
Interactive Imitation Learning

 



Recap 

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π(s⋆
i ), a⋆

i )



What could go wrong?
• Predictions affect future inputs/

observations

3

[Pomerleau89,Daume09]
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𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

= γ
1 − γ

− ϵγ
(1 − γ)2 = Vπ⋆

s0
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(1 − γ)2

Issue: once we make a mistake at , we 
end up in  which is not in the training data!

s0
s2
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Question for today: 

How to mitigate the distribution shift issue? 
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Solution:

Interactive Imitation Learning Setting

Key assumption:  
we can query expert  at any time and any state during trainingπ⋆

(Recall that previously we only had an offline dataset )𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

μ



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger as online learning



Recall the Main Problem from Behavior Cloning:

Expert’s trajectoryLearned Policy

No training data of 
“recovery’’ 
behavior



Intuitive solution: Interaction
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Use interaction to collect 
data where learned policy 
goes



General Idea: Iterative Interactive 
Approach

Update Policy
Collect Data 

through 
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman



DAgger: Dataset Aggregation 
0th iteration
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Supervised Learning

1st policy π1
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Execute π2 and Query Expert
New Data

Supervised Learning

New policy 
π3

All previous data

Aggregate 
Dataset

Steering 
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DAgger: Dataset Aggregation 
 nth iteration
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[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset
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Better
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[Ross AISTATS 2011]

Average Falls/Lap
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Example: high-speed off-road driving 
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that 

maps from data on cheap on-board 
sensors (raw-pixel imagine) to low-level 
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Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ) , ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger as online learning
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Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

Adversary picks a loss ℓ1 : Θ → ℝ

…

Regret =
T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)
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Learner has to make decision  based on history up to , 

while adversary could pick  even after seeing 

θt t − 1
(xt, yt) θt

Adversary seems too powerful…
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Every iteration t :

1. Learner first picks  that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

T−1

∑
i=0

ℓi(θi) − min
θ∈Ball

T−1

∑
i=0

ℓi(θ) = O ( T)
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Generally, Follow-the-Regularized-Leader is no-regret

At time step  learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

Informal Theorem (FTRL): when things are convex, FTRL is no-regret, i.e.,  
1
T [

T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)] = O (1/ T)

FTRL: θt = min
θ∈Θ

t−1

∑
i=0

ℓi(θ) + λR(θ)
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At iteration t:

Data Aggregation = Follow-the-Regularized-Leader Online Learner

ℓt(π) =
m

∑
i=1
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2
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∑
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Summary for Today

1. The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt 𝒟t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 𝒟 = 𝒟 + 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

2. We can see that DAgger is essentially an online-learning algorithm (FTRL)


