Introduction to Imitation Learning
& the Behavior Cloning Algorithm



Annoucements

1. We had a typo in 2.2 of the homework, fixed and updated pdf/latex are posted on ED

2. Releasing the next reading quiz on DPO

3. No class this Wednesday and no office hour this Thursday — traveling to DC for DoD meetings



Recap

Infinite horizon Discounted MDPs

M= {S,A,y,r,P,u}

(0 o]
Average state distribution: d” = (1 — y) 2 thPZ
h=0



Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if r is unknown

Average state distribution: d” = (1 — y) Z thPZ
h=0



Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if 7 is unknown

We have covered how to learn a reward from binary preference data...



Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if 7 is unknown

We have covered how to learn a reward from binary preference data...

Today: how to learn directly from expert demonstations



Outline for today:

1. Offline Imitation Learning: Behavior Cloning

2. Performance difference lemma and its application to proving BC’s bound















An Autonomous Land Vehicle
In A Neu ral Network [Pomerleau, NIPS ‘88]
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Figure 1: ALVINN Architecture
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Imitation Learning
Machine
l Expert Learning PO“Cy 7-‘-
Demonstrations Algorithm

« SVM
« Gaussian Process

. Kernel Estimator ~ Maps states
« Deep Networks to actions
« Random Forests

« LWR




Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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[Widrow64,Pomerleau89]
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

Learned «
Policy =
M

Mapping from state (image) to I

control (steering direction) Supervised Learning 12












LLMs are trained via BC in their pre-training phase

Take a sentence from the web:

State Action

Reinforcement learning (RL) is an interdisciplinary

area

of machine learning and optimal

control concerned with how an intelligent agent should take actions in a dynamic

environment in order to maximize a reward signal.
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LLMs are trained via BC in their pre-training phase
Take a sentence from the web:

State Action

Reinforcement learning (RL) is an interdisciplinary area of|’nachine learning and optimal

control concerned with how an intelligent agent should take actions in a dynamic
environment in order to maximize a reward signal.

Forcing LLM to predict the next “action” conditioned on past...
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy T*

We have a dataset & = (s*,a*)". ~ ar

Goal: learn a policy from & that is as good as the expert 7*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 A (ﬂ,s*,a*)
nell £ |
=

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s*,a*) = — Inz(a™ | s*)

2. square loss (i.e., regression for continuous action): £(x, s*,a*) = ||#(s™) — a*ll%
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M

7 = arg min Z £ (m,s*,a*)
rnell i1

Analysis N

Assumption: we are going to assume Supervised Learning succeeded

1|7(s) # n*(s)| <e eR?




M
arg min Z A (7:, s*, a*)
nell 4 |
1=

T

Analysis

Assumption: we are going to assume Supervised Learning succeeded

E, sl |7(s) # 7%(s)| <e eRY

Does that imply that 7 is a good policy? What’s the performance difference between # and 7*?



Outline for today:

1. Offline Imitation Learning: Behavior Cloning

2. Performance difference lemma and its application to proving BC’s bound



Performance Difference Lemma

Given two policies 7 : S = A(A), 7’': S = A(A), recall V7(sy) = E [thr(sh, ah)lﬂ]
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Performance Difference Lemma

Given two policies 7 : S = A(A), 7’': S = A(A), recall V7(sy) = E [iyhr(sh, ah)lﬂ]

h=0

C eI \ st

Performance Difference Lemma (PDL):

E 1907 (5. @) = VE(5)|

, 1
V(sg) — V*(s9) = —E, 4
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Proof of Sketch (see reading material for detailed steps)
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An Application of PDL in Policy lteration

Recall that 7" (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL.:
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Theorem [BC Performance] With probabil;

V‘ V‘S

*



Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
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Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
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Analysis of BC

Theorem [BC Performance] Vw—é BC rgfurns
. ~ 2
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Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
* A 2
Vi - VP < —c¢
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Analysis of BC

Theorem [BC Performance] With probability atleast 1 — &, BC returns a policy 7:

ey

Ve — v

(1- }/)(V* VR ) = E,_ A% (5, 7%(5))
The quadratic amplification is annoying;
Related to pre-trained LLM hallucination;

= |E ;z*A;E ’ * - |E ﬂ*A;T\ ’ T H I 1
s~d (s, 27(s)) — By (s, 7(s)) Will see how to fix it next lecture
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Summary

¥
Q‘«;,;\N'ﬁ

BC: simple algorithm that directly learns from human demonstrations; used in robotics and NLP
N

PDL: how to capture the performance difference between two policies
D (as important as Simulation lemma)



