Deep Q Network (DQN)




Annoucements

We will release HW2 tonight (Q-learning, TD,
and simulation lemma)

We will release the first reading quiz today



Recap: Q-learning

Tabular Q Learning: maintain a table Q of size S x A

Q(S, a) < Q(S, a)+ 7 (r + y max Q(S’, a') — Q(S, a))

Data collection via e-greedy:

W/ prob €, select action uniform randomly

W/ prob 1 — €, select greedy action arg max Q(s, a)
d



Today

Consider large-scale MDPs,

how to estimate O *(s, a) using function
approximation (e.g., neural network)



Deep Q-network (DQN) is the earliest example
of showing Deep Learning + RL Is powerful
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Outline:

1. Q Learning w/ function approximation

2. Replay buffer, batch optimization and target network



Q-Learning w/ function approximation

We will model Q*using a function approximator

j; N %@\ Qys,a) : S XA - R
XAz () ——
/@%@ / Assumption: differentiable V,0/(s, a)

(The DQN paper uses ConvNet as s

[l T
x=1[s",a,l] is an image frame of the game)

y=aTReLU (WPReLU (Willy) ) + b



Attempt 1: Q Learning w/ function approximation

Initialize @Y. Set initial state s € &
Fort=0to T

Take action a based on e-greedy of (J,, get reward r and next state s’ ~ P( - | 5, a)
Form Q-target r + y max Qet(s’, a’)

da

Update to '*!:

Sets « s’




Q Learning w/ function approximation

Update parameters using SGD on the Bellman error loss

2
fbe(e) = (QH(Sa Cl) o y) ’ where Yy = I"(S, Cl) T —s5'~P(-|s,a) ma,X QH(S/’ Cl,)

A




Issues of this simple approach

1. Inefficient — it throws away all historical data
(your network could forget old experiences, i.e., catastrophic forgetting)

2. Instablity — Training is quite unstable (we saw it from the past Cartpole Demo)



Outline:
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Q-Learning w/ function approximation

First improvement: Replay buffer

@, = |5:a7,.5)

A dataset that contains all historical
State-action-reward-next state tuples



Q-Learning w/ function approximation

With replay buffer, we can use mini-batch SGD to update Bellman error loss

Given (y and replay buffer & ,, randomly sample a mini-batch &% from &,

+1 t 1 /o
0" =60 —n—— Z Qp(s,a) —r — max Qops’,a’) | VgQy(s, a)

‘ KB ‘ (s,a,r,s ) ER “



Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Recall that Q learning can be understood as running SGD on an evolving loss function

>
£re(0) == (Qy(s,a) —y)", where y = r(s,a) + yEy_p(.js.0) max Jy(s’, a’)

da

regression target

Source of instability: target changes
immediately whenever we update @



Q-Learning w/ function approximation

Second improvement: Target network (making Q learning more stable)

Introducing target network () to slow down the evolution of the BE loss

(e.g., set @ as a copy of an older version of 6)

2 / /
£.(0) 1= (QH(S, a) — y) , wherey =r(s,a)+vy '~ P(-]5,q) MAX Qs(s’,a’)
©ON
Use a target network
that slowly catchs up &




Attempt 2: Deep Q networ (DQN)

Initialize 6 and replay buffer & ,. Set 0 = 0, Set initial state s € §
While true:

Take action a based on e-greedy of (J,, get reward r and next state s ~ P( - | 5, a)
Add (s,a,r,s)to D,
Sample mini-batch & from &,

Update parameters:

|
0 < 0—n Z (Qg(s, a) —r — max Qs a’)) V,0,(s,a)

| % ‘ (s,a,r,s"VERB ¢

Every C step, set 0=0




When C is large...

DQN is performing standard regression between two target updates..

2
m@in Z (Qg(s, a) — (r + max Qa(s’, a’)) )

a
/
s,a,r,s' €Y,

Q: What is the Bayes optimal of this regression problem?
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Summary

1. Using function approximation to handle large state space
2. Making Q-learning closer to the supervised learning (i.e., regression) framework:

* Replay buffer + mini-batch SGD

* [Jarget network to simulate a standard regression setting



