Interactive Imitation Learning



Recap

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss £ (z(s), a), and perform SL:
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What could go wrong?

. . . [Pomerleau89,Daume09]
Predictions affect future inputs/
observations
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Distribution Shift: Example

Assume SL returned such poliéy T )
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Distribution Shift: Example

r(sy) = Assume SL returned such policy 7
’ R a, W/ prob1—e/(1-7y)
7(sg) =

a, w/probe/(1—y) 7(sp) = ap, 7(5) = a,

We will have good.éiéervised learning error: )
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Distribution Shift: Example

Assume SL returned such policy 7

(5) a W 1—€/(1—-y) 2(s) 2 (50)
= , = . SH) = d
70 > W/ probe/(1-y = e 5 2

We will have good supervised learning error:

EqarEanils] (a #7*(s)) =€

But we have quadratic error in performance:
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Distribution Shift: Example

v, di (s) =7, d} (5) =0

N

Assume SL returned such policy 7

. a, w/prob1—e/(1-y)
7(sg) =

a, w/probe/(1—y) 7(sp) = ap, 7(5) = a,

We will have good supervised learning error:

EqarEanils] (a #7*(s)) =€

But we have quadratic error in performa

Issue: once we make a mistake at s, we
2 ¥ end up in $, which is not in the training datal!
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Question for today:

How to mitigate the distribution shift issue?
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Solution:

Interactive Imitation Learning Setting

Key assumption:
we can query expert > at any time and any state during training

(Recall that previously we only had an offline dataset & = (s, a* é‘il ~ d/ff*)



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger as online learning



Recall the Main Problem from Behavior Cloning:

Expert’s trajectory

No training data of ~—

“recovery”’
behavior



Intuitive solution: Interaction

Use interaction to collect ~—
data where learned policy -

goes
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General Idea: Iterative Interactive
Approach

New Data

- Ny

Collect Data
through

Update Policy
Interaction

N

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman
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DAgger: Dataset Aggregation

Oth iteration

Expert Demonstrates Tag Dataset
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Supervised Learning
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DAgger: Dataset Aggregation

(1 1st iteration
\\,\\&9 Execute 7, and Query Expert
— Steering J—
from e "CED \

expert 7‘1“ S

[Ross11a]
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DAgger: Dataset Aggregation
1st iteration

Execute n; and Query Expert
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DAgger: Dataset Aggregation |
1st iteration

Execute n; and Query Expert

Steering J—
from S <@ \

expert Y ﬁk D

States from
the learned policy
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DAgger: Dataset Aggregation
1st iteration

Execute n; and Query Expert

Steering J—
from S <@ \

expert Y &E D

All previous data
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DAgger: Dataset Aggregation
1st iteration

Execute n; and Query Expert
. New Data
Steering
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DAgger: Dataset Aggregation

2nd iteration

Execute n; and Query Expert

Steering

Aggregate

New Data

v

]

.
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DAgger: Dataset Aggregation
nth iteration

Execute n,.1 and Query Expert

New Data

Steering
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More fun than Video Games...

[Ross ICRA 2013]
22



More fun than Video Games...

[Ross ICRA 2013]
22



More fun than Video Games...

[Ross ICRA 2013]
22



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human...

But expert does not have to be human...



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human...

But expert does not have to be human...

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Fig. 4: The AutoRally car and the test track.



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human...

But expert does not have to be human...

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that
maps from data on cheap on-board
sensors (raw-pixel imagine) to low-level
control (steer and throttle)

Fig. 4: The AutoRally car and the test track.



Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human...

But expert does not have to be human...

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that
maps from data on cheap on-board
sensors (raw-pixel imagine) to low-level
control (steer and throttle)

Steering + throttle

Fig. 4: The AutoRally car and the test track.

(a) raw image
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Forms of the Interactive Experts

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Their Setup:
At Training, we have expensive sensors for accurate state estimation
and we have computation resources for MPC (i.e., high-frequency replanning)

The MPC is the expert in this case!
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Distribution Shift: Example
r(s)) = Assume SL returned such policy 7
~ «_ Ja wWprobl-—e/l-y . =~
’ 7(5) = {a2 W/probe/(l—y = TOVT A& =a

We will have good supervised learning error:

a1 I]ESNd%*I]EaN;[\('|S)1 (Cl ?é ﬂ*(S)) =€

Initial state But we have quadratic error in performance:
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Distribution Shift: Example

Initial state
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Distribution Shift: Example

Initial state

dr (sp) =1 —

*
Y/
Ve =7

v di () =7, d} (5) =0

7/7\(50) = {

Assume SL returned such policy 7

a, w/prob1—e/(1-y)
a, W/ probe/(1—y)

Why DAgger can fix this problem?

) 7?(51) = d,, ﬁ(sz) =a



Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger @e learning >
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Every iteration 7 :
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Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration 7 :
1. Learner first picks 6, € Ball C R4
2. Adversary then picks x, € £ C R%,y, € [a, b]

3. Learner suffers loss £(6,) = (@T X — yt)2

Learner has to make decision 9; based on history uptot — 1,
while adversary could pick (x,, y,) even after seeing 0,

Adversary seems too powerful...



Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:



Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration 7 :

gr first picks 6,4
—1

0, = i 0Tx.—y,)
f argeé‘lé&%( N ﬁ)

1. Learn at minimizes the aggregated loss



Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration 7 :

1. Learner first picks 6, that minimizes the aggregated loss

—1

2
0. = arg min 0'x.—y,)" + 11103
"7 7% peBall Z:? ( ) ’

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:



Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration 7 :

1. Learner first picks 6, that minimizes the aggregated loss

—1
3 65— v) + 21613
i=0

0, = arg min
ocBall

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

T-1 . T-1 A’V‘}/n’jr-
ZO 40) ~ min ZO £40) = (V) = T50



Generally, Follow-the-Regularized-Leader is no-regret

At time step 7, learner has sehich new decision she could pick?

<
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Generally, Follow-the-Regularized-Leader is no-regret

At time step 7, learner has sgen ¢y, ...Z,_;, whi§h new decision she could pick?

I—

1
FTRL: 0, = min )" £,(0) + AR(0)
0c® ‘0

Informal Theorem (FTRL): when things are convex, FTRL is no-regret, i.e.,

1 T-1 . T-1
= | X 440)-min 3 20| =0 (1/ﬁ)
=0 =® =0
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2. Data aggregation: 9 = @ + @'
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Summary for Today

1. The DAgger algorithm

Initialize 7¥, and dataset @ = &

Fort=0—->T-1:
1. W/ 7', generate dataset 2" = {s;,a’*},s; ~ d;t, a’ = n*(s;)

2. Data aggregation: 9 = @ + @'

3. Update policy via Supervised-Learning: 7'*1 = SL (@)

2. We can see that DAgger is essentially an online-learning algorithm (FTRL)



