
Deep Q Network (DQN)

 



Annoucements

We will release HW2 tonight (Q-learning, TD, 
and simulation lemma)

We will release the first reading quiz today



Recap: Bellman operator

Qt+1 ⇐ 𝒯Qt

Value iteration



Recap: Q-learning

Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′ 

Q̂(s′ , a′ ) − Q̂(s, a))
Tabular Q Learning: maintain a table  of size S x AQ̂

Data collection via -greedy:ϵ
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Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′ 

Q̂(s′ , a′ ) − Q̂(s, a))
Tabular Q Learning: maintain a table  of size S x AQ̂

Data collection via -greedy:ϵ

W/ prob ,  select action uniform randomlyϵ
W/ prob ,  select greedy action 1 − ϵ arg max

a
Q̂(s, a)



Today

Consider large-scale MDPs, 

how to estimate  using function 
approximation (e.g., neural network)

Q⋆(s, a)



Deep Q-network (DQN) is the earliest example 
of showing Deep Learning + RL is powerful



Outline:

2. Replay buffer, batch optimization and target network

1. Q Learning w/ function approximation
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Q-Learning w/ function approximation
We will model using a function approximator Q⋆

x[1]

x[2]

…

x[d]

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

x = [s⊤, a]⊤

Qθ(s, a) : S × A → ℝ

Assumption: differentiable ∇θQθ(s, a)

(The DQN paper uses ConvNet as  
is an image frame of the game)

s
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Attempt 1: Q Learning w/ function approximation

Initialize .  Set initial state θ0 s ∈ 𝒮
For t = 0 to T

Take action  based on -greedy of , get reward  and next state a ϵ Qθt r s′ ∼ P( ⋅ |s, a)
Form Q-target r + γ max

a′ 

Qθt
(s′ , a′ )

Update to :θt+1

Set s ⇐ s′ 
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Q Learning w/ function approximation

Update parameters using SGD on the Bellman error loss

ℓbe(θ) := (Qθ(s, a) − y)2,  where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′ 

Qθ(s′ , a′ )



Issues of this simple approach

1. Inefficient — it throws away all historical data 

(your network could forget old experiences, i.e., catastrophic forgetting)



Issues of this simple approach

1. Inefficient — it throws away all historical data 

(your network could forget old experiences, i.e., catastrophic forgetting)

2. instablity — Training is quite unstable (we saw it from the past Cartpole Demo)



Outline:

2. Replay buffer, batch optimization and target network

1. Q Learning w/ function approximation



Q-Learning w/ function approximation

First improvement: Replay buffer

𝒟rb = [
…

(s, a, r, s′ )
…… ]

A dataset that contains all historical 

State-action-reward-next state tuples
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Q-Learning w/ function approximation
With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given  and replay buffer , randomly sample a mini-batch  from Qθt 𝒟rb ℬ 𝒟rb

θt+1 = θt − η
1

|ℬ | ∑
(s,a,r,s′ )∈ℬ

(Qθt(s, a) − r − max
a′ 

Qθt(s′ , a′ ))∇θQθt
(s, a)
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Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

ℓbe(θ) := (Qθ(s, a) − y)2,  where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′ 

Qθ(s′ , a′ )

regression target
Source of instability: target changes 
immediately whenever we update θ
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Q-Learning w/ function approximation
Second improvement: Target network (making Q learning more stable)

Introducing target network  to slow down the evolution of the BE lossQθ̃

ℓbe(θ) := (Qθ(s, a) − y)2,  where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′ 

Qθ̃(s′ , a′ )
Use a target network 

that slowly catches up 
θ

(e.g., set  as a copy of an older version of )θ̃ θ
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Attempt 2: Deep Q network (DQN)
Initialize  and replay buffer . Set , Set initial state θ 𝒟rb θ̃ = θ s ∈ 𝒮
While true:

Sample mini-batch  from ℬ 𝒟rb

Update parameters: 

θ ⇐ θ − η
1

|ℬ | ∑
(s,a,r,s′ )∈ℬ

(Qθ(s, a) − r − max
a′ 

Qθ̃(s′ , a′ ))∇θQθ(s, a)

Take action  based on -greedy of , get reward  and next state a ϵ Qθ r s′ ∼ P( ⋅ |s, a)
Add  to (s, a, r, s′ ) 𝒟rb

Every C step, set θ̃ = θ



When C is large…

DQN is performing SGD for standard regression between two target network updates..

min
θ ∑

s,a,r,s′ ∈𝒟rb
(Qθ(s, a) − (r + max

a′ 

Qθ̃(s′ , a′ )))
2



When C is large…

DQN is performing SGD for standard regression between two target network updates..

min
θ ∑

s,a,r,s′ ∈𝒟rb
(Qθ(s, a) − (r + max

a′ 

Qθ̃(s′ , a′ )))
2

Q: What is the Bayes optimal of this regression problem?



DQN vs Naive Q-learning

BLUE: DQN

RED: Q-learning

Number of real samples (x100)

DQN (blue) vs Q-learning (red)



Summary

1. Using function approximation to handle large state space 

2. Making Q-learning closer to the supervised learning (i.e., regression) framework:

• Replay buffer + mini-batch SGD

• Target network to simulate a standard regression setting


