Direct Preference Optimization (DPO)

Recap: Bradley Terry model and reward model (RM) learning

Recap: Bradley Terry model and reward model (RM) learning

The BT model assumes that humans generate labels based on the following probablistic model:

Recap: Bradley Terry model and reward model (RM) learning

The BT model assumes that humans generate labels based on the following probablistic model:

Recap: KL-reg RL for avoiding reward hacking

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot|x)} \hat{r}(x,\tau) - \beta \mathsf{KL} \left(\pi(\cdot|x) \mid \pi_{ref}(\cdot|x) \right) \right]$$

"stay close" to the SFT policy π_{ref} .
$$\nabla = \{ \gamma, \chi, \chi, \chi, \chi \}$$

Recap: KL-reg RL for avoiding reward hacking

 β : controls the strength of KL-reg;

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

"stay close" to the SFT policy π_{ref} .

ChatGPT uses PPO to optimize $J(\pi)$

When models are large...

RM + PPO can be hard to optimize...

At least need to maintain 4 big models in GPU RAM (RM, π , V, π_{ref} ...)

Question today:

Can we combine the two stages together and learn policy directly?

Outline

1. KL-reg RL revisit and its closed-form solution

2. Reparametrization trick – modeling RM difference using policy directly

3. DPO Algorithm

First thing...

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt *x*, and an "action" (a trajectory) $\tau \neq \{y_0, y_1, ..., y_{H-1}\}$, what's the likelihood of the "action" under the policy π_{ρ} ?

First thing...

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt *x*, and an "action" (a trajectory) $\tau = \{y_0, y_1, \dots, y_{H-1}\}$, what's the likelihood of the "action" under the policy π_{θ} ?

$$\pi_{\theta}(\tau \mid x) = \prod_{h=0}^{H-1} \pi_{\theta}(y_h \mid x, y_{< k})$$

First thing...

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt *x*, and an "action" (a trajectory) $\tau = \{y_0, y_1, \dots, y_{H-1}\}$, what's the likelihood of the "action" under the policy π_{θ} ?

$$(\pi_{\theta}(\tau \mid x)) = \prod_{h=0}^{H-1} \pi_{\theta}(y_h \mid x, y_{< h})$$

Likelihood of predicting y_h
given the past..

KL-reg RL objective $J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$ What's the arg max $J(\pi)$?

KL-reg RL objective

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

What's the arg $\max_{\pi} J(\pi)$?

Consider on a (x, τ) pair, what is $\partial J(\pi) / \partial \pi(y | x)$?

$$\frac{\partial J(\pi)}{\partial \pi(y \mid x)} = \hat{r}(x, \tau) - \beta \left(\ln \pi(\tau \mid x) - \ln \pi_{ref}(\tau \mid x) + 1 \right)$$

$$\pi(\tau \mid x) \propto \pi_{ref}(\tau \mid x) \exp \left(\hat{r}(x, \tau) / \beta \right)$$

$$\beta = \tau \infty$$

$$\beta \to 0^{+} \pi / \tau(x) \to 0^{+} \tau$$

$$\widehat{r}(x, \tau)$$

KL-reg RL objective

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

What's the arg $\max_{\pi} J(\pi)$?

Consider on a (x, τ) pair, what is $\partial J(\pi) / \partial \pi(y | x)$?

$$\frac{\partial J(\pi)}{\partial \pi(y|x)} = \hat{r}(x,\tau) - \beta \left(\ln \pi(\tau|x) - \ln \pi_{ref}(\tau|x) + 1 \right)$$

$$\pi(\tau|x) \propto \pi_{ref}(\tau|x) \exp\left(\hat{r}(x,\tau)/\beta\right)$$

$$\pi(\tau|x) = \pi_{ref}(\tau|x) \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right) \left(Z(x)\right) \text{ where } Z(x) = \mathbb{E}_{\tau \sim \pi_{ref}(\cdot|x)} \exp(\hat{r}(x,\tau)/\beta)$$

$$= \sum_{x \in \tau} \pi_{ref}(\tau|x) \exp\left(\hat{r}(x,\tau)/\beta\right)$$

KL-reg RL objective

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \middle| \pi_{ref}(\cdot \mid x) \right) \right]$$

In sum, the optimal policy is:

$$\hat{\pi}(\tau \mid x) = \frac{\pi_{ref}(\tau \mid x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)} \Rightarrow \xi \pi(\tau \mid x) = 1$$
1. When $\beta \to 0$:

$$\hat{\pi}(\tau \mid x) = \frac{\pi_{ref}(\tau \mid x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}$$
2. When $\beta \to \infty$:

$$\hat{\pi}(\tau \mid x) \to \arg\max(\tau \mid x)$$

Outline

KL-reg RL revisit and its closed-form solution
 Reparametrization trick – modeling RM difference using policy directly
 DPO Algorithm

$$\hat{\pi}(\tau \mid x) = \underbrace{\frac{\pi_{ref}(\tau \mid x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}}_{Z(x)}$$

$$\hat{\pi}(\tau \,|\, x) = \frac{\pi_{ref}(\tau \,|\, x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}$$

$$\ln \hat{\pi}(\tau \mid x) = \ln \pi_{ref}(\tau \mid x) - \ln Z(x) + \frac{\hat{r}(x,\tau)}{\beta}$$

$$\hat{\gamma}(x,\tau) = \beta \ln \frac{\hat{\tau}(\tau \mid x)}{\tau(\tau \mid x)} + \beta \cdot \ln Z(x)$$

$$\hat{\pi}(\tau \,|\, x) = \frac{\pi_{ref}(\tau \,|\, x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}$$

$$\ln \hat{\pi}(\tau \mid x) = \ln \pi_{ref}(\tau \mid x) - \ln Z(x) + \frac{\hat{r}(x,\tau)}{\beta}$$

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

$$E(x) = \frac{\beta}{\tau} \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

In sum, the optimal policy of the KL-reg RL objective is:

$$\hat{\pi}(\tau \,|\, x) = \frac{\pi_{ref}(\tau \,|\, x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}$$

$$\ln \hat{\pi}(\tau \,|\, x) = \ln \pi_{ref}(\tau \,|\, x) - \ln Z(x) + \frac{\hat{r}(x,\tau)}{\beta}$$

Not done yet, this Z(x) technically contains \hat{r} !

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

$$\hat{\pi}(\tau \,|\, x) = \frac{\pi_{ref}(\tau \,|\, x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)}{Z(x)}$$

$$\ln \hat{\pi}(\tau \mid x) = \ln \pi_{ref}(\tau \mid x) - \ln Z(x) + \frac{\hat{r}(x, \tau)}{\beta}$$

$$\hat{r}(x, \tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$
Not done yet, this $Z(x)$ technically contains \hat{r} !
But $\ln Z(x)$ is a shift that is independent of τ ...

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

Not done yet, this Z(x) technically contains \hat{r} !

But $\ln Z(x)$ is a shift that is independent of τ ...

(+, <, <') f(x,c)-f(x,c)

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

Not done yet, this Z(x) technically contains \hat{r} !

But $\ln Z(x)$ is a shift that is independent of τ ...

Given (x, τ, τ') , we just model **<u>reward difference</u>**:

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$
Not done yet, this $Z(x)$ technically contains \hat{r} !
But $\ln Z(x)$ is a shift that is independent of τ ...
Given (x, τ, τ') , we just model reward difference:
$$\hat{r}(x,\tau) - \hat{r}(x,\tau') = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\hat{\pi}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)} \right)$$

$$\hat{r}(x,\tau) = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} + \ln Z(x) \right)$$

Not done yet, this Z(x) technically contains \hat{r} !

But $\ln Z(x)$ is a shift that is independent of τ ...

Given (x, τ, τ') , we just model **<u>reward difference</u>**:

$$\hat{r}(x,\tau) - \hat{r}(x,\tau') = \beta \left(\ln \frac{\hat{\pi}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\hat{\pi}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)} \right)$$

The annoying normalization term gone!

Outline

1. KL-reg RL revisit and its closed-form solution

2. Reparametrization trick — modeling RM difference using policy directly

3. DPO Algorithm

DPO

1. Take any policy π_{θ} , we can use it to model the reward difference: $r_{\theta}(\tau \mid x) - r_{\theta}(\tau' \mid x) := \beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)} \right)$

DPO

1. Take any policy π_{θ} , we can use it to model the reward difference:

$$r_{\theta}(\tau \mid x) - r_{\theta}(\tau' \mid x) := \beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)} \right)$$

2. Now plug this into the MLE loss we had for learning the reward difference:

DPO

1. Take any policy π_{θ} , we can use it to model the reward difference:

$$r_{\theta}(\tau \mid x) - r_{\theta}(\tau' \mid x) := \beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)} \right)$$

2. Now plug this into the MI E less we had for learning the reward difference:

$$\arg \max_{\theta} \sum_{x,\tau,\tau',z} \ln \frac{1}{1 + \exp\left(-z \cdot \left(r_{\theta}(x,\tau) - r_{\theta}(x,\tau')\right)\right)}$$

DPO DPO optimizes policy π_{θ} directly using the following loss: $\arg \max_{\theta} \sum_{x,\tau,\tau',z} \ln \frac{1}{1 + \exp\left(-z \cdot \beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)}\right)\right)}$ $:= \int_{A} (\tau, x) - \int_{B} (\tau, x)$

The squared loss version of DPO

Optimizing Logistic loss can lead to overfit, we can use square loss (e.g., regression) instead:

Applying DPO on the openAI gym tasks (next PA)

Q: But these tasks have unknown transition $\rho(\tau) = \prod_{h} \pi(a_h | s) P(s_{h+1} | s_h, a_h)$ can we still do DPO?

Applying DPO on the openAI gym tasks (next PA)

Q: But these tasks have unknown transition $\rho(\tau) = \prod_{h} \pi(a_h | s) P(s_{h+1} | s_h, a_h)$, can we still do DPO?

Note that we only care about trajectory density ratio, so transition cancels out!

$$\ln \frac{\rho_{\pi}(\tau)}{\rho_{\pi_{ref}}(\tau)} = \ln \prod_{h} \frac{\pi(a_{h} | s_{h})}{\pi_{ref}(a_{h} | s_{h})} = \sum_{h} \underbrace{\int_{\pi_{ref}} \frac{\pi(a_{h} | s_{h})}{\pi_{ref}(a_{h} | s_{h})}}_{\pi_{ref}(a_{h} | s_{h})}$$

Swimmer: continuous controll; goal: move forward fast

1. Collect pair of trajs using a π_{ref} label via the ground truth reward

2. Run DPO (squared loss) w/ different β β·KL(π) πνιφ

Swimmer: continuous controll; goal: move forward fast

1. Collect pair of trajs using a π_{ref} ; label via the ground truth reward

2. Run DPO (squared loss) w/ different β

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

DPO reparameterizes the reward difference via policy directly

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

DPO reparameterizes the reward difference via policy directly

Plug the reward difference parameterized by policy into the BT-inspired MLE loss to directly optimize policy