:

{xi, ̂ri}N−1
i=0 ̂r :=

0
0…

rt /p(at)
0,…
0



What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Offline IL: only expert data  is available (no other interaction){s⋆
i , a⋆

i }N
i=1



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Offline IL: only expert data  is available (no other interaction){s⋆
i , a⋆

i }N
i=1

BC: a Reduction to Supervised Learning:



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Offline IL: only expert data  is available (no other interaction){s⋆
i , a⋆

i }N
i=1

BC: a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Offline IL: only expert data  is available (no other interaction){s⋆
i , a⋆

i }N
i=1

BC: a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

e.g., Negative log-likelihood (NLL):   (used in AlphaGo)ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)



Distribution shift!
• Predictions affect future inputs/

observations

[Pomerleau89,Daume09]

Expert’s trajectoryLearned Policy



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process

1. W/ , generate dataset πt 7t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

The DAgger Algorithm (Data Aggregation):



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process

1. W/ , generate dataset πt 7t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 7 = 7 + 7t

The DAgger Algorithm (Data Aggregation):



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process

1. W/ , generate dataset πt 7t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 7 = 7 + 7t

3. Update policy via Supervised-Learning: πt+1 = SL (7)

The DAgger Algorithm (Data Aggregation):



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

1. Interactive IL: expert is available for query during the learning process

1. W/ , generate dataset πt 7t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 7 = 7 + 7t

3. Update policy via Supervised-Learning: πt+1 = SL (7)

The DAgger Algorithm (Data Aggregation):

(Recap the connection to online learning and how it avoids distribution shift..)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:

arg min
π

$s,a∼dπμ
ln π(a |s)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:

arg min
π

$s,a∼dπμ
ln π(a |s)

s . t, $s,a∼dπμ
ϕ(s, a) = $s,a∼dπ⋆

μ
ϕ(s, a)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:

arg min
π

$s,a∼dπμ
ln π(a |s)

s . t, $s,a∼dπμ
ϕ(s, a) = $s,a∼dπ⋆

μ
ϕ(s, a)

Assume the ground truth reward r(s, a) = (θ⋆)⊤ϕ(s, a)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:

max
w∈ℝd

min
π

$s,a∼dπμ
ln π(a |s) + w⊤ ($s,a∼dπμ

ϕ(s, a) − $s,a∼dπ⋆
μ

ϕ(s, a))
:=ℓ(π,w)



Imitation:
Q: what we do when  is not available but we have an expert ?r πe( ≈ π⋆)

3. Hybrid IL: expert data , and access to real transition {s⋆
i , a⋆

i }N
i=1 P( . |s, a)

Formulation of Maximum Entropy Inverse RL:

max
w∈ℝd

min
π

$s,a∼dπμ
ln π(a |s) + w⊤ ($s,a∼dπμ

ϕ(s, a) − $s,a∼dπ⋆
μ

ϕ(s, a))
:=ℓ(π,w)

Iterate: ,  via Soft-VIwt+1 = wt + η∇wℓ(wt, πt) πt+1 = arg min
π

ℓ(wt+1, π)



What we did not cover:

s0 …
1. How to do strategic exploration in RL? Can we do it in poly time?



What we did not cover:

s0 …
1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG 
provably converges to global optimal policies!



What we did not cover:

s0 …
1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG 
provably converges to global optimal policies!

3. Deep Reinforcement Learning
Most of the time, it is Deep nets (e.g., policies) + RL


