Interactive Imitation Learning (continue)

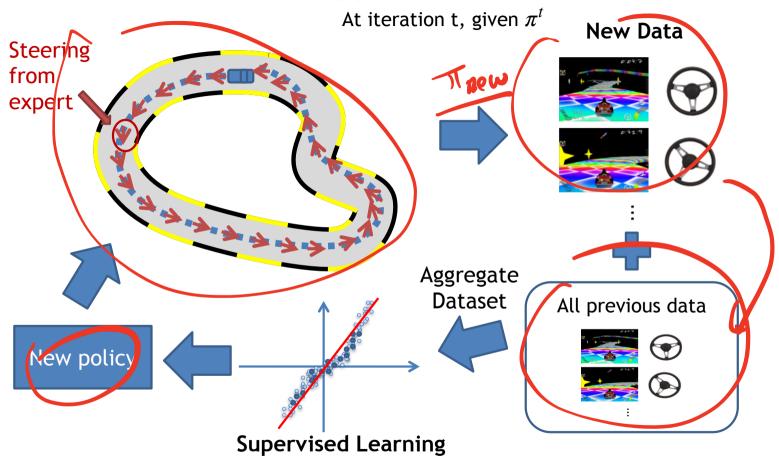
Recap

Interactive Imitation Learning Setting

Key assumption:

we can query expert π^{\star} at any time and any state during training

DAgger Revisit



Data Aggregation = Follow-the-Regularized-Leader Online Learner

Recap on the Follow-the-Regularized Leader Guarantee:

At the end of iteration t, learner has seen $\ell_0, \dots \ell_{t-1}, \ell_t$, learner updates to a new decision:

Recap on the Follow-the-Regularized Leader Guarantee:

At the end of iteration t, learner has seen $\ell_0, \dots \ell_{t-1}, \ell_t$, learner updates to a new decision:

FTL:
$$\theta_{t+} \left(= \min_{\theta \in \Theta} \sum_{i=0}^{t} \mathscr{C}_i(\theta) + \lambda R(\theta) \right)$$

Theorem (FTL) (optional): if Θ is convex, and ℓ_t is convex for all t, and $R(\theta)$ is strongly convex, then for regret of FTL, we have:

$$\frac{1}{T} \left[\sum_{t=0}^{T-1} \ell_t(\theta_t) - \min_{\theta \in \Theta} \sum_{t=0}^{T-1} \ell_t(\theta) \right] = O\left(1/\sqrt{T}\right)$$

Today's Plan

1. Finish DAgger's Analysis

2. Intro to Maximum Entropy Inverse RL (We have offline demonstrations, but learner can interact with the environments)

infinite horizon MDP

(assume discrete action space—in fact let's assume 2 actions, so policy is a binary classifier)

$$\mathcal{M} = \left\{ \overline{S, A, \gamma, r, P, \mu} \right\}$$

infinite horizon MDP

(assume discrete action space—in fact let's assume 2 actions, so policy is a binary classifier)

$$\mathscr{M} = \left\{ S, A, \gamma, r, P, \mu \right\}$$

XER

Classification:

Given a binary-class data with $\{x,y\} \sim \rho, y \in \{-1,1\}$

$$\widehat{\pi} = \arg\min_{\pi} \sum_{x,y} \left[\ell\left(\pi, x, y\right) \right]$$

infinite horizon MDP

(assume discrete action space—in fact let's assume 2 actions, so policy is a binary classifier)

$$\mathcal{M} = \left\{ S, A, \gamma, r, P, \mu \right\}$$

Classification:

Given a binary-class data with $\{x,y\} \sim \rho, y \in \{-1,1\}$

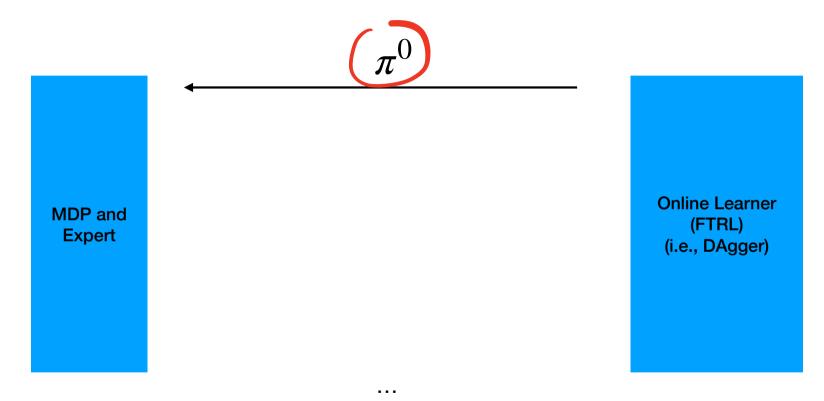
$$\widehat{\pi} = \arg\min_{\pi} \sum_{x,y} \left[\ell(\pi, x, y) \right]$$

$$\mathscr{E}(\pi, x, y) = \max\{0, 1 - \pi(x) \cdot y\} \Big|_{0.5}$$

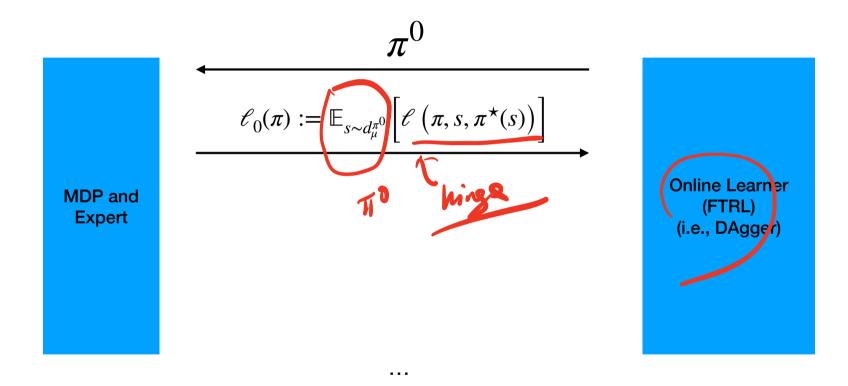


. . .

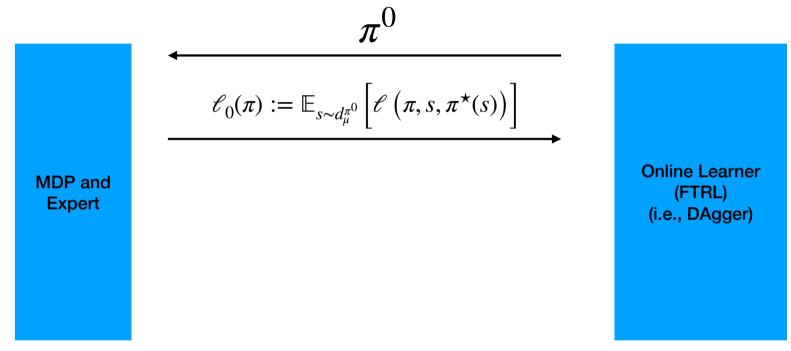
Total loss so far:



Total loss so far:

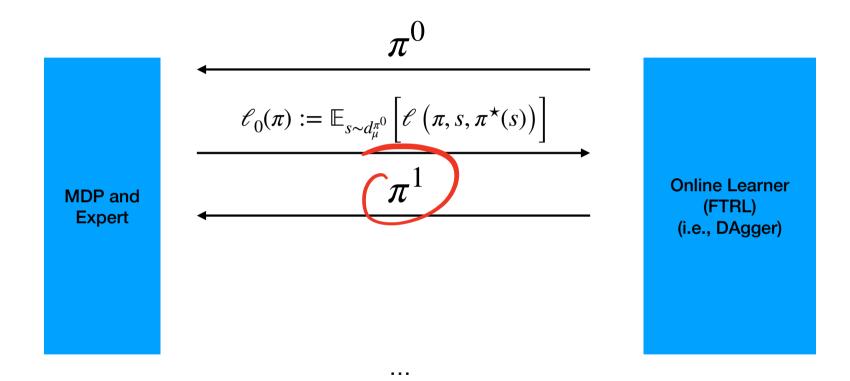


Total loss so far:

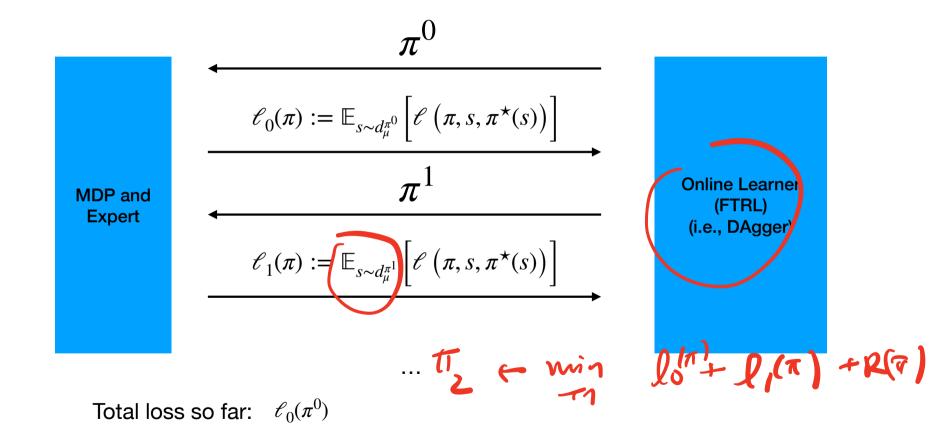


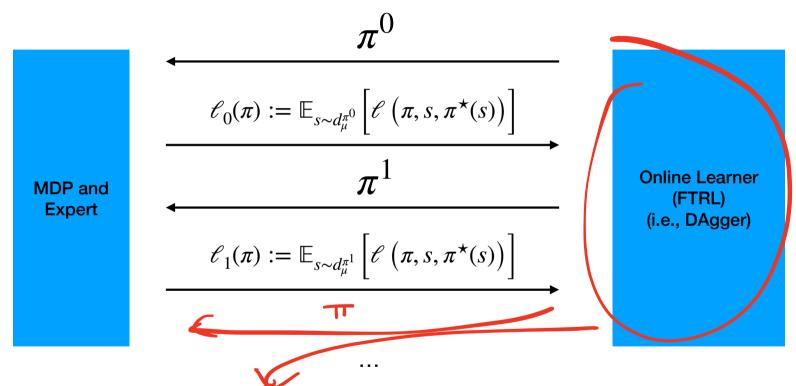
. .

Total loss so far: $\ell_0(\pi^0)$

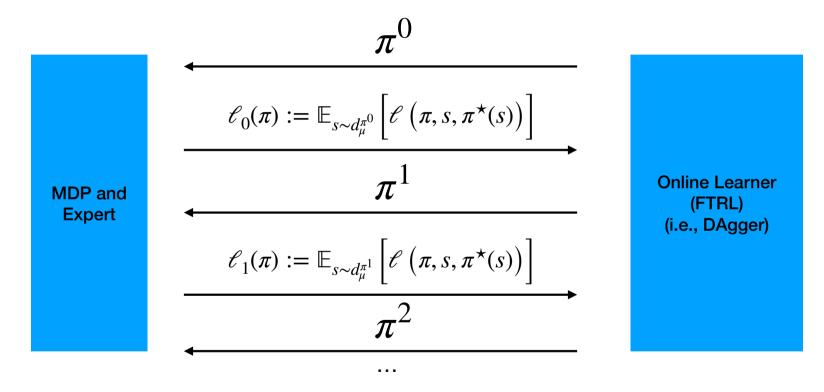


Total loss so far: $\ell_0(\pi^0)$

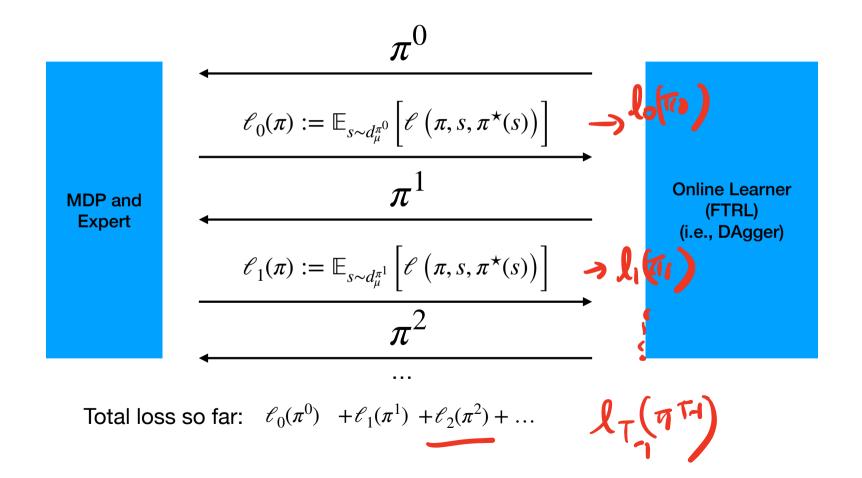




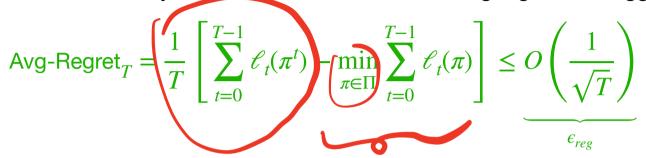
Total loss so far: $\ell_0(\pi^0)$ + $\ell_1(\pi^1)$



Total loss so far: $\ell_0(\pi^0)$ + $\ell_1(\pi^1)$



After in total T many iterations, we have the following regret for DAgger:



After in total T many iterations, we have the following regret for DAgger:

$$\operatorname{Avg-Regret}_T = \frac{1}{T} \left[\sum_{t=0}^{T-1} \mathscr{C}_t(\pi^t) - \left(\min_{\pi \in \Pi} \sum_{t=0}^{T-1} \mathscr{C}_t(\pi) \right) \right] \leq O\left(\frac{1}{\sqrt{T}}\right)$$

Recall we assume $\pi^* \in \Pi$, we must have:

$$\lim_{\pi \in \Pi} \sum_{t=0}^{T-1} \mathcal{C}_t(\pi) \leq \sum_{t=0}^{T-1} \mathcal{C}_t(\pi^*) = 0$$

$$1\left(\pi(s) + \pi^*(s)\right)$$

$$\min_{\pi \in \Pi} \sum_{t=0}^{T-1} \ell_t(\pi) \le \sum_{t=0}^{T-1} \ell_t(\pi^*) = 0$$

After in total *T* many iterations, we have the following regret for DAgger:

$$\operatorname{Avg-Regret}_T = \frac{1}{T} \left[\sum_{t=0}^{T-1} \mathscr{C}_t(\pi^t) - \left(\min_{\pi \in \Pi} \sum_{t=0}^{T-1} \mathscr{C}_t(\pi) \right) \right] \leq O\left(\frac{1}{\sqrt{T}} \right)$$

Recall we assume $\pi^* \in \Pi$, we must have:

$$\min_{\pi \in \Pi} \sum_{t=0}^{T-1} \ell_t(\pi) \le \sum_{t=0}^{T-1} \ell_t(\pi^*) = 0$$

Which implies that:

$$\min_{t \in \{0...T-1\}} \mathcal{E}_t(\pi^t) \le \frac{1}{T} \sum_{t=0}^{T-1} \mathcal{E}_t(\pi^t) \le \underline{\epsilon_{reg}}$$

Summary so far: we know that there must exists $t \in \{0,...,T-1\}$, such that:

Summary so far: we know that there must exists $t \in \{0,...,T-1\}$, such that:

$$\ell_t\left(\pi^t\right) \leq \epsilon_{reg}$$

Recall the definition of $\mathcal{E}_t(\pi^t)$

$$\mathscr{C}_{t}\left(\pi^{t}\right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}}\left[\mathscr{C}\left(\pi, s, \pi^{\star}(s)\right)\right] \leq \epsilon_{reg}$$

Summary so far: we know that there must exists $t \in \{0,...,T-1\}$, such that:

$$\ell_t\left(\pi^t\right) \leq \epsilon_{reg}$$

Recall the definition of $\mathcal{E}_t(\pi^t)$

$$\mathscr{E}_{t}\left(\pi^{t}\right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left| \mathscr{E}\left(\pi, s, \pi^{\star}(s)\right) \right| \leq \epsilon_{reg}$$

 π^t matches to π^* under its own state distribution!

Summary so far: we know that there must exists $t \in \{0,...,T-1\}$, such that:

$$\mathscr{C}_t\left(\pi^t\right) \leq \epsilon_{reg}$$

Recall the definition of $\mathcal{E}_t(\pi^t)$

$$\mathcal{E}_{t}\left(\pi^{t}\right) = \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}}\left[\mathcal{E}\left(\pi, s, \pi^{\star}(s)\right)\right] \leq \epsilon_{reg}$$

 π^t matches to π^* under its own state distribution!

Recall BC, we had:

$$\mathbb{E}_{s \sim d^{\pi^{\star}}} \left[\mathscr{C}(\widehat{\pi}, s, \pi^{\star}(s)) \right] \leq \epsilon$$
, i.e., we matched to π^{\star} under π^{\star} 's distribution

Theorem: There exists a iteration t, such that:

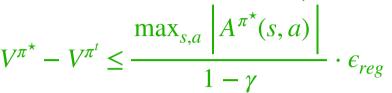
$$V^{\pi^*} - V^{\pi^t} \leq \frac{1}{2}$$

$$V^{\pi^*} - V^{\pi^t} \le \frac{\max_{s,a} \left| A^{\pi^*}(s,a) \right|}{1 - \gamma}$$

of The

This bound indicates that:

Theorem: There exists a iteration *t*, such that:



A (Sa)

This bound indicates that:

We avoid quadratic error if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

CSF

Theorem: There exists a iteration *t*, such that:

$$V^{\pi^{\star}} - V^{\pi^{t}} \le \frac{\max_{s,a} \left| A^{\pi^{\star}}(s,a) \right|}{1 - \gamma} \cdot \epsilon_{reg}$$

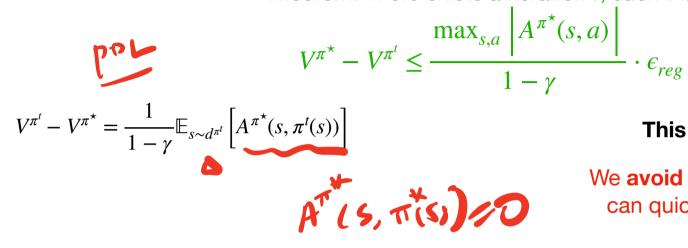
This bound indicates that:

We **avoid quadratic error** if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

i.e., at any state, π^* can quickly recover from your mistake (take action a)

Theorem: There exists a iteration *t*, such that:



This bound indicates that:

We avoid quadratic error if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

i.e., at any state, π^* can quickly recover from your mistake (take action a)

Theorem: There exists a iteration *t*, such that:

$$V^{\pi^{\star}} - V^{\pi^{t}} \le \frac{\max_{s,a} \left| A^{\pi^{\star}}(s,a) \right|}{1 - \gamma} \cdot \epsilon_{reg}$$

$$V^{\pi^{t}} - V^{\pi^{\star}} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{t}}} \left[A^{\pi^{\star}}(s, \pi^{t}(s)) \right]$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^{t}}} \left[A^{\pi^{\star}}(s, \pi^{t}(s)) - A^{\pi^{\star}}(s, \pi^{\star}(s)) \right]$$

$$\max_{s,a} |A^{\pi'}(s,\pi'(s)) - A^{\pi'}(s,\pi'(s))| \leq c \in \mathbb{R}^+$$

$$\max_{s,a} |A^{\pi^*}(s,a)| \leq c \in \mathbb{R}^+$$
i.e., at any state, π^* can quickly recover from your mistake (take action a)
$$A^{\pi'}(s,\pi'(s)) - A^{\pi'}(s,\pi'(s)) \geq -\frac{1}{2} A^{\pi'}(s,a)$$

This bound indicates that:

We avoid quadratic error if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

Theorem: There exists a iteration *t*, such that:

$$V^{\pi^{\star}} - V^{\pi^{t}} \le \frac{\max_{s,a} \left| A^{\pi^{\star}}(s,a) \right|}{1 - \gamma} \cdot \epsilon_{reg}$$

$$V^{\pi^t} - V^{\pi^*} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^t}} \left[A^{\pi^*}(s, \pi^t(s)) \right]$$

$$= \frac{1}{1-\nu} \mathbb{E}_{s \sim d^{\pi^t}} \left[A^{\pi^*}(s, \pi^t(s)) - A^{\pi^*}(s, \pi^*(s)) \right]$$

$$\geq \frac{1-\gamma}{1-\gamma} \mathbb{E}_{s \sim d^{\pi^t}} \left[\max_{s,a} \left| A^{\pi^*}(s,a) \right| \mathbf{1} \{ \pi^t(s) \neq \pi^*(s) \} \right]$$

This bound indicates that:

We avoid quadratic error if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

i.e., at any state, π^* can quickly recover from your mistake (take action a)

Theorem: There exists a iteration *t*, such that:

$$V^{\pi^*} - V^{\pi^t} \le \frac{\max_{s,a} \left| A^{\pi^*}(s,a) \right|}{1 - \gamma} \cdot \epsilon_{reg}$$

$$V^{\pi^t} - V^{\pi^*} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^t}} \left[A^{\pi^*}(s, \pi^t(s)) \right]$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi^t}} \left[A^{\pi^*}(s, \pi^t(s)) - A^{\pi^*}(s, \pi^*(s)) \right]$$

$$\geq \frac{-1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi^t}} \left[\max_{s,a} \left| A^{\pi^*}(s,a) \right| \mathbf{1} \{ \pi^t(s) \neq \pi^*(s) \} \right]$$

$$V^{\pi^{\star}} - V^{\pi^{t}} \le \frac{\max_{s,a} \left| A^{\pi^{\star}}(s,a) \right|}{1 - \gamma} \cdot \epsilon_{reg}$$

This bound indicates that:

We **avoid quadratic error** if expert π^* can quickly recover from a mistake

$$\max_{s,a} |A^{\pi^*}(s,a)| \le c \in \mathbb{R}^+$$

i.e., at any state, π^* can quickly recover from your mistake (take action a)

Summary of DAgger

Summary of DAgger

DAgger finds a policy $\widehat{\pi}$ such that it matches to π^{\star} under $d_{\mu}^{\widehat{\pi}}$

$$\mathbb{E}_{s \sim d_{u}^{\widehat{\pi}}} \left[\mathbf{1} \{ \widehat{\pi}(s) \neq \pi^{\star}(s) \} \right] \leq \epsilon_{reg} = O(1/\sqrt{T})$$

Summary of DAgger

DAgger finds a policy $\widehat{\pi}$ such that it matches to π^{\star} under $d_{\mu}^{\widehat{\pi}}$

$$\mathbb{E}_{s \sim d_{\mu}^{\widehat{\pi}}} \left[\mathbf{1} \{ \widehat{\pi}(s) \neq \pi^{\star}(s) \} \right] \leq \epsilon_{reg} = O(1/\sqrt{T})$$

If expert can quickly recover from a deviation, i.e., $|Q^{\pi^*}(s,a) - V^{\pi^*}(s)|$ is small for all s,

$$V^{\pi^*} - V^{\pi^t} \le O\left(\frac{1}{1 - \gamma} \cdot \epsilon_{reg}\right)$$

Today's Plan

2. Intro to Maximum Entropy Inverse RL (We have offline demonstrations, but learner can interact with the environments)

Review of the IL settings that we covered so far

1. Offline IL Setting:

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$$

No expert interaction, no real world interaction

Review of the IL settings that we covered so far

1. Offline IL Setting:

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$$

No expert interaction, no real world interaction

2. Interactive IL setting:

We have access to π^* during training

Interaction w/ expert and interaction w/ the world (i.e., we can try out our policies)

A new setting (more realistic maybe??)

Hybrid:

- 1. We have an offline dataset $\mathscr{D}=(s_i^\star,a_i^\star)_{i=1}^M \rightarrow d^{\pi^\star}$ (e.g., a pre-collected demonstrations)
 - 2. And we can interact with the world (e.g., try out our policy and see what happens)

Running Example: Human trajectory forecasting

[Kitani, et al, ECCV 12]



Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible paths and destinations from noisy vision-input

Running Example: Human trajectory forecasting

[Kitani, et al, ECCV 12]

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible paths and destinations from noisy vision-input

High-level assumptions:

- (1) Experts may have some cost function regarding walking in their mind
- (2) Experts are (approximately) optimizing the cost function

Finite horizon MDP $\mathcal{M} = \{S, A, H, c, P, \mu, \pi^{\star}\}$

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$$

- (1) Ground truth cost c(s, a) is unknown;
- (2) assume expert is the optimal policy π^* of the cost c
 - (3) transition P is known

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$$

- (1) Ground truth cost c(s, a) is unknown;
- (2) assume expert is the optimal policy π^* of the cost c (3) **transition P is known**

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$$

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu, \pi^*\}$$

- (1) Ground truth cost c(s, a) is unknown;
- (2) assume expert is the optimal policy π^{\star} of the cost c (3) **transition P is known**

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$$

Key Assumption on cost:

$$c(s,a) = \langle \theta^{\star}, \phi(s,a) \rangle$$
, linear w.r.t feature $\phi(s,a)$

Key Assumption on cost:

 $c(s,a) = \langle \theta^{\star}, \phi(s,a) \rangle$, linear wrt feature $\phi(s,a)$

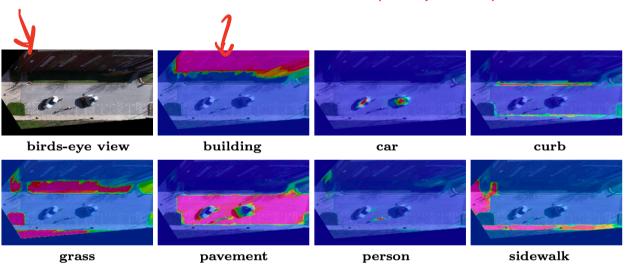
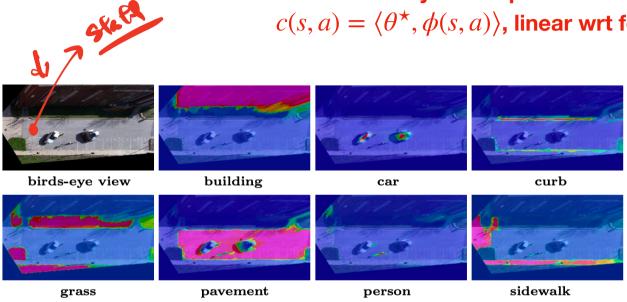


Fig. 4. Classifier feature response maps. Top left is the original image.

Key Assumption on cost:

 $c(s, a) = \langle \theta^*, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$



State s: pixel or a group of neighboring pixels in image)

Fig. 4. Classifier feature response maps. Top left is the original image.

Key Assumption on cost:

 $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

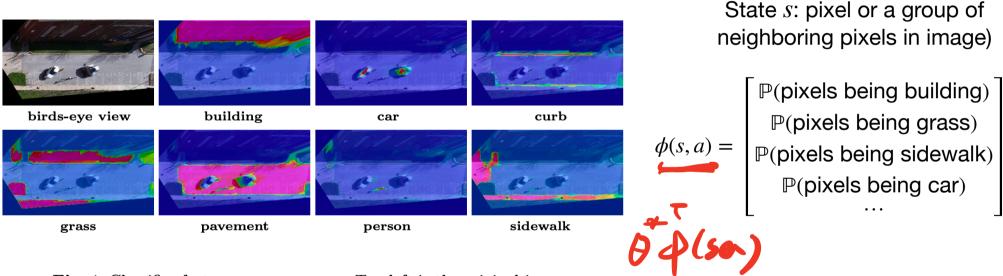


Fig. 4. Classifier feature response maps. Top left is the original image.

Key Assumption on cost:

 $c(s,a) = \langle \theta^{\star}, \phi(s,a) \rangle$, linear wrt feature $\phi(s,a)$

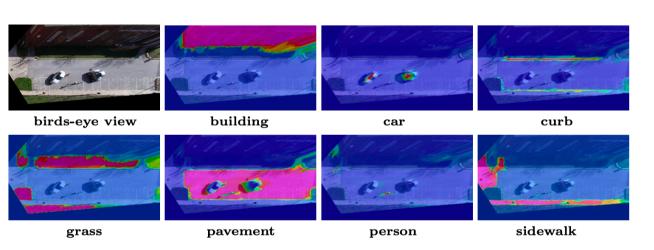


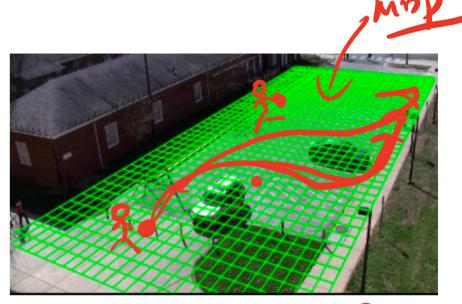
Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

$$\phi(s,a) = \begin{bmatrix} \mathbb{P}(\text{pixels being building}) \\ \mathbb{P}(\text{pixels being grass}) \\ \mathbb{P}(\text{pixels being sidewalk}) \\ \mathbb{P}(\text{pixels being car}) \\ \dots \end{bmatrix}$$

Maybe colliding with cars or buildings has **high** cost, but walking on sideway or grass has **low** cost

Running Example: Human Trajectory Forecasting



State space: grid, action space: 4 actions

We predict that we are more likely to use sidewalk

We will talk about the algorithm (MaxEnt-IRL) behind it next week