
Interactive Imitation Learning

Recap

The Behavior Cloning algorithm:

Choose regression (for continuous action) or classification loss , and perform SL:ℓ(π(s), a)

̂π = min
π∈Π

M

∑
i=1

ℓ(π(s⋆
i), a⋆

i)

What could go wrong?
• Predictions affect future inputs/

observations

3

[Pomerleau89,Daume09]

Expert’s trajectoryLearned Policy

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

We will have good supervised learning error:

𝔼s∼dπ⋆
s0

𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

=
γ

1 − γ
−

ϵγ
(1 − γ)2

= Vπ⋆

s0
−

ϵγ
(1 − γ)2

Issue: once we make a mistake at , we
end up in which is not in the training data!

s0
s2

An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]

“If the network is not presented
with sufficient variability in its
training exemplars to cover the
conditions it is likely to
encounter…[it] will perform
poorly”

Question for today:

How to mitigate the distribution shift issue?

Solution:

Interactive Imitation Learning Setting

Key assumption:
we can query expert at any time and any state during trainingπ⋆

(Recall that previously we only had an offline dataset)𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

μ

Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger as online learning

Recall the Main Problem from Behavior Cloning:

Expert’s trajectoryLearned Policy

No training data of
“recovery’’
behavior

Intuitive solution: Interaction

10

Use interaction to collect
data where learned policy
goes

General Idea: Iterative Interactive
Approach

Update Policy
Collect Data

through
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman

DAgger: Dataset Aggregation
0th iteration

12

Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]

DAgger: Dataset Aggregation
 1st iteration

13

Execute π1 and Query Expert

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation
 1st iteration

14

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

States from
the learned policy

DAgger: Dataset Aggregation
 1st iteration

15

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation
 1st iteration

16

Execute π1 and Query Expert
New Data

Supervised Learning

New policy
π2

All previous data

Aggregate
Dataset

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation
 2nd iteration

17

Execute π2 and Query Expert
New Data

Supervised Learning

New policy
π3

All previous data

Aggregate
Dataset

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation
 nth iteration

18

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

Success!

19

[Ross AISTATS 2011]

Better

20

[Ross AISTATS 2011]

Average Falls/Lap

More fun than Video Games…

22
[Ross ICRA 2013]

Forms of the Interactive Experts

Interactive Expert is expensive, especially when the expert is human…

But expert does not have to be human…

Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper] Goal: learn a racing control policy that

maps from data on cheap on-board
sensors (raw-pixel imagine) to low-level

control (steer and throttle)

Steering + throttle

Forms of the Interactive Experts
Example: high-speed off-road driving
[Pan et al, RSS 18, Best System Paper]

Their Setup:

At Training, we have expensive sensors for accurate state estimation

and we have computation resources for MPC (i.e., high-frequency replanning)

The MPC is the expert in this case!

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

We will have good supervised learning error:

𝔼s∼dπ⋆
s0

𝔼a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

= Vπ⋆

s0
−

ϵγ
(1 − γ)2

Distribution Shift: Example

Initial state

r(s1) = 1

Vπ⋆

s0
=

γ
1 − γ

dπ⋆

s0
(s0) = 1 − γ, dπ⋆

s0
(s1) = γ, dπ⋆

s0
(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
a2 w/ prob ϵ/(1 − γ)

, ̂π (s1) = a2, ̂π (s2) = a2

Why DAgger can fix this problem?

Outline for today:

1. The DAgger (Data Aggregation) Algorithm

2. Analysis of DAgger: DAgger as online learning

Online Learning

Adversary
Learner

[Vovk92,Warmuth94,Freund97,Zinkevich03,Kalai05,Hazan06,Kakade08]

convex Decision set Θ

Learner picks a decision θ0

Adversary picks a loss ℓ0 : Θ → ℝ

Learner picks a new decision θ1

Adversary picks a loss ℓ1 : Θ → ℝ

…

Regret =
T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t :

1. Learner first picks θt ∈ Ball ⊂ ℝd

2. Adversary then picks xt ∈ 𝒳 ⊂ ℝd, yt ∈ [a, b]

3. Learner suffers loss ℓt(θt) = (θ⊤
t xt − yt)2

Learner has to make decision based on history up to ,

while adversary could pick even after seeing

θt t − 1
(xt, yt) θt

Adversary seems too powerful…

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration t :

1. Learner first picks that minimizes the aggregated loss θt

θt = arg min
θ∈Ball

t−1

∑
i=0

(θ⊤xi − yi)2 + λ∥θ∥2
2

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

T−1

∑
i=0

ℓi(θi) − min
θ∈Ball

T−1

∑
i=0

ℓi(θ) = O (T)

Generally, Follow-the-Regularized-Leader is no-regret

At time step learner has seen , which new decision she could pick? t, ℓ0, …ℓt−1

Informal Theorem (FTRL): when things are convex, FTRL is no-regret, i.e.,
1
T [

T−1

∑
t=0

ℓt(θt) − min
θ∈Θ

T−1

∑
t=0

ℓt(θ)] = O (1/ T)

FTRL: θt = min
θ∈Θ

t−1

∑
i=0

ℓi(θ) + λR(θ)

DAgger Revisit
New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

At iteration t:

Data Aggregation = Follow-the-Regularized-Leader Online Learner

ℓt(π) =
m

∑
i=1

∥π(si) − π⋆(si)∥2
2

t

∑
i=0

ℓi(π)πt = arg min
π

t

∑
i=0

ℓi(π) + λR(π)

Summary for Today

1. The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt 𝒟t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: 𝒟 = 𝒟 + 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

2. We can see that DAgger is essentially an online-learning algorithm (FTRL)

