
Trust Region
Policy Optimization

Slides adapted from Wen Sun

(with inspiration from Benjamin Eysenbach)

Nicolas Espinosa Dice

Improving Policy Gradient

Lecture 10: Policy gradient

Lecture 11: Variance Reduction via advantage estimation

Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)

Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = 𝔼s,a∼dπθt

μ [∇θln πθt
(a |s)Aπθt(s, a)]

J(πθ) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Algorithm: Stochastic Gradient Ascent

Policy Parameterization

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′
exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) =
exp(fθ(s, a))

∑a′
exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

Outline

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

Today’s Question

Two Observations

Observation 1: Policy gradient estimates have high variance

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Can we optimize the policy’s parameters  
while considering the policy’s change?

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to  
large changes in policy

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Reward: distance of moving forward between two steps

Recall:∇θJ(πθt
) = 𝔼s,a∼dπθt

μ [∇θln πθt
(a |s)Aπθt(s, a)]

Note: All three
robots achieve
high reward!

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}

State distribution
induced by πθ1

Policy πθ2

Observation: Small changes in
policy’s parameters can lead to

large changes in policy

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

[Parameter space]

[Policy space]

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

In other words…
“I don’t care how big the change is to parameters (),

I care about the change to the policy ()”
θ

πθ

Implicitly, PG considers Euclidean distance in parameter space

Our goal is to consider information from policy space

Goal of New Approach

Perform policy optimization  
while considering “policy change”

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while considering “policy change”

A: Look at trajectory
distribution

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., DKL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,πθt

but we want the new policy to be “close” to πθt

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact:

, and being if and only if KL(P |Q) ≥ 0 0 P = Q

Q: What is DKL?

Outlines

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,  
but want the new policy to be close to

πθt

πθt

Q: How do we compute KL between trajectory likelihoods?

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

Q: How do we compute KL between trajectory likelihoods?

High-level strategy
1. Simplify KL expression

2. Use Taylor expansion on KL expression

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)

ρπθ
(τ)

= H 𝔼sh,ah∼dπθt
μ [ln

πθt
(ah |sh)

πθ(ah |sh)]

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

:= ℓ(θ)

Q: How do we approximate ?ℓ(θ)

A: Taylor expansion

Recall: A trust region formulation for policy update:

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

Q: How do we compute KL between trajectory likelihoods?

High-level strategy
1. Simplify KL

2. Use Taylor expansion on KL

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

Fisher Information Matrix F(θt)

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = F(θt) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

1
H

KL (ρπθt
|ρπθ) = ℓ(θ)

≈
1
2

(θ − θt)⊤Fθt
(θ − θt)

Gradients of KL

Taylor Expansion

Outlines

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

Recall we have

At iteration t, we update to via:θt+1

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

Simplify Objective Function

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)] ≈ 𝔼s∼dπθt
μ [𝔼a∼πθt(s)A

πθt(s, a)] + 𝔼s∼dπθt
μ [𝔼a∼πθt(s) ∇θln πθt

(a |s)Aπθt(s, a)]
∇θJ(πθt)

⋅ (θ − θt)

= ∇θJ(πθt
)⊤(θ − θt)

Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Linear objective and quadratic convex constraint: we can solve it optimally!

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

At iteration t, we update to via:θt+1

Gradient update

KL constraint

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= 𝔼s,a∼dπθt

μ
∇θln πθt

(a |s)(∇θln πθt
(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x)]

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

Fisher info-matrix Fθt
:= 𝔼s,a∼dπθt

μ
∇θln πθt

(a |s)(∇θln πθt
(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ∼ μ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ∈ ℝd

πβ,α(⋅ |s) = 𝒩 (μβ(s), exp(α)Id×d)
θ := [β, α]

Review on Policy Optimization: PG

Given an current policy , we perform policy update to πt πt+1

Third attempt: PG on parameterized policy

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(⋅|s)A

πθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + η ⋅ 𝔼s∼dπθt
μ [𝔼a∼πθt(s) ∇ln πθt

(a |s) ⋅ Aπθt(s, a)]

When , gradient ascent ensures

we improve the objective function

η → 0+

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to πt πt+1

Fourth attempt: Natural Policy Gradient

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(⋅|s)A

πθt(s, a)]
s . t . , KL(ρθt

|ρθ) ≤ δ

Define fisher info-matrix ,

a convex approximation, e.g., linearize obj and quadratize constraint,

gives us the following NPG update:

Fθt
= ∇2

θKL(ρθt
|ρθ) |θ=θt

max
θ

∇θJ(πθt
)⊤(θ − θt), s.t., (θ − θt)⊤Fθt

(θ − θt) ≤ δ

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(⋅|s)A

πθt(s, a)] −λ𝔼s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

ℓ(θ) := 𝔼s∼dπθt
μ [𝔼a∼πθt(⋅|s)

πθ(a |s)
πθt

(a |s)
Aπθt(s, a)] − λ𝔼s∼dπθt

μ
𝔼a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on to approximate ℓ(θ) arg max
θ

ℓ(θ)

