
Interactive Imitation Learning 
(continue)



Recap

Interactive Imitation Learning Setting

Key assumption:  
we can query expert  at any time and any state during trainingπ⋆



DAgger Revisit 
New Data

Supervised Learning

New policy

All previous data

Steering 
from 
expert

Aggregate 
Dataset

At iteration t, given πt

Data Aggregation = Follow-the-Regularized-Leader Online Learner



Recap on the Follow-the-Regularized Leader Guarantee:

At the end of iteration  learner has seen , learner updates to a new decision:t, ℓ0, …ℓt−1, ℓt

Theorem (FTL) (optional): if  is convex, and  is convex for all , and  is strongly convex, 

then for regret of FTL, we have: 


Θ ℓt t R(θ)

1
T [

T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)] = O (1/ T)

FTL: θt+1 = min
θ∈Θ

t

∑
i=0

ℓi(θ) + λR(θ)



Today’s Plan

1. Finish DAgger’s Analysis

2. Intro to Maximum Entropy Inverse RL

(We have offline demonstrations, but learner can interact with the environments)



ℓ(π, x, y) = max{0,1 − π(x) ⋅ y}

DAgger Analysis: A reduction to no-regret online learning

infinite horizon MDP 

(assume discrete action space—in fact let’s assume 2 actions, so policy is a binary classifier)

ℳ = {S, A, γ, r, P, μ}

Classification:

Given a binary-class data with {x, y} ∼ ρ, y ∈ {−1,1}

̂π = arg min
π ∑

x,y
[ℓ (π, x, y)]



DAgger Analysis: A reduction to no-regret online learning

MDP and 
Expert

Online Learner 
(FTRL) 

(i.e., DAgger)

ℓ0(π) := 𝔼s∼dπ0
μ [ℓ (π, s, π⋆(s))]

π0

ℓ0(π0)

π1

ℓ1(π) := 𝔼s∼dπ1
μ [ℓ (π, s, π⋆(s))]

+ℓ1(π1)

…

+ℓ2(π2) + …Total loss so far:

π2



DAgger Analysis: A reduction to no-regret online learning
After in total  many iterations, we have the following regret for DAgger:T

Avg-RegretT =
1
T [

T−1

∑
t=0

ℓt(πt) − min
π∈Π

T−1

∑
t=0

ℓt(π)] ≤ O ( 1

T )
ϵreg

Recall we assume , we must have:π⋆ ∈ Π

min
π∈Π

T−1

∑
t=0

ℓt(π) ≤
T−1

∑
t=0

ℓt(π⋆) = 0

Which implies that:

min
t∈{0…T−1}

ℓt(πt) ≤
1
T

T−1

∑
t=0

ℓt(πt) ≤ ϵreg



DAgger Analysis: A reduction to no-regret online learning

Summary so far: we know that there must exists  such that:t ∈ {0,…, T − 1},

ℓt (πt) ≤ ϵreg

Recall the definition of ℓt(πt)

ℓt (πt) = 𝔼s∼dπt
μ [ℓ (π, s, π⋆(s))] ≤ ϵreg

 matches to  under its own state distribution!πt π⋆

Recall BC, we had:

, i.e., we matched to  under ’s distribution𝔼s∼dπ⋆ [ℓ( ̂π , s, π⋆(s))] ≤ ϵ π⋆ π⋆



Finally, turn things into the performance bound using PDL:

Vπt − Vπ⋆ =
1

1 − γ
𝔼s∼dπt [Aπ⋆(s, πt(s))]

=
1

1 − γ
𝔼s∼dπt [Aπ⋆(s, πt(s)) − Aπ⋆(s, π⋆(s))]

≥
−1

1 − γ
𝔼s∼dπt [max

s,a
Aπ⋆(s, a) 1{πt(s) ≠ π⋆(s)}]

Vπ⋆ − Vπt ≤
maxs,a Aπ⋆(s, a)

1 − γ
⋅ ϵreg

Theorem: There exists a iteration , such that:


 


t

Vπ⋆ − Vπt ≤
maxs,a Aπ⋆(s, a)

1 − γ
⋅ ϵreg

This bound indicates that:

We avoid quadratic error if expert  
can quickly recover from a mistake

π⋆

max
s,a

|Aπ⋆(s, a) | ≤ c ∈ ℝ+

i.e., at any state,  can quickly recover 
from your mistake (take action )

π⋆

a



Summary of DAgger

DAgger finds a policy  such that it matches to  under ̂π π⋆ d ̂π
μ

𝔼s∼d ̂π
μ [1{ ̂π (s) ≠ π⋆(s)}] ≤ ϵreg = O(1/ T)

If expert can quickly recover from a deviation, i.e.,  is small for all ,|Qπ⋆(s, a) − Vπ⋆(s) | s

Vπ⋆ − Vπt ≤ O ( 1
1 − γ

⋅ ϵreg)



Today’s Plan

1. Finish DAgger’s Analysis

2. Intro to Maximum Entropy Inverse RL

(We have offline demonstrations, but learner can interact with the environments)



Review of the IL settings that we covered so far

1. Offline IL Setting:

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

No expert interaction, no real world interaction

2. Interactive IL setting:

We have access to  during trainingπ⋆

Interaction w/ expert and interaction w/ the world (i.e., we can try out our policies)



A new setting (more realistic maybe??)

Hybrid:

1. We have an offline dataset  (e.g., a pre-collected demonstrations)𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

2. And we can interact with the world (e.g., try out our policy and see what happens)



Running Example: Human trajectory forecasting
[Kitani, et al, ECCV 12]

High-level assumptions: 

(1) Experts may have some cost function regarding walking in their mind 

(2) Experts are (approximately) optimizing the cost function



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Key Assumption on cost:  
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)



Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Maybe colliding with cars or 
buildings has high cost, but 
walking on sideway or grass 

has low cost 



Running Example: Human Trajectory Forecasting

State space: grid, 

action space: 4 actions

We predict that we are more likely to use 
sidewalk 



We will talk about the algorithm (MaxEnt-IRL) behind it next week


