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The BT model assumes that humans generate labels based on the following probablistic model:

P(τ is prefered over τ′  given x) = 1
1 + exp (−(r⋆(x, τ) − r⋆(x, τ′ )))

We parameter a reward function (e.g., neural network) , and learn via MLE / logistic regressionr(x, τ)

̂r = arg max
r ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ (r(x, τ) − r(x, τ′ )))
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 controls the strength of KL-reg;β :

ChatGPT uses PPO to optimize ….J(π)



When models are large…

RM + PPO can be hard to optimize…

At least need to maintain 4 big models in GPU RAM (RM, , V, …)π πref



Question today:

Can we combine the two stages together and learn policy directly?
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First thing…

We will directly operate at the trajectory level, i.e., a trajectory is an action

Given prompt , and an “action” (a trajectory) , what’s 
the likelihood of the “action” under the policy ?
x τ = {y0, y1, …, yH−1}

πθ

πθ(τ |x) =
H−1

∏
h=0

πθ(yh |x, y<h)
Likelihood of predicting  

given the past..
yh
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What’s the  ? arg max
π

J(π)

Consider on a  pair,  what is  ? (x, τ) ∂J(π)/∂π(y |x)
∂J(π)

∂π(y |x) = ̂r(x, τ) − β (ln π(τ |x) − ln πref(τ |x) + 1)
π(τ |x) ∝ πref(τ |x)exp ( ̂r(x, τ)/β)

π(τ |x) = πref(τ |x)exp ( ̂r(x, τ)
β )/Z(x),  where Z(x) = 𝔼τ∼πref(⋅|x) exp( ̂r(x, τ)/β)



J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π( ⋅ |x) πref( ⋅ |x))]
KL-reg RL objective

In sum, the optimal policy is: 

̂π(τ |x) =
πref(τ |x) ⋅ exp ( ̂r(x, τ)

β )
Z(x)

1. When : β → 0
2. When : β → ∞
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Cancelling the normalization constant  via modeling the differenceZ(x)

̂r(x, τ) = β (ln ̂π(τ |x)
πref(τ |x) + ln Z(x))

Not done yet, this  technically contains !Z(x) ̂r

But  is a shift that is independent of …ln Z(x) τ

Given , we just model reward difference:(x, τ, τ′ )

̂r(x, τ) − ̂r(x, τ′ ) = β (ln ̂π(τ |x)
πref(τ |x) − ln ̂π(τ′ |x)

πref(τ′ |x) )
The annoying normalization term gone!
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DPO

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x) ))

DPO optimizes policy  directly using the following loss:πθ



The squared loss version of DPO

arg max
θ ∑

x,τ,τ′ ,z (β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x) ) − z)
2

Optimizing Logistic loss can lead to overfit, we can use square loss (e.g., regression) instead:
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Applying DPO on the openAI gym tasks (next PA)

Q: But these tasks have unknown transition , can we still do DPO?ρ(τ) = ∏
h

π(ah |s)P(sh+1 |sh, ah)

Note that we only care about trajectory density ratio, so transition cancels out!

ln ρπ(τ)
ρπref

(τ) = ln∏
h

π(ah |sh)
πref(ah |sh)



1. Collect pair of trajs 
using a ; label via 

the ground truth reward
πref

2. Run DPO (squared 
loss) w/ different β

Swimmer: continuous 
controll; goal: move 

forward fast



Number of mini-batch gradient updates

β = 10−2

β = 1
β = 10β = 105

β = 1015

(KL-reg too weak, deviates 
from  too much)πref

(KL-reg too strong, cannot 
deviate from )πref1. Collect pair of trajs 

using a ; label via 
the ground truth reward

πref

2. Run DPO (squared 
loss) w/ different β

Swimmer: continuous 
controll; goal: move 

forward fast
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Summary

Closed-form solution of the optimal policy of KL-reguarlized RL

DPO reparameterizes the reward difference via policy directly

Plug the reward difference parameterized by policy into the BT-inspired MLE 
loss to directly optimize policy


