
Direct Preference Optimization
(DPO)

Recap: Bradley Terry model and reward model (RM) learning

Recap: Bradley Terry model and reward model (RM) learning

The BT model assumes that humans generate labels based on the following probablistic model:

P(τ is prefered over τ′ given x) = 1
1 + exp (−(r⋆(x, τ) − r⋆(x, τ′)))

Recap: Bradley Terry model and reward model (RM) learning

The BT model assumes that humans generate labels based on the following probablistic model:

P(τ is prefered over τ′ given x) = 1
1 + exp (−(r⋆(x, τ) − r⋆(x, τ′)))

We parameter a reward function (e.g., neural network) , and learn via MLE / logistic regressionr(x, τ)

̂r = arg max
r ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ (r(x, τ) − r(x, τ′)))

Recap: KL-reg RL for avoiding reward hacking

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
“stay close” to the SFT policy . πref

 controls the strength of KL-reg;β :

Recap: KL-reg RL for avoiding reward hacking

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
“stay close” to the SFT policy . πref

 controls the strength of KL-reg;β :

ChatGPT uses PPO to optimize ….J(π)

When models are large…

RM + PPO can be hard to optimize…

At least need to maintain 4 big models in GPU RAM (RM, , V, …)π πref

Question today:

Can we combine the two stages together and learn policy directly?

Outline

2. Reparametrization trick — modeling RM difference using policy directly

3. DPO Algorithm

1. KL-reg RL revisit and its closed-form solution

First thing…

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt , and an “action” (a trajectory) , what’s
the likelihood of the “action” under the policy ?
x τ = {y0, y1, …, yH−1}

πθ

First thing…

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt , and an “action” (a trajectory) , what’s
the likelihood of the “action” under the policy ?
x τ = {y0, y1, …, yH−1}

πθ

πθ(τ |x) =
H−1

∏
h=0

πθ(yh |x, y<h)

First thing…

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt , and an “action” (a trajectory) , what’s
the likelihood of the “action” under the policy ?
x τ = {y0, y1, …, yH−1}

πθ

πθ(τ |x) =
H−1

∏
h=0

πθ(yh |x, y<h)
Likelihood of predicting

given the past..
yh

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

What’s the ? arg max
π

J(π)

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

What’s the ? arg max
π

J(π)

Consider on a pair, what is ? (x, τ) ∂J(π)/∂π(y |x)

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

What’s the ? arg max
π

J(π)

Consider on a pair, what is ? (x, τ) ∂J(π)/∂π(y |x)
∂J(π)

∂π(y |x) = ̂r(x, τ) − β (ln π(τ |x) − ln πref(τ |x) + 1)

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

What’s the ? arg max
π

J(π)

Consider on a pair, what is ? (x, τ) ∂J(π)/∂π(y |x)
∂J(π)

∂π(y |x) = ̂r(x, τ) − β (ln π(τ |x) − ln πref(τ |x) + 1)
π(τ |x) ∝ πref(τ |x)exp (̂r(x, τ)/β)

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

What’s the ? arg max
π

J(π)

Consider on a pair, what is ? (x, τ) ∂J(π)/∂π(y |x)
∂J(π)

∂π(y |x) = ̂r(x, τ) − β (ln π(τ |x) − ln πref(τ |x) + 1)
π(τ |x) ∝ πref(τ |x)exp (̂r(x, τ)/β)

π(τ |x) = πref(τ |x)exp (̂r(x, τ)
β)/Z(x), where Z(x) = 𝔼τ∼πref(⋅|x) exp(̂r(x, τ)/β)

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
KL-reg RL objective

In sum, the optimal policy is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

1. When : β → 0
2. When : β → ∞

Outline

2. Reparametrization trick — modeling RM difference using policy directly

3. DPO Algorithm

1. KL-reg RL revisit and its closed-form solution

Can we parameterize RM using policies?
In sum, the optimal policy of the KL-reg RL objective is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

Can we parameterize RM using policies?
In sum, the optimal policy of the KL-reg RL objective is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

ln ̂π(τ |x) = ln πref(τ |x) − ln Z(x) + ̂r(x, τ)
β

Can we parameterize RM using policies?
In sum, the optimal policy of the KL-reg RL objective is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

ln ̂π(τ |x) = ln πref(τ |x) − ln Z(x) + ̂r(x, τ)
β

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Can we parameterize RM using policies?
In sum, the optimal policy of the KL-reg RL objective is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

ln ̂π(τ |x) = ln πref(τ |x) − ln Z(x) + ̂r(x, τ)
β

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x)) Not done yet, this technically contains !Z(x) ̂r

Can we parameterize RM using policies?
In sum, the optimal policy of the KL-reg RL objective is:

̂π(τ |x) =
πref(τ |x) ⋅ exp (̂r(x, τ)

β)
Z(x)

ln ̂π(τ |x) = ln πref(τ |x) − ln Z(x) + ̂r(x, τ)
β

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x)) Not done yet, this technically contains !Z(x) ̂r

But is a shift that is independent of …ln Z(x) τ

Cancelling the normalization constant via modeling the differenceZ(x)

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Not done yet, this technically contains !Z(x) ̂r

But is a shift that is independent of …ln Z(x) τ

Cancelling the normalization constant via modeling the differenceZ(x)

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Not done yet, this technically contains !Z(x) ̂r

But is a shift that is independent of …ln Z(x) τ

Given , we just model reward difference:(x, τ, τ′)

Cancelling the normalization constant via modeling the differenceZ(x)

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Not done yet, this technically contains !Z(x) ̂r

But is a shift that is independent of …ln Z(x) τ

Given , we just model reward difference:(x, τ, τ′)

̂r(x, τ) − ̂r(x, τ′) = β (ln ̂π(τ |x)
πref(τ |x) − ln ̂π(τ′ |x)

πref(τ′ |x))

Cancelling the normalization constant via modeling the differenceZ(x)

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Not done yet, this technically contains !Z(x) ̂r

But is a shift that is independent of …ln Z(x) τ

Given , we just model reward difference:(x, τ, τ′)

̂r(x, τ) − ̂r(x, τ′) = β (ln ̂π(τ |x)
πref(τ |x) − ln ̂π(τ′ |x)

πref(τ′ |x))
The annoying normalization term gone!

Outline

2. Reparametrization trick — modeling RM difference using policy directly

3. DPO Algorithm

1. KL-reg RL revisit and its closed-form solution

DPO

1. Take any policy , we can use it to model the reward difference:πθ

rθ(τ |x) − rθ(τ′ |x) := β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x))

DPO

1. Take any policy , we can use it to model the reward difference:πθ

rθ(τ |x) − rθ(τ′ |x) := β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x))
2. Now plug this into the MLE loss we had for learning the reward difference:

DPO

1. Take any policy , we can use it to model the reward difference:πθ

rθ(τ |x) − rθ(τ′ |x) := β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x))
2. Now plug this into the MLE loss we had for learning the reward difference:

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ (rθ(x, τ) − rθ(x, τ′)))

DPO

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x)))

DPO optimizes policy directly using the following loss:πθ

The squared loss version of DPO

arg max
θ ∑

x,τ,τ′ ,z (β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x)) − z)
2

Optimizing Logistic loss can lead to overfit, we can use square loss (e.g., regression) instead:

Applying DPO on the openAI gym tasks (next PA)

Q: But these tasks have unknown transition , can we still do DPO?ρ(τ) = ∏
h

π(ah |s)P(sh+1 |sh, ah)

Applying DPO on the openAI gym tasks (next PA)

Q: But these tasks have unknown transition , can we still do DPO?ρ(τ) = ∏
h

π(ah |s)P(sh+1 |sh, ah)

Note that we only care about trajectory density ratio, so transition cancels out!

ln ρπ(τ)
ρπref

(τ) = ln∏
h

π(ah |sh)
πref(ah |sh)

1. Collect pair of trajs
using a ; label via

the ground truth reward
πref

2. Run DPO (squared
loss) w/ different β

Swimmer: continuous
controll; goal: move

forward fast

Number of mini-batch gradient updates

β = 10−2

β = 1
β = 10β = 105

β = 1015

(KL-reg too weak, deviates
from too much)πref

(KL-reg too strong, cannot
deviate from)πref1. Collect pair of trajs

using a ; label via
the ground truth reward

πref

2. Run DPO (squared
loss) w/ different β

Swimmer: continuous
controll; goal: move

forward fast

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

DPO reparameterizes the reward difference via policy directly

Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

DPO reparameterizes the reward difference via policy directly

Plug the reward difference parameterized by policy into the BT-inspired MLE
loss to directly optimize policy

