Review



What we covered this semester:

1. Basics of Markov Decision Process

2. Planning in MDP: VI and PI

3. Learning: Model-based RL, Policy Optimization, Bandit

4. Imitation



Basics of MDP

Understanding those widely used notations and terminologies:

T, V]Z', Qﬂ" JZ'*, V*, Q*
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Basics of MDP

Bellman Equation and Bellman Optimality:
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Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 1: Value Iteration

Vs,a: O™F\(s,a) = r(s,a) + YEy~p(.|s.q) MAX Q'(s’,a’)
a
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Planning in MDP

Q: When P and r are known, we can compute z* via VI or PI

Algorithm 2: Policy lteration
1. Policy Evaluation: O (s, @), Vs, a
2. Policy Improvement 7" (s) := arg max Q" (s, a), Vs;

a

2 L Key Properties:

Monotonic improvement\+ hit 7* in at most A® many iterations (hw1)
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Learning:
Q: What we do when (P, r) are not known?
We considered two learning settings:
1. Generative model, i.e., we can reset to any (s, a)

2. Reset from fixed initial state distribution f;
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1. Model fitting:
Vs, a: collect N next states, s; ~ P( - |s,a),i € [N]; set
N '
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Learning:

Q: What we do when (P, r) are not known?

Under generative model setting, we learned a simple model-based RL alg:

1. Model fitting:
Vs, a: collect N next states, s; ~ P( - |s,a),i € [N]; set
N - .
- Yo 1{si ="} . 2
P (s'|s,a) = —= Nl ; CRuo= =

2. Planning w/ the learned model:
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Learning:

Q: What we do when (P, r) are not known?

An Important Lemma that is widely used in model-based approach

Simulation Lemma:
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Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R
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Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R

REINFORCE: ./
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Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R
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Learning:

Q: What we do when (P, r) are not known?

Under resetting from u, we learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R
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Under/resetting from p

Q: do when (P, 1) are not known?

e learned policy gradient algorithms

Given a differentiable parameterized policy my(a | s), w/ 0 € R
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Instead of using Euclidean distance metric, we use local geometry metric
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The Natural Policy Gradient:




Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration.. .
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Learning:

Q: What we do when (P, r) are not known?

However, PG fails on problems that require exploration..
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What is the probability of a random policy generating a trajecto t hits the goal?
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Learning:

Q: How to learn efficient (i.e., balance explore and exploit) in Multi-armed Bandit
setting:

We have K many arms (or actions): ay, ..., ag

Each arm has a unknown reward distribution,
i.e., v; € A([0,1]),
w/meanu; =k, [7]
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1. Explore and C@q/miﬂ//ee algorithm:
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Learning:
Q: How to learn efficient in Multi-armed Bandit setting:

1. Explore and Committee algorithm:

1. For the first NK rounds, try each arm N times, compute its average mean /21'

2. For all future T-KN rounds, play the best empirical arm I= arg max i,
IE[K]



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm



Learning:

Q: How to learn efficient in Multi-armed Bandit setting:

2. The Upper Confidence Bound Algorithm
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Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)
Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:
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Learning:

Q: How to learn efficient in Contextual Bandit setting:

1. Explore and Commit (or ¢-greedy)
Importance weighting + Reward-sensitive Classification

1. For the first N rounds, randomly try actions to construct a classification dataset:
S
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2. Call RSC oracle: # = arg max Z t[7(x;)] 0 |
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Q: what we do when 7 is not available but we have an expert 7( ~ 7*)?
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1. Offline IL: only expert data {Si | Is available (no other interaction)

BC: a Reduction to Supervised Learning:

T = argmmZz,” (7, s*,a*)
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Imitation:

Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

1. Offline IL: only expert data {Si *}Nl is available (no other interaction)

BC: a Reduction to Supervised Learning:

= arg min Z £\ )

mell

e.g., Negative log-likelihood (NLL): #(7, s,a™) = — Inz(a™* | s*) (used in AlphaGo)



Distribution shift!

[
Predictions affect future inputs/

observations
Learned Policy " __-,u--....

Pomerleau89,Daume(9]

Expert’s trajectory
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Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):
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1. W/ n', generate dataset @' = {s;,a*}, s, ~ d¥,a* = n*(s))
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The DAgger Algorithm (Data Aggregation):
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Imitation:

Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

1. Interactive IL: expert is available for query during the learning process

The DAgger Algorithm (Data Aggregation):

1. W/ 7', generate dataset 2 = {s;,a*},s; ~ d/ft, a’ = (s
2. Data aggregation: 9 = @ + @'
3. Update policy via Supervised-Learning: 7'+ = SL (@)

(Recap the connection to online learning and how it avoids distribution shift..)
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Imitation:

Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

3. Hybrid IL: expert data {sl.*, al.* é\il, and access to real transition P(. | s, a)

Formulation of Maximum Entropy Inverse RL:

argminE, . Inz(als)
V4 ’ K

s .1, [Es,aNd;;ﬁb(S, a) = [Es,a~d;;*¢/)(5a a)

Assume the ground truth reward r(s, a) =(6*)"¢(s, a

i
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Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

3. Hybrid IL: expert data {Si*, al.* é\;p and access to real transition P( . | s, a)
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Imitation:

Q: what we do when 7 is not available but we have an expert 7°( ~ 7*)?

3. Hybrid IL: expert data {Si*, al.* é\;p and access to real transition P( . | s, a)

Q
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Nl Formulation of Maximum Entropy Inverse RL:
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What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?
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What we did not cover:

1. How to do strategic exploration in RL? Can we do it in poly time?

2. When does Policy Gradient guarantee Global optimality?

Though the RL objective function is non-convex wrt policy, under some cases, PG
provably converges to global optimal policies!

3. Deep Reinforcement Learning

Most of the time, it is Deep nets (e.g., policies) + RL



