Deep Q Network (DQN)

Annoucements

We will release HW2 tonight (Q-learning, TD,
and simulation lemma)

We will release the first reading quiz today

Recap: Q-learning

Tabular Q Learning: maintain a table Q of size S x A

Q(S, a) < Q(S, a)+ 7 (r + y max Q(S’, a') — Q(S, a))

Data collection via e-greedy:

W/ prob €, select action uniform randomly

W/ prob 1 — €, select greedy action arg max Q(s, a)
d

Today

Consider large-scale MDPs,

how to estimate O *(s, a) using function
approximation (e.g., neural network)

Deep Q-network (DQN) is the earliest example
of showing Deep Learning + RL Is powerful

doi:10.1038/naturel4236

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu’, Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller!, Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen’, Charles Beattie', Amir Sadik', Ioannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

Outline:

1. Q Learning w/ function approximation

2. Replay buffer, batch optimization and target network

Q-Learning w/ function approximation

We will model Q*using a function approximator

j; N %@\ Qys,a) : S XA - R
XAz () ——
/@%@ / Assumption: differentiable V,0/(s, a)

(The DQN paper uses ConvNet as s

[l T
x=1[s",a,l] is an image frame of the game)

y=aTReLU (WPReLU (Willy)) + b

Attempt 1: Q Learning w/ function approximation

Initialize @Y. Set initial state s € &
Fort=0to T

Take action a based on e-greedy of (J,, get reward r and next state s’ ~ P(- | 5, a)
Form Q-target r + y max Qet(s’, a’)

da

Update to '*!:

Sets « s’

Q Learning w/ function approximation

Update parameters using SGD on the Bellman error loss

2
fbe(e) = (QH(Sa Cl) o y) ’ where Yy = I"(S, Cl) T —s5'~P(-|s,a) ma,X QH(S/’ Cl,)

A

Issues of this simple approach

1. Inefficient — it throws away all historical data
(your network could forget old experiences, i.e., catastrophic forgetting)

2. Instablity — Training is quite unstable (we saw it from the past Cartpole Demo)

Outline:

1. Q Learning w/ function approximation

2. Replay buffer, batch optimization and target network

Q-Learning w/ function approximation

First improvement: Replay buffer

@, = |5:a7,.5)

A dataset that contains all historical
State-action-reward-next state tuples

Q-Learning w/ function approximation

With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given (y and replay buffer & ,, randomly sample a mini-batch &% from &,

+1 t 1 /o
0" =60 —n—— Z Qp(s,a) —r — max Qops’,a’) | VgQy(s, a)

‘ KB ‘ (s,a,r,s) ER “

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

>
£re(0) == (Qy(s,a) —y)", where y = r(s,a) + yEy_p(.js.0) max Jy(s’, a’)

da

regression target

Source of instability: target changes
immediately whenever we update @

Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Introducing target network () to slow down the evolution of the BE loss

(e.g., set @ as a copy of an older version of 6)

2 / /
£.(0) 1= (QH(S, a) — y) , wherey =r(s,a)+vy '~ P(-]5,q) MAX Qs(s’,a’)
©ON
Use a target network
that slowly catchs up &

Attempt 2: Deep Q networ (DQN)

Initialize 6 and replay buffer & ,. Set 0 = 0, Set initial state s € §
While true:

Take action a based on e-greedy of (J,, get reward r and next state s ~ P(- | 5, a)
Add (s,a,r,s)to D,
Sample mini-batch & from &,

Update parameters:

|
0 < 0—n Z (Qg(s, a) —r — max Qs a’)) V,0,(s,a)

| % ‘ (s,a,r,s"VERB ¢

Every C step, set 0=0

When C is large...

DQN is performing standard regression between two target updates..

2
m@in Z (Qg(s, a) — (r + max Qa(s’, a’)))

a
/
s,a,r,s' €Y,

Q: What is the Bayes optimal of this regression problem?

total reward

500 -

400 -

300 -

200 -

100 -

DQN vs Naive Q-learning

Q learning (cartpole)

BLUE: DQN

RED: Q-learning

20 40 60 80 100
iteration

Summary

1. Using function approximation to handle large state space
2. Making Q-learning closer to the supervised learning (i.e., regression) framework:

* Replay buffer + mini-batch SGD

* [Jarget network to simulate a standard regression setting

