Deep Q Network (DQN)

Annoucements

We will release HW2 tonight (Q-learning, TD, and simulation lemma)

We will release the first reading quiz today

Recap: Q-learning

Tabular Q Learning: maintain a table \hat{Q} of size S x A

$$\hat{Q}(s,a) \Leftarrow \hat{Q}(s,a) + \eta \left(r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a) \right)$$

Data collection via ϵ -greedy:

W/ prob ϵ , select action uniform randomly W/ prob $1-\epsilon$, select greedy action $\arg\max\hat{Q}(s,a)$

a

Today

Consider large-scale MDPs,

how to estimate $Q^*(s, a)$ using function approximation (e.g., neural network)

Deep Q-network (DQN) is the earliest example of showing Deep Learning + RL is powerful

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

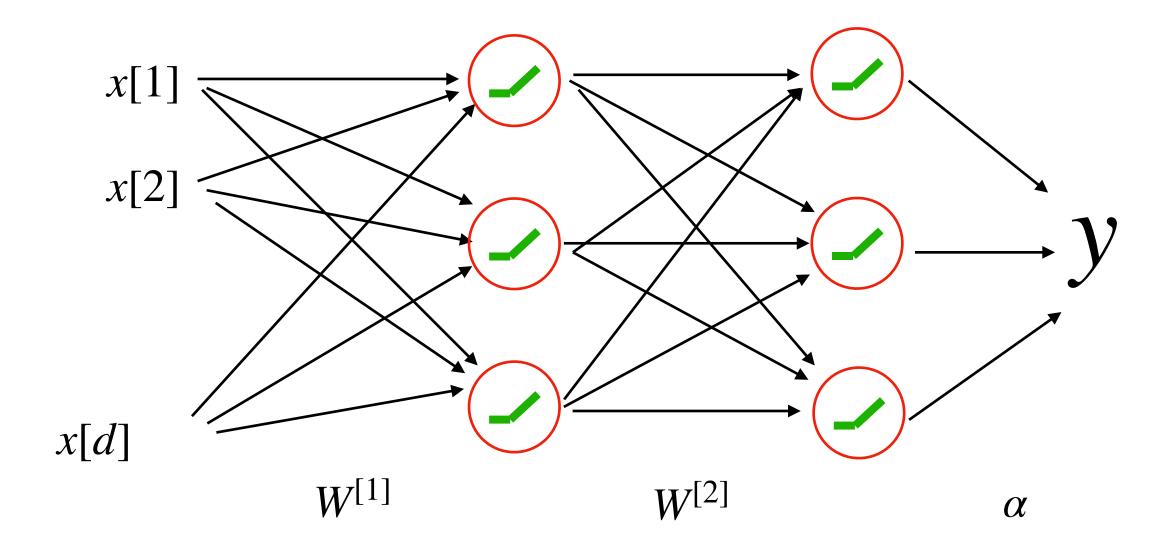
Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Outline:

1. Q Learning w/ function approximation

2. Replay buffer, batch optimization and target network

We will model Q^* using a function approximator



$$x = [s^{\mathsf{T}}, a, 1]^{\mathsf{T}}$$

$$y = \alpha^{\mathsf{T}} \mathsf{ReLU} \left(W^{[2]} \mathsf{ReLU} \left(W^{[1]} x \right) \right) + b$$

$$Q_{\theta}(s,a): S \times A \rightarrow \mathbb{R}$$

Assumption: differentiable $\nabla_{\theta}Q_{\theta}(s,a)$

(The DQN paper uses ConvNet as *s* is an image frame of the game)

Attempt 1: Q Learning w/ function approximation

Initialize θ^0 . Set initial state $s \in \mathcal{S}$

For t = 0 to T

Take action a based on ϵ -greedy of Q_{θ} , get reward r and next state $s' \sim P(\cdot \mid s, a)$

Form Q-target $r + \gamma \max_{a'} Q_{\theta_t}(s', a')$

Update to θ^{t+1} : Set $s \Leftarrow s'$

Update parameters using SGD on the Bellman error loss

$$\mathscr{C}_{be}(\theta) := \left(Q_{\theta}(s, a) - y\right)^2, \text{ where } y = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \max_{a'} Q_{\theta}(s', a')$$

Issues of this simple approach

1. Inefficient — it throws away all historical data (your network could forget old experiences, i.e., catastrophic forgetting)

2. instablity — Training is quite unstable (we saw it from the past Cartpole Demo)

Outline:

1. Q Learning w/ function approximation

2. Replay buffer, batch optimization and target network

First improvement: Replay buffer

$$\mathscr{D}_{rb} = \begin{bmatrix} \cdots \\ (s, a, r, s') \\ \cdots \end{bmatrix}$$

A dataset that contains all historical State-action-reward-next state tuples

With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given Q_{θ^t} and replay buffer \mathscr{D}_{rb} , randomly sample a mini-batch \mathscr{B} from \mathscr{D}_{rb}

$$\theta^{t+1} = \theta^t - \eta \frac{1}{|\mathcal{B}|} \sum_{(s,a,r,s') \in \mathcal{B}} \left(Q_{\theta^t}(s,a) - r - \max_{a'} Q_{\theta^t}(s',a') \right) \nabla_{\theta} Q_{\theta_t}(s,a)$$

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

$$\mathscr{C}_{be}(\theta) := \left(Q_{\theta}(s, a) - y\right)^2, \text{ where } y = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \max_{a'} Q_{\theta}(s', a')$$

regression target

Source of instability: target changes immediately whenever we update θ

Second improvement: Target network (making Q learning more stable)

Introducing target network $Q_{ ilde{ heta}}$ to slow down the evolution of the BE loss

(e.g., set $\tilde{\theta}$ as a copy of an older version of θ)

$$\mathcal{E}_{be}(\theta) := \left(Q_{\theta}(s, a) - y\right)^2, \text{ where } y = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \max_{a'} Q_{\tilde{\theta}}(s', a')$$

Use a target network that slowly catchs up θ

Attempt 2: Deep Q networ (DQN)

Initialize θ and replay buffer \mathcal{D}_{rb} . Set $\tilde{\theta} = \theta$, Set initial state $s \in \mathcal{S}$

While true:

Take action a based on ϵ -greedy of Q_{θ} , get reward r and next state $s' \sim P(\cdot \mid s, a)$

Add
$$(s, a, r, s')$$
 to \mathcal{D}_{rb}

Add (s, a, r, s') to \mathcal{D}_{rb} Sample mini-batch \mathcal{B} from \mathcal{D}_{rb}

Update parameters:

$$\theta \Leftarrow \theta - \eta \frac{1}{|\mathcal{B}|} \sum_{(s,a,r,s') \in \mathcal{B}} \left(Q_{\theta}(s,a) - r - \max_{a'} Q_{\tilde{\theta}}(s',a') \right) \nabla_{\theta} Q_{\theta}(s,a)$$

Every C step, set $\ddot{\theta} = \theta$

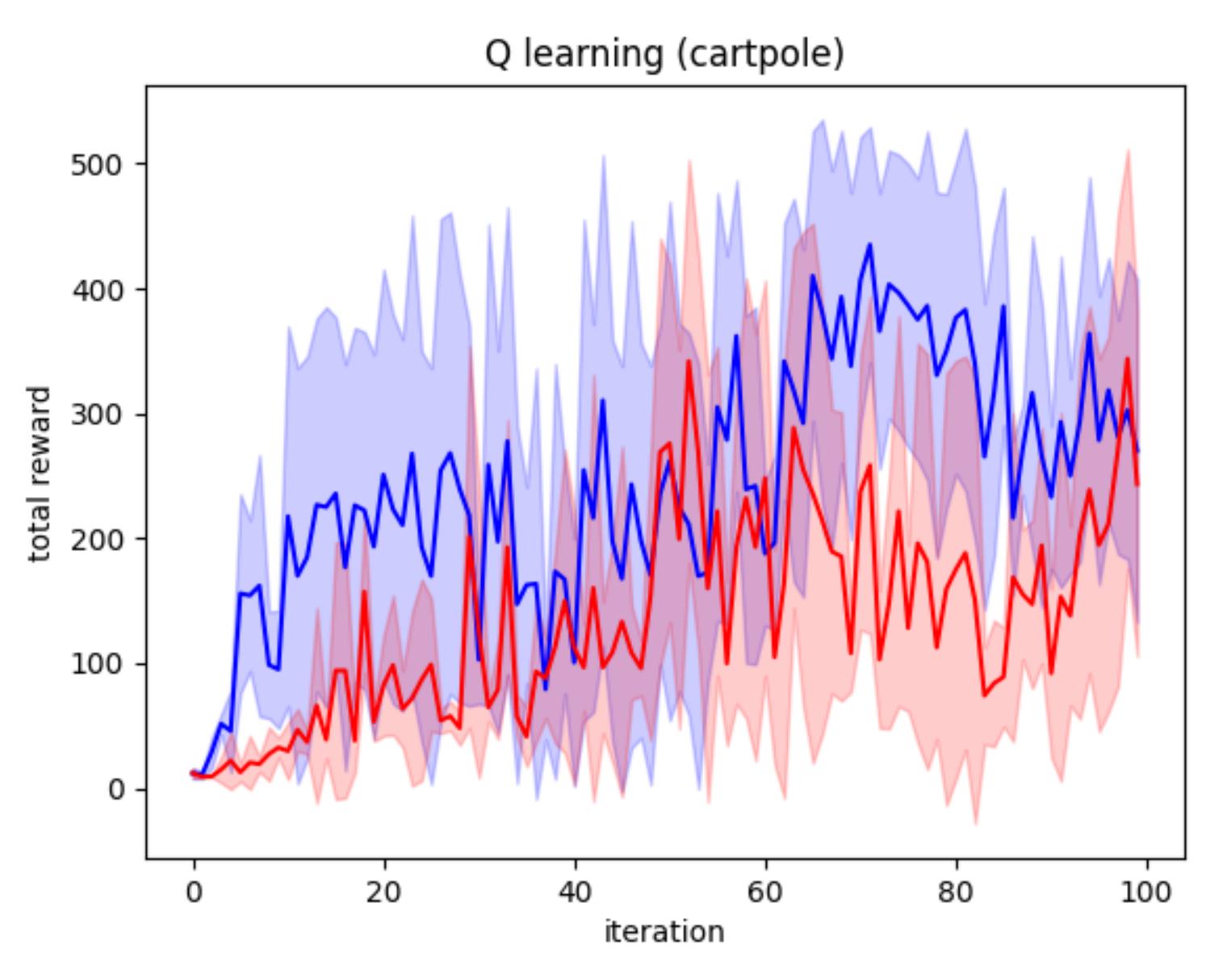
When C is large...

DQN is performing standard regression between two target updates...

$$\min_{\theta} \sum_{s,a,r,s' \in \mathcal{D}_{rb}} \left(Q_{\theta}(s,a) - \left(r + \max_{a'} Q_{\tilde{\theta}}(s',a') \right) \right)^{2}$$

Q: What is the Bayes optimal of this regression problem?

DQN vs Naive Q-learning



BLUE: DQN

RED: Q-learning

Summary

- 1. Using function approximation to handle large state space
- 2. Making Q-learning closer to the supervised learning (i.e., regression) framework:
 - Replay buffer + mini-batch SGD
 - Target network to simulate a standard regression setting