Review

What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Basics of MDP

Understanding those widely used notations and terminologies:

 $\pi, V^{\pi}, Q^{\pi}, \pi^{\star}, V^{\star}, Q^{\star}$

 $\mathbb{P}_h^{\pi}(s;\mu), d_{\mu}^{\pi}(s)$

Basics of MDP

Bellman Equation and Bellman Optimality:

$$\forall s, a: \quad Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \xrightarrow{P_{s}} V^{\pi}(s')$$

$$Q^{\star}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{\star}(s',a'), \forall s,a$$

$$\forall \nabla \mathcal{P}$$

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 1: Value Iteration

$$\forall s, a : \underline{Q^{t+1}(s, a)} = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} \underline{Q^{t}(s', a')}$$
$$\overset{\mathsf{terl}}{\bigotimes^{\mathsf{terl}}} := \mathcal{T} \mathbf{Q}^{\mathsf{terl}}$$

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 1: Value Iteration

$$\forall s, a : Q^{t+1}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a' \neq \gamma} Q^{t}(s', a')$$
Why it works?
Contraction + Q* being a fixed point

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 1: Value Iteration

$$\forall s, a : Q^{t+1}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q^t(s', a')$$

Why it works?

Contraction + Q^{\star} being a fixed point $Q^{\star} \in \mathcal{T} Q^{\star}$ $\|Q^{t+1} - Q^{\star}\|_{\infty} = \|\mathcal{T}Q^{t} - (\mathcal{T}Q^{\star})\|_{\infty} \leq \gamma \|Q^{t} - Q^{\star}\|_{\infty}$

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 2: Policy Iteration

Q: When *P* and *r* are known, we can compute π^* via VI or PI

Algorithm 2: Policy Iteration

1. Policy Evaluation: $Q^{\pi^t}(s, a), \forall s, a$

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 2: Policy Iteration

1. Policy Evaluation:
$$Q^{\pi^t}(s, a), \forall s, a$$

2. Policy Improvement
$$\pi^{t+1}(s) := \arg \max_{a} Q^{\pi^{t}}(s, a), \forall s;$$

Q: When P and r are known, we can compute π^* via VI or PI

Algorithm 2: Policy Iteration

1. Policy Evaluation:
$$Q^{\pi^t}(s, a), \forall s, a$$

2. Policy Improvement $\pi^{t+1}(s) := \arg \max_{a} Q^{\pi^{t}}(s, a), \forall s;$

Key Properties:

PPL

Monotonic improvement + hit π^* in at most A^S many iterations (hw1)

What we covered this semester:

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation

Q: What we do when (P, r) are not known?

Q: What we do when (P, r) are not known?

We considered two learning settings:

Q: What we do when (P, r) are not known?

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

Q: What we do when (P, r) are not known?

We considered two learning settings:

1. Generative model, i.e., we can reset to any (s, a)

2. Reset from fixed initial state distribution μ ;

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:

 $\forall s, a: \text{ collect } N \text{ next states, } s'_i \sim P(\cdot | s, a), i \in [N]; \text{ set}$ $\widehat{P}(s' | s, a) = \frac{\sum_{i=1}^N \mathbf{1}\{s'_i = s'\}}{N};$

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:

 $\forall s, a: \text{ collect } N \text{ next states, } s'_i \sim P(\cdot \mid s, a), i \in [N]; \text{ set}$ $\widehat{P}(s' \mid s, a) = \frac{\sum_{i=1}^N \mathbf{1}\{s'_i = s'\}}{N}; \qquad (\forall s \in \mathbb{N}) \in \mathbb{N}$

2. Planning w/ the learned model: $\widehat{\pi}^{\star} = \operatorname{Pl}\left(\widehat{P}, r\right)^{\text{Assume } r \text{ is known}}$

Q: What we do when (P, r) are not known?

An Important Lemma that is widely used in model-based approach

Simulation Lemma:

$$\begin{split} \widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) &= \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(\cdot|s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(\cdot|s, a)} \widehat{V}^{\pi}(s') \right] \\ \stackrel{\uparrow}{\varsigma} &\stackrel{\downarrow}{\varsigma} \\ &\leq \frac{\gamma}{(1 - \gamma)^{2}} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left\| \widehat{P}(\cdot|s, a) - P(\cdot|s, a) \right\|_{1} \end{split}$$

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

REINFORCE:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho^{\pi_{\theta}}} \left[R(\tau) \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right]$$

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

REINFORCE:

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \left(Q^{\pi_{\theta}}(s, a) - b(s) \right) \right]$$

Q: What we do when (P, r) are not known?

Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

The Natural Policy Gradient:

KL (p^{no-}ll p^{no})

Q: What we do when (P, r) are not known? Under resetting from μ , we learned policy gradient algorithms

Given a differentiable parameterized policy $\pi_{\theta}(a \mid s)$, w/ $\theta \in \mathbb{R}^d$:

The Natural Policy Gradient:

$$\begin{array}{l} \text{Regular GV} \qquad \theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \\ \text{Instead of using Euclidean distance metric, we use local geometry metric} \\ d(\theta, \theta_t) := (\theta - \theta_t)^{\top} F_{\theta_t}(\theta - \theta_t) \end{array}$$

Q: What we do when (P, r) are not known?

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration..

What is the probability of a random policy generating a trajectory that hits the goal?

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit setting:

We have K many arms (or actions): a_1, \ldots, a_K

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit setting:

We have K many arms (or actions): a_1, \ldots, a_K

Each arm has a unknown reward distribution, i.e., $\nu_i \in \Delta([0,1])$, w/ mean $\mu_i = \mathbb{E}_{r \sim \nu_i}[r]$

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean $\hat{\mu}_i$

Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean $\hat{\mu}_i$

2. For all future T-KN rounds, play the best empirical arm $\hat{I} = \arg \max_{i \in [K]} \hat{\mu}_i$

Reset_ = 0 (T 3 K 3)

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm

For
$$t = 0 \rightarrow T - 1$$
:

$$I_{t} = \arg \max_{i \in [K]} \left(\hat{\mu}_{t}(i) + \sqrt{\frac{\ln(KT/\delta)}{N_{t}(i)}} \right)$$

$$\stackrel{\hat{\mu}_{i}(1) + \sqrt{\ln(KT/\delta)/N_{i}(1)}}{\hat{\mu}_{i}(1) - \sqrt{\ln(KT/\delta)/N_{i}(1)}}$$

$$\stackrel{\hat{\mu}_{i}(2) - \sqrt{\ln(KT/\delta)/N_{i}(2)}}{\hat{\mu}_{i}(2) - \sqrt{\ln(KT/\delta)/N_{i}(2)}}$$

$$\stackrel{\hat{\mu}_{i}(3) - \sqrt{\ln(KT/\delta)/N_{i}(3)}}{\hat{\mu}_{i}(3) - \sqrt{\ln(KT/\delta)/N_{i}(3)}}$$

$$Reg^{Me^{k}} = O\left(\sqrt{|L|}\right)$$

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or *e***-greedy)**

Importance weighting + Reward-sensitive Classification

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or e-greedy)

Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

_ _ _

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or *e***-greedy)**

Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:

$$\{x_i, \hat{\mathbf{r}}_i\}_{i=0}^{N-1}$$
2. Call RSC oracle: $\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{i=0}^{N-1} \hat{\mathbf{r}}_i[\pi(x_i)]$

$$O(\tau^{\cancel{N}} \not \overset{\checkmark}{})$$

What we covered this semester:

4. Imitation

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Offline IL: only expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$ is available (no other interaction)

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Offline IL: only expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$ is available (no other interaction)

BC: a Reduction to Supervised Learning:

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Offline IL: only expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$ is available (no other interaction)

BC: a Reduction to Supervised Learning:

$$\hat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell(\pi, s^{\star}, a^{\star})$$
Loss function for classification/Regression

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Offline IL: only expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$ is available (no other interaction)

BC: a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)$$

e.g., Negative log-likelihood (NLL): $\ell(\pi, s, a^*) = -\ln \pi(a^* | s^*)$ (used in AlphaGo)

Distribution shift!

[Pomerleau89, Daume09]

• Predictions affect future inputs/ observations Expert's trajectory Learned Policy

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

Q: what we do when r is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation): $\mathcal{E} \times \mathcal{P}^{\text{pert action}}$ 1. W/ π^t , generate dataset $\mathcal{D}^t = \{s_i, a_i^{\star}\}, s_i \sim d_{\mu}^{\pi^t}, a_i^{\star} = \pi^{\star}(s_i)$

Q: what we do when r is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ π^t , generate dataset $\mathscr{D}^t = \{s_i, a_i^{\star}\}, s_i \sim d_{\mu}^{\pi^t}, a_i^{\star} = \pi^{\star}(s_i)$

2. Data aggregation: $\mathcal{D} = \mathcal{D} + \mathcal{D}^t$

Q: what we do when r is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ π^t , generate dataset $\mathcal{D}^t = \{s_i, a_i^{\star}\}, s_i \sim d_{\mu}^{\pi^t}, a_i^{\star} = \pi^{\star}(s_i)$

2. Data aggregation: $\mathcal{D} = \mathcal{D} + \mathcal{D}^t$

3. Update policy via Supervised-Learning: $\pi^{t+1} = SL(\mathscr{D})$

Q: what we do when r is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ π^t , generate dataset $\mathcal{D}^t = \{s_i, a_i^{\star}\}, s_i \sim d_{\mu}^{\pi^t}, a_i^{\star} = \pi^{\star}(s_i)$

2. Data aggregation: $\mathcal{D} = \mathcal{D} + \mathcal{D}^t$

3. Update policy via Supervised-Learning: $\pi^{t+1} = SL(\mathcal{D})$

(Recap the connection to online learning and how it avoids distribution shift..)

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Formulation of Maximum Entropy Inverse RL:

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Formulation of Maximum Entropy Inverse RL:

$$\arg\min_{\pi} \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s) \xrightarrow{\text{Erm}}_{\tau} \sup_{s \sim d^{\pi}} \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s)$$

^

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Formulation of Maximum Entropy Inverse RL:

$$\arg\min_{\pi} \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s)$$
$$s \cdot t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi^{\star}}} \phi(s,a)$$

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Formulation of Maximum Entropy Inverse RL:

$$\arg \min_{\pi} \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s)$$

$$s \cdot t, \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi^{\star}}} \phi(s, a)$$
Assume the ground truth reward $r(s, a) = (\theta^{\star})^{\mathsf{T}} \phi(s, a)$

Q: what we do when *r* is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s,a)

Formulation of Maximum Entropy Inverse RL: $\max_{w \in \mathbb{R}^{d}} \min_{\pi} \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s) + \underset{\Delta}{w^{\top}} \left(\mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) - \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) \right)$ $:= \ell(\pi, w)$

Q: what we do when r is not available but we have an expert $\pi^{e}(\approx \pi^{\star})$?

3. Hybrid IL: expert data $\{s_i^{\star}, a_i^{\star}\}_{i=1}^N$, and access to real transition P(.|s, a)

Formulation of Maximum Entropy Inverse RL: $\int_{w \in \mathbb{R}^{d}} \int_{\pi} \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s) + w^{\top} \left(\mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) - \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) \right)$ $:=\ell(\pi,w)$ Iterate: $w_{t+1} = w_t + \eta \nabla_w \ell(w_t, \pi_t), \pi^{t+1} = \arg \min_{\pi} \ell(w_{t+1}, \pi)$ via Soft-VI Gradient Ascent and Best Response on π

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG provably converges to global optimal policies!

What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG provably converges to global optimal policies!

3. Deep Reinforcement Learning

Most of the time, it is Deep nets (e.g., policies) + RL