Introduction to Imitation Learning
& the Behavior Cloning Algorithm

Annoucements

1. We had a typo in 2.2 of the homework, fixed and updated pdf/latex are posted on ED

2. Releasing the next reading quiz on DPO

3. No class this Wednesday and no office hour this Thursday — traveling to DC for DoD meetings

Recap

Infinite horizon Discounted MDPs

M= {S,A,y,r,P,u}

(0 o]
Average state distribution: d” = (1 — y) 2 thPZ
h=0

Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if r is unknown

Average state distribution: d” = (1 — y) Z thPZ
h=0

Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if 7 is unknown

We have covered how to learn a reward from binary preference data...

Recap

Infinite horizon Discounted MDPs

W = {S,A, @,M} What if 7 is unknown

We have covered how to learn a reward from binary preference data...

Today: how to learn directly from expert demonstations

Outline for today:

1. Offline Imitation Learning: Behavior Cloning

2. Performance difference lemma and its application to proving BC’s bound

An Autonomous Land Vehicle
In A Neu ral Network [Pomerleau, NIPS ‘88]

8x32 Range Finder
Input Retina

45 Direction
Output Units

AN i =3

O\AZ

.&v;«.‘\
XN

.«v;%

) \
'/,

30x32 Video
Input Retina

Road Intensity
Feedback Unit

)
——— .

oy
LI e
MR e

Figure 1: ALVINN Architecture

Imitation Learning

Imitation Learning

Imitation Learning

————

Imitation Learning

. Expert
Demonstrations

Imitation Learning

Machine
. Expert _ Learning
Demonstrations Algorithm

« SVM

« Gaussian Process
 Kernel Estimator
* Deep Networks
« Random Forests
« LWR

Imitation Learning
Machine
l Expert Learning PO“Cy 7-‘-
Demonstrations Algorithm

« SVM
« Gaussian Process

. Kernel Estimator ~ Maps states
« Deep Networks to actions
« Random Forests

« LWR

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image

11

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

12

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

12

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

M

Supervised Learning 12

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

Learned «
Policy =
M

Mapping from state (image) to I

control (steering direction) Supervised Learning 12

LLMs are trained via BC in their pre-training phase

Take a sentence from the web:

State Action

Reinforcement learning (RL) is an interdisciplinary

area

of machine learning and optimal

control concerned with how an intelligent agent should take actions in a dynamic

environment in order to maximize a reward signal.

LLMs are trained via BC in their pre-training phase
Take a sentence from the web:

State Action

Reinforcement learning (RL) is an interdisciplinary areal@machine learning and optimal

control concerned with how an intelligent agent should take actions in a dynamic
environment in order to maximize a reward signal.

LLMs are trained via BC in their pre-training phase
Take a sentence from the web:

State Action

Reinforcement learning (RL) is an interdisciplinary area of|’nachine learning and optimal

control concerned with how an intelligent agent should take actions in a dynamic
environment in order to maximize a reward signal.

Forcing LLM to predict the next “action” conditioned on past...

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,y,r,P,p,n™}

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy 7*

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy 7*

We have a dataset & = (s*,a*)". ~ ar

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy T*

We have a dataset & = (s*,a*)". ~ ar

Goal: learn a policy from & that is as good as the expert 7*

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 A (ﬂ,s*,a*)
nell £ |
=

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 £ (m,s*,a*)
rell £ |
=

Many choices of loss functions:

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 A (ﬂ,s*,a*)
nell £ |
=

Many choices of loss functions:

1. Negative log-likelihood (NLL): Z(x, s*,a*) = — Inz(a™ | s*)

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 A (ﬂ,s*,a*)
nell £ |
=

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s*,a*) = — Inz(a™ | s*)

2. square loss (i.e., regression for continuous action): £(x, s*,a*) = ||#(s™) — a*ll%

= arg min Z f

nell
Analysis

Assumption: we are going to assume Supervised Learning succeeded

M

7 = arg min Z £ (m,s*,a*)
rnell i1

Analysis N

Assumption: we are going to assume Supervised Learning succeeded

1|7(s) # n*(s)| <e eR?

M
arg min Z A (7:, s*, a*)
nell 4 |
1=

T

Analysis

Assumption: we are going to assume Supervised Learning succeeded

E, sl |7(s) # 7%(s)| <e eRY

Does that imply that 7 is a good policy? What’s the performance difference between # and 7*?

Outline for today:

1. Offline Imitation Learning: Behavior Cloning

2. Performance difference lemma and its application to proving BC’s bound

Performance Difference Lemma

Given two policies 7 : S = A(A), 7’': S = A(A), recall V7(sy) = E [thr(sh, ah)lﬂ]

b b h=0

Performance Difference Lemma

Given two policies 7 : S = A(A), 7’': S = A(A), recall V7(sy) = E [iyhr(sh, ah)lﬂ]

h=0

C eI \ st

Performance Difference Lemma (PDL):

E 1907 (5. @) = VE(5)|

, 1
V(sg) — V*(s9) = —E, 4

b3
50

-2 “opoo0 177

.ﬂ
. -
/j % PDL Explanation

1

Vﬂ(So) — Vﬂ/(SO) = 1—_}/[E5Nd§0 [[Ear\./][(-lS)Aﬂ/(S’ a)]

PDL Proof

PDL Proof

, 1 ,
Ve(s0) = V¥(s) = ——E, [[EaNﬂ(,|S)A”(s, a)]

Proof of Sketch (see reading material for detailed steps)
V(o) — V7 (sp)

= V*(s0) = Egpmn(lsy) [r(so, ag) + yE,. P(so,aO)Vﬂl(S/)] + Eoentlsy) [r(so, agp) + yE . P(SO,aO)V”'(S’)] — V™(sp)

PDL Proof

, 1 ,
Ve(s0) = V¥(s) = ——E, [[EaNﬂ(,|S)A”(s, a)]

Proof of Sketch (see reading material for detailed steps)
V(o) — V7 (sp)

= V*(s0) = Egpmn(lsy) [r(so, ag) + yE,. P(so,aO)Vﬂl(S/)] + Eoentlsy) [r(so, agp) + yE . P(SO,aO)V”I(S’)] — V™(s)

= VE qyent-lspEs~pisnag) [V6D = V(D] + Eq o1y [” (S0» ag) + VE - p(sy.an V" (8 ')] — V7 (sp)

PDL Proof

, 1 ,
Ve(s0) = V¥(s) = ——E, [EaNﬂ(,ls)A”(s, a)]

Proof of Sketch (see reading material for detailed steps

V*(sy) — V”'(S() @ —(%» ,@

- Vﬂ(SO) N [Ea0~zr(~|s0) [l’(0 aO) + }/[ES/"P (So’ao)vﬂ/(S’)] T [an"”('|so) [I’(SO, ao) + y[ES ~P (So’ao)vﬂ (S)] V”/(SO)

————

=yE Vi(s)) — Vﬂl(s 1)] + [an~ﬂ('|So) _r(SO’ ap) +yEg. p (Soﬂo)vﬂ/(s,)] - I(SO)

ay~7(-|sp) [ES 1~P(s9,a0)

= VE agentetsEsyePispak V761D = VEGSD) + Egonteisy [Q7 (505) = V7 ()

PDL Proof

, 1 /
Vﬂ(So) — VE(SO) — 1_|ESNd§TO [EaNﬂ(.|S)Aﬂ(S, Cl)]

Proof of Sketch (see reading material for detailed steps)
V(sp) — V™(50)
= V™(s0) = Eqpen-lsy) [r(so, ag) + yE,. P(so,aO)Vﬂl(S/)] + Eoentlsy) [r(so, agp) + yE . P(SO,aO)V”I(S’)] — V™(s)
= VE yentetso Esiptspa [V1) = VD] + Egpontgoy [750> 0) + VB pisyap V7 (5 ')] = V7(sp)
= yE VA(s) = V()| + Eqnctsy) 1Q7 o ag) — VZ(s)]

ay~7(-|sp) [ES 1~P(s0,a0) [

=yE VA(s1) = V(5| + Eq sy [A™ S0 a0)]

ay~n(-|sp) [ES 1~P(sg,a0) [

An Application of PDL in Policy lteration w¥

argec @ (50)
Recall fffat 7'+ (s) = arg max A” (s, a) 0~
a <R
Show monotonic improvement using PDL: = “ﬁ"‘m A (5-0')
O

An Application of PDL in Policy lteration

Recall that 7" (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL.:

1+ t 1 t
Vﬂ I(So) - Vﬂ. (So) — l—l]ESNd;T(;+1|]EClN7[t+l('|S)Aﬂ(S’ Cl)

An Application of PDL in Policy lteration

Recall that 7" (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL.:

1+ t 1 t
Vﬂ I(So) - Vﬂ. (So) — l—l]ESNd;T(;+1|]EClN7[t+l('|S)Aﬂ(S’ Cl)

1 :
=——F, A" (s, "7 (s))
1 —_ J/ SO

An Application of PDL in Policy lteration

Recall that 7" (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL.:

1+ t 1 t
Vﬂ I(So) - Vﬂ. (So) — l—l]ESNd;T(;+1|]EClN7[t+l('|S)Aﬂ(S’ Cl)

1 ,
=——F, A" (s, "7 (s))
SO

> ——F, g (s, 7'(s))

An Application of PDL in Policy lteration

Recall that 7" (s) = arg max A” (s, a)
a

Show monotonic improvement using PDL.:

1+ t 1 t
Vﬂ I(So) - Vﬂ. (So) — l—l]ESNd;T(;+1|]EClN7[t+l('|S)Aﬂ(S’ Cl)

1 ,
=——F, A" (s, "7 (s))
SO

> —F A" (s,7(s) =0
y

Theorem [BC Performance] With probabil;

V‘ V‘S

*

Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
* ~ 2
Ve VP < —¢
oL (1 —p)?
N
(1 - }/)(V* - V”) ZE, AR (s, 77(s)

— o

Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:

« A 2
Ve - VT < €
I-1* A
. . T, A 7z
A =p(V* = VF) = B eAP (s, 7%(5) A (s, 29) 7O
)) 29 "
=[E ,,*Aﬂ , - [ESN ﬂ*Aﬂ ’ -
s:l " (S/it}—@) d ,(0/75(@ Q) €\8) = %\3)
o~ v A=\n%J
¥ A ~
® 19 X) Fisa)

Analysis of BC

Theorem [BC Performance] Vw—é BC rgfurns
. ~ 2
Vi -V <L € ?
(1-y)2
~ R [
1 -pfv* - V”) = E, A% (s, 7%(5))

=, A% (s, 7(5)) — E,_4wA% (s, Z(5))
o —an

A A
. 2 c _
1¥ 7(s) # 7*(s = — 1 S
(s) # 7*(5)) 5 «\,4f‘| 5 T oS
\//-_—

\ A«l%ﬂ—l\ﬂl%q')‘ 2

2

S[Es~a,’ 1_}/

Analysis of BC

Theorem [BC Performance] With probability at least 1 — &, BC returns a policy 7:
* A 2
Vi - VP < —c¢
(1 —y)?

(1- }/)(V* _ YA) = E, A% (s, 7%(s))

= E, g A% (5, 7%(5)) — g A% (s, 7(5))

2

S [ESNdn'*l _ }/

1{7(s) # n*(s)}

-y

Analysis of BC

Theorem [BC Performance] With probability atleast 1 — &, BC returns a policy 7:

ey

Ve — v

(1- }/)(V* VR) = E,_ A% (5, 7%(5))
The quadratic amplification is annoying;
Related to pre-trained LLM hallucination;

= |E ;z*A;E ’ * - |E ﬂ*A;T\ ’ T H I 1
s~d (s, 27(s)) — By (s, 7(s)) Will see how to fix it next lecture

2
-y

S [ESNd”*

1{7(s) # n*(s)}

-y

Summary

¥
Q‘«;,;\N'ﬁ

BC: simple algorithm that directly learns from human demonstrations; used in robotics and NLP
N

PDL: how to capture the performance difference between two policies
D (as important as Simulation lemma)

