
Deep Q Network (DQN)

Annoucements

We will release HW2 tonight (Q-learning, TD,
and simulation lemma)

We will release the first reading quiz today

Recap: Bellman operator

Qt+1 ⇐ 𝒯Qt

Value iteration

Recap: Q-learning

Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′

Q̂(s′ , a′) − Q̂(s, a))
Tabular Q Learning: maintain a table of size S x AQ̂

Data collection via -greedy:ϵ

Recap: Q-learning

Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′

Q̂(s′ , a′) − Q̂(s, a))
Tabular Q Learning: maintain a table of size S x AQ̂

Data collection via -greedy:ϵ

W/ prob , select action uniform randomlyϵ
W/ prob , select greedy action 1 − ϵ arg max

a
Q̂(s, a)

Today

Consider large-scale MDPs,

how to estimate using function
approximation (e.g., neural network)

Q⋆(s, a)

Deep Q-network (DQN) is the earliest example
of showing Deep Learning + RL is powerful

Outline:

2. Replay buffer, batch optimization and target network

1. Q Learning w/ function approximation

Q-Learning w/ function approximation
We will model using a function approximator Q⋆

x[1]

x[2]

…

x[d]

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

x = [s⊤, a]⊤

Qθ(s, a) : S × A → ℝ

Q-Learning w/ function approximation
We will model using a function approximator Q⋆

x[1]

x[2]

…

x[d]

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

x = [s⊤, a]⊤

Qθ(s, a) : S × A → ℝ

Assumption: differentiable ∇θQθ(s, a)

Q-Learning w/ function approximation
We will model using a function approximator Q⋆

x[1]

x[2]

…

x[d]

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

x = [s⊤, a]⊤

Qθ(s, a) : S × A → ℝ

Assumption: differentiable ∇θQθ(s, a)

(The DQN paper uses ConvNet as
is an image frame of the game)

s

Attempt 1: Q Learning w/ function approximation

Initialize . Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Attempt 1: Q Learning w/ function approximation

Initialize . Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Take action based on -greedy of , get reward and next state a ϵ Qθt r s′ ∼ P(⋅ |s, a)

Attempt 1: Q Learning w/ function approximation

Initialize . Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Take action based on -greedy of , get reward and next state a ϵ Qθt r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Qθt
(s′ , a′)

Attempt 1: Q Learning w/ function approximation

Initialize . Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Take action based on -greedy of , get reward and next state a ϵ Qθt r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Qθt
(s′ , a′)

Update to :θt+1

Attempt 1: Q Learning w/ function approximation

Initialize . Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Take action based on -greedy of , get reward and next state a ϵ Qθt r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Qθt
(s′ , a′)

Update to :θt+1

Set s ⇐ s′

Q Learning w/ function approximation

Update parameters using SGD on the Bellman error loss

Q Learning w/ function approximation

Update parameters using SGD on the Bellman error loss

ℓbe(θ) := (Qθ(s, a) − y)2, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Qθ(s′ , a′)

Issues of this simple approach

1. Inefficient — it throws away all historical data

(your network could forget old experiences, i.e., catastrophic forgetting)

Issues of this simple approach

1. Inefficient — it throws away all historical data

(your network could forget old experiences, i.e., catastrophic forgetting)

2. instablity — Training is quite unstable (we saw it from the past Cartpole Demo)

Outline:

2. Replay buffer, batch optimization and target network

1. Q Learning w/ function approximation

Q-Learning w/ function approximation

First improvement: Replay buffer

𝒟rb = [
…

(s, a, r, s′)
……]

A dataset that contains all historical

State-action-reward-next state tuples

Q-Learning w/ function approximation
With replay buffer, we can use mini-batch SGD to update Bellman error loss

Q-Learning w/ function approximation
With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given and replay buffer , randomly sample a mini-batch from Qθt 𝒟rb ℬ 𝒟rb

Q-Learning w/ function approximation
With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given and replay buffer , randomly sample a mini-batch from Qθt 𝒟rb ℬ 𝒟rb

θt+1 = θt − η
1

|ℬ | ∑
(s,a,r,s′)∈ℬ

(Qθt(s, a) − r − max
a′

Qθt(s′ , a′))∇θQθt
(s, a)

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

ℓbe(θ) := (Qθ(s, a) − y)2, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Qθ(s′ , a′)

regression target

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

ℓbe(θ) := (Qθ(s, a) − y)2, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Qθ(s′ , a′)

regression target
Source of instability: target changes
immediately whenever we update θ

Q-Learning w/ function approximation
Second improvement: Target network (making Q learning more stable)

Introducing target network to slow down the evolution of the BE lossQθ̃

(e.g., set as a copy of an older version of)θ̃ θ

Q-Learning w/ function approximation
Second improvement: Target network (making Q learning more stable)

Introducing target network to slow down the evolution of the BE lossQθ̃

ℓbe(θ) := (Qθ(s, a) − y)2, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Qθ̃(s′ , a′)

(e.g., set as a copy of an older version of)θ̃ θ

Q-Learning w/ function approximation
Second improvement: Target network (making Q learning more stable)

Introducing target network to slow down the evolution of the BE lossQθ̃

ℓbe(θ) := (Qθ(s, a) − y)2, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Qθ̃(s′ , a′)
Use a target network

that slowly catches up
θ

(e.g., set as a copy of an older version of)θ̃ θ

Attempt 2: Deep Q network (DQN)
Initialize and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Take action based on -greedy of , get reward and next state a ϵ Qθ r s′ ∼ P(⋅ |s, a)

Attempt 2: Deep Q network (DQN)
Initialize and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Take action based on -greedy of , get reward and next state a ϵ Qθ r s′ ∼ P(⋅ |s, a)
Add to (s, a, r, s′) 𝒟rb

Attempt 2: Deep Q network (DQN)
Initialize and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Sample mini-batch from ℬ 𝒟rb

Take action based on -greedy of , get reward and next state a ϵ Qθ r s′ ∼ P(⋅ |s, a)
Add to (s, a, r, s′) 𝒟rb

Attempt 2: Deep Q network (DQN)
Initialize and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Sample mini-batch from ℬ 𝒟rb

Update parameters:

θ ⇐ θ − η
1

|ℬ | ∑
(s,a,r,s′)∈ℬ

(Qθ(s, a) − r − max
a′

Qθ̃(s′ , a′))∇θQθ(s, a)

Take action based on -greedy of , get reward and next state a ϵ Qθ r s′ ∼ P(⋅ |s, a)
Add to (s, a, r, s′) 𝒟rb

Attempt 2: Deep Q network (DQN)
Initialize and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Sample mini-batch from ℬ 𝒟rb

Update parameters:

θ ⇐ θ − η
1

|ℬ | ∑
(s,a,r,s′)∈ℬ

(Qθ(s, a) − r − max
a′

Qθ̃(s′ , a′))∇θQθ(s, a)

Take action based on -greedy of , get reward and next state a ϵ Qθ r s′ ∼ P(⋅ |s, a)
Add to (s, a, r, s′) 𝒟rb

Every C step, set θ̃ = θ

When C is large…

DQN is performing SGD for standard regression between two target network updates..

min
θ ∑

s,a,r,s′ ∈𝒟rb
(Qθ(s, a) − (r + max

a′

Qθ̃(s′ , a′)))
2

When C is large…

DQN is performing SGD for standard regression between two target network updates..

min
θ ∑

s,a,r,s′ ∈𝒟rb
(Qθ(s, a) − (r + max

a′

Qθ̃(s′ , a′)))
2

Q: What is the Bayes optimal of this regression problem?

DQN vs Naive Q-learning

BLUE: DQN

RED: Q-learning

Number of real samples (x100)

DQN (blue) vs Q-learning (red)

Summary

1. Using function approximation to handle large state space

2. Making Q-learning closer to the supervised learning (i.e., regression) framework:

• Replay buffer + mini-batch SGD

• Target network to simulate a standard regression setting

