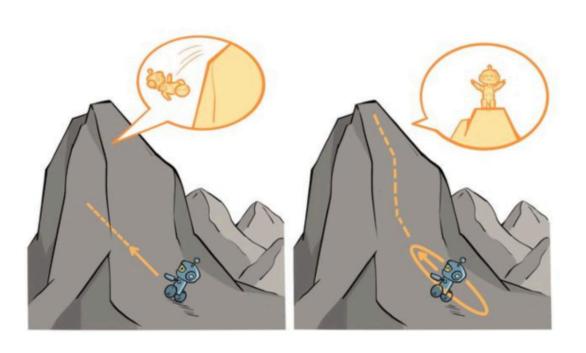
Trust Region **Policy Optimization**



Slides adapted from Wen Sun (with inspiration from Benjamin Eysenbach)

Nicolas Espinosa Dice

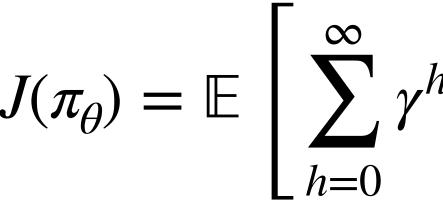
Lecture 11: Variance Reduction via advantage estimation

Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)

Improving Policy Gradient

Lecture 10: Policy gradient

Recap Policy Gradient



 $J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) | s_{0} \sim \mu, a \sim \pi_{\theta}\right]$

Recap Policy Gradient

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,|\, s_{0} \sim \mu, a \sim \pi_{\theta}\right]$$

$$\nabla_{\theta} J(\pi_{\theta_t}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) A^{\pi_{\theta_t}}(s, a) \right]$$

The most commonly used formulation:

Recap Policy Gradient

$$J(\pi_{\theta}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \,|\, s_{0} \sim \mu, a \sim \pi_{\theta}\right]$$

$$\nabla_{\theta} J(\pi_{\theta_t}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) A^{\pi_{\theta_t}}(s, a) \right]$$

The most commonly used formulation:

Algorithm: Stochastic Gradient Ascent

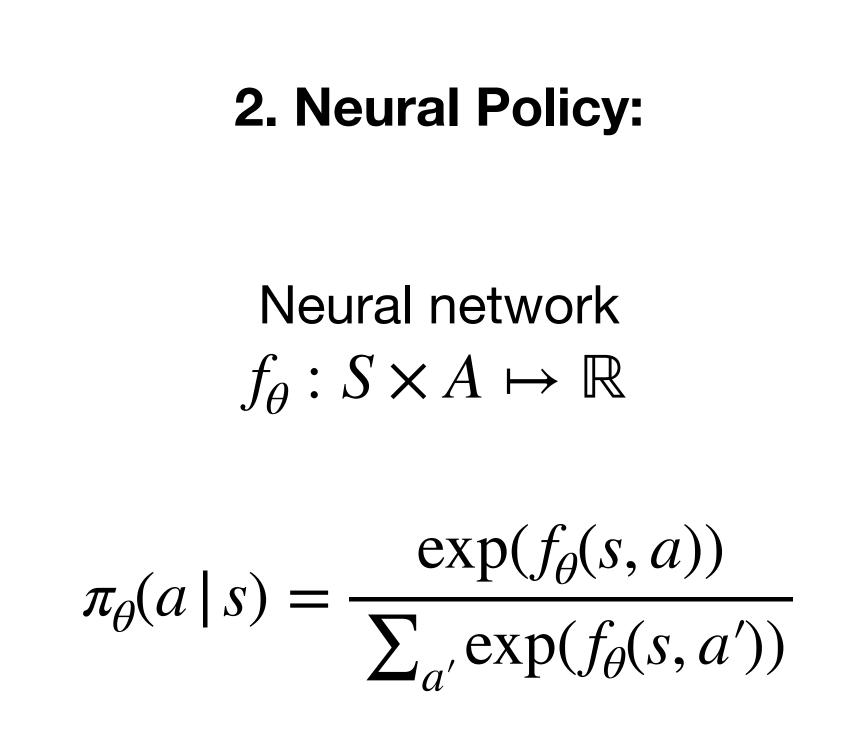
Policy Parameterization

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$



Outline

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

Observation 1: Policy gradient estimates have high variance

Observation 1: Policy gradient estimates have high variance **Observation 2**: Small changes in policy's parameters can lead to

Observation 1: Policy gradient estimates have high variance **Observation 2**: Small changes in policy's parameters can lead to large changes in policy

Observation 1: Policy gradient estimates have high variance **Observation 2**: Small changes in policy's parameters can lead to large changes in policy

Today's Question

Today's Question

Can we optimize the policy's parameters without drastically changing the policy?

Observation 1: Policy gradient estimates have high variance **Observation 2**: Small changes in policy's parameters can lead to large changes in policy

Intuition Behind Observation #2

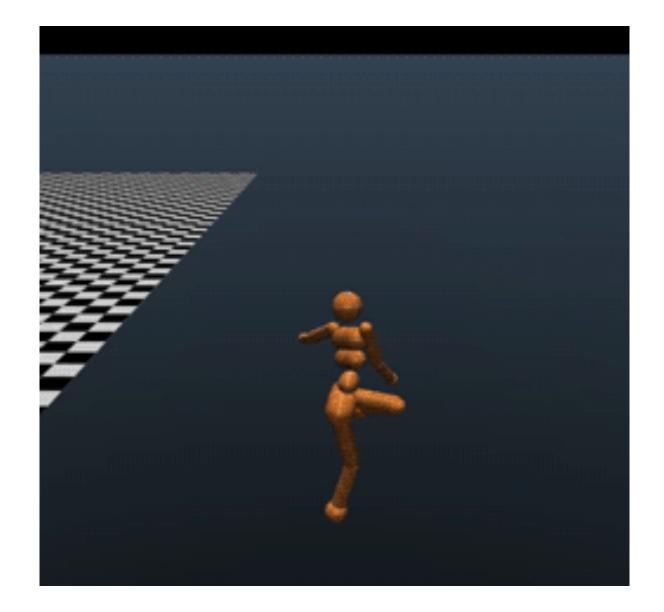
Observation 2: Small changes in policy's parameters can lead to *large changes in policy*

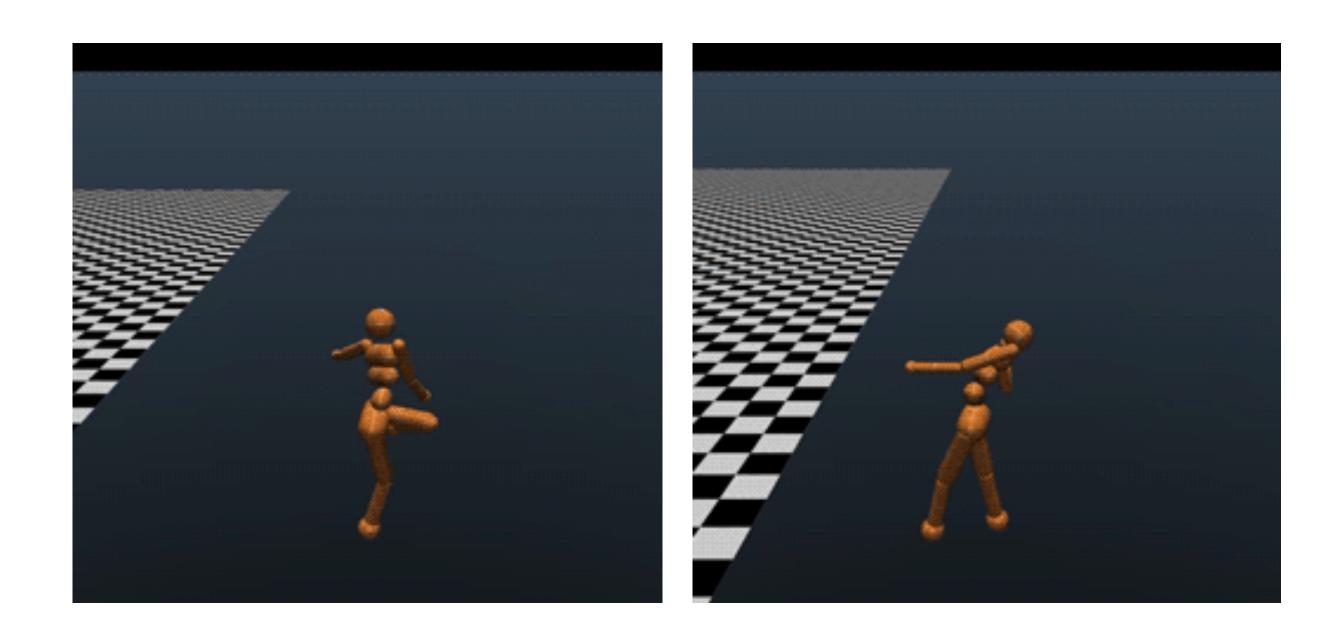
Train a robot to "run" forward as fast as possible

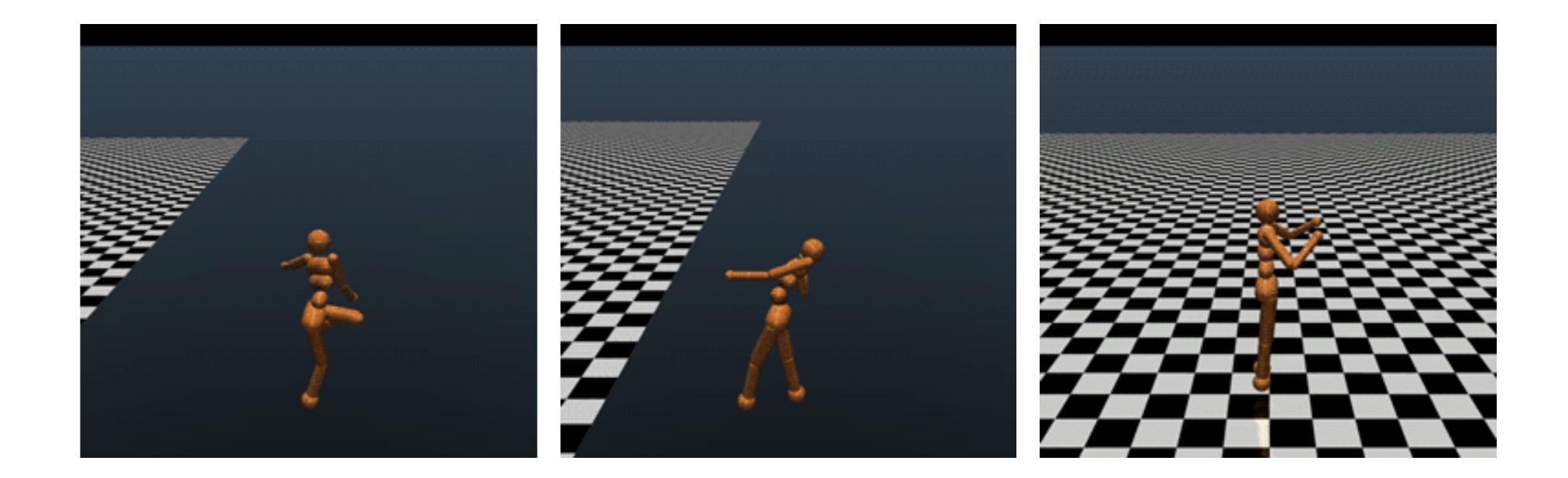
Train a robot to "run" forward as fast as possible State: joint angles, center of mass, velocity, etc

Example

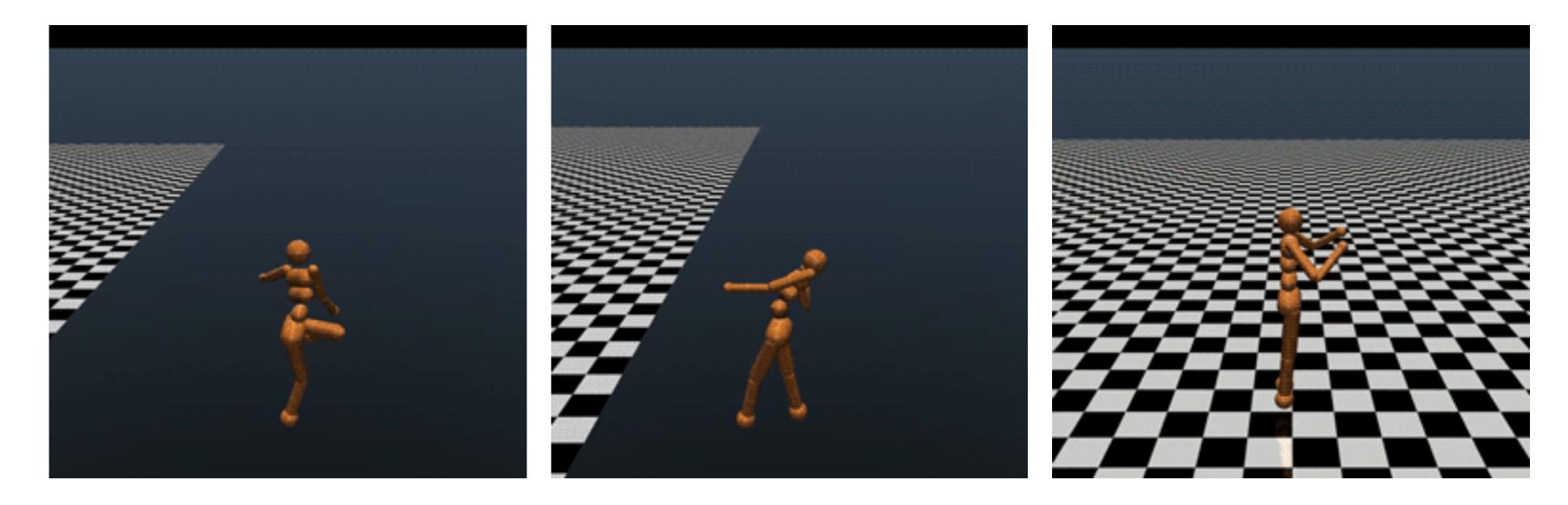
Train a robot to "run" forward as fast as possible State: joint angles, center of mass, velocity, etc Action: torques on joints





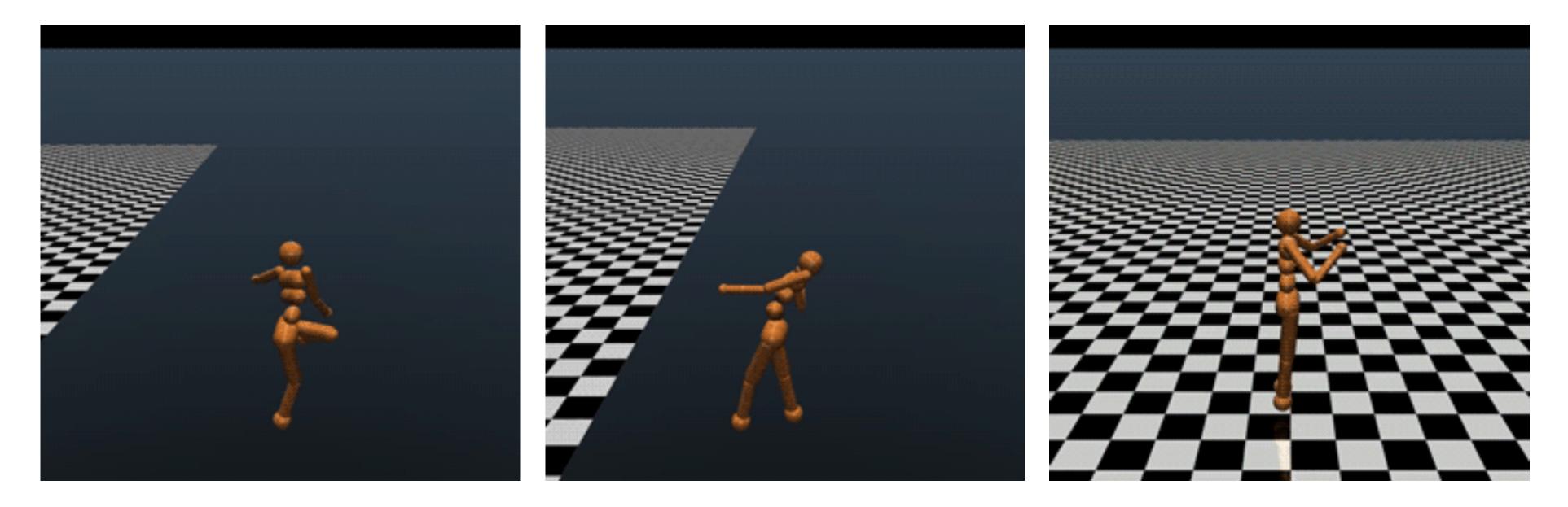


Train a robot to "run" forward as fast as possible State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps



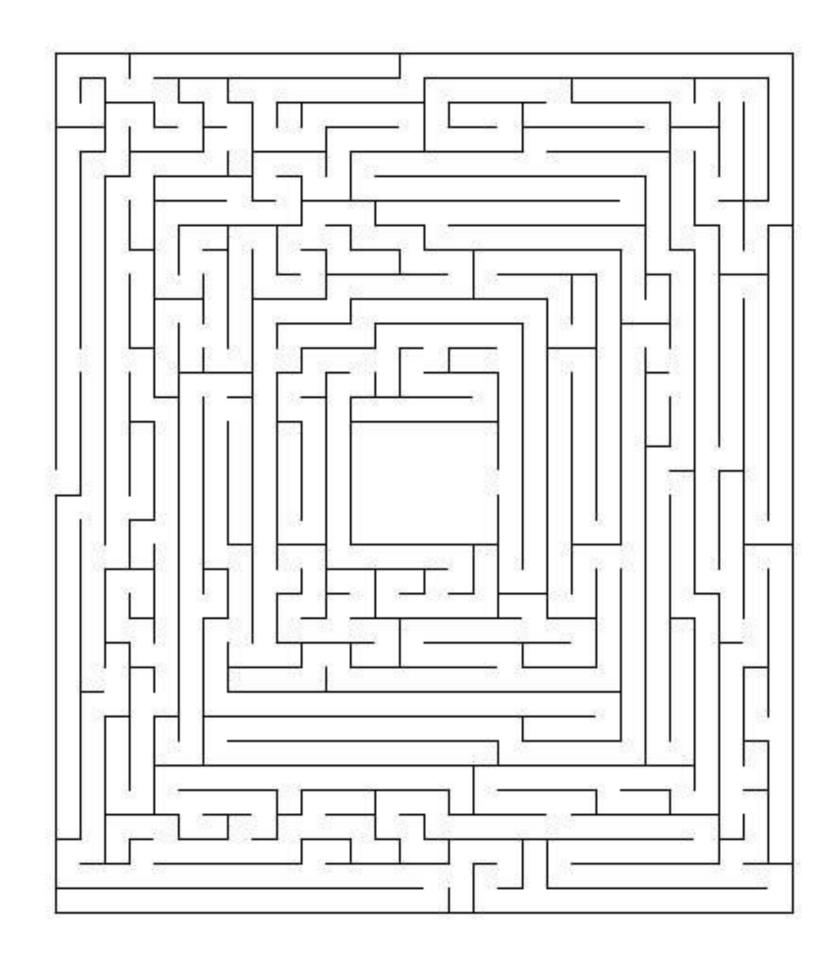
Note: All three robots achieve high reward!

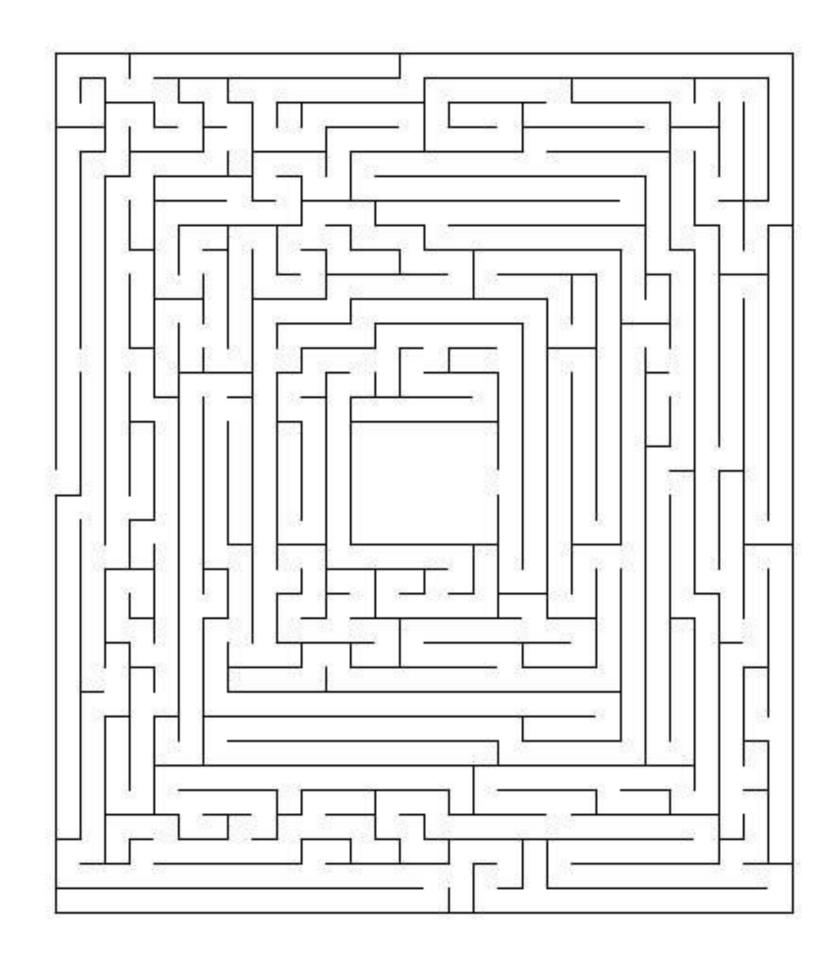
Train a robot to "run" forward as fast as possible **State**: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps



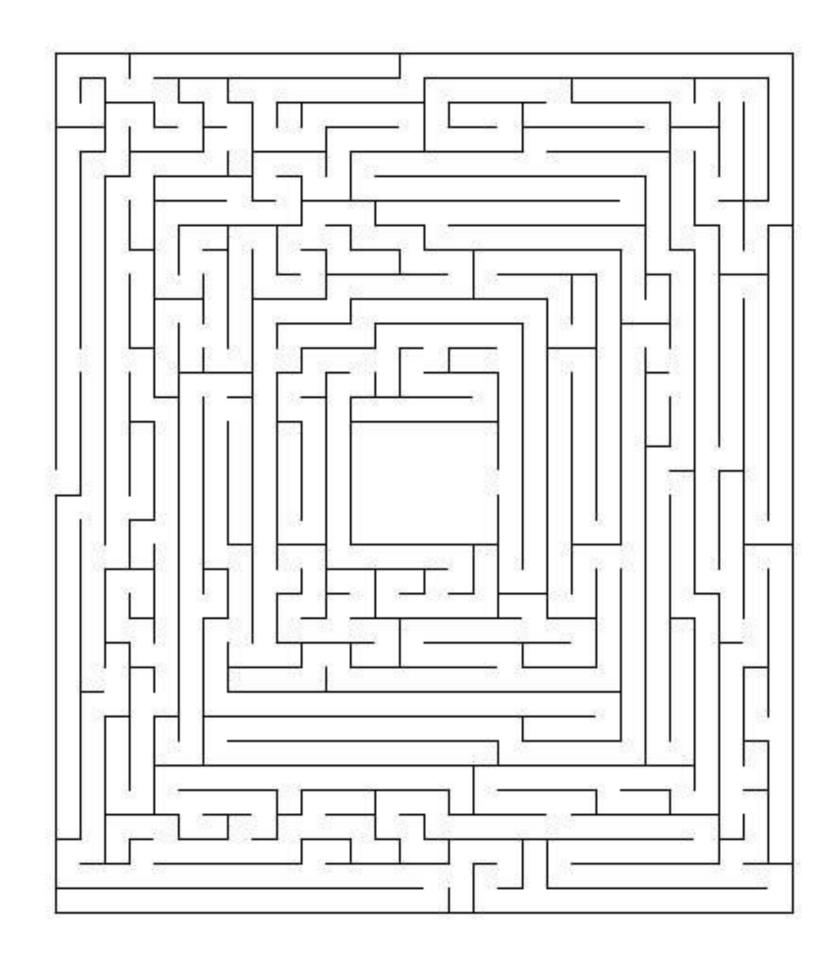
 $\operatorname{Recall:} \nabla_{\theta} J(\pi_{\theta_t}) = \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) A^{\pi_{\theta_t}}(s, a) \right]$

Note: All three robots achieve high reward!



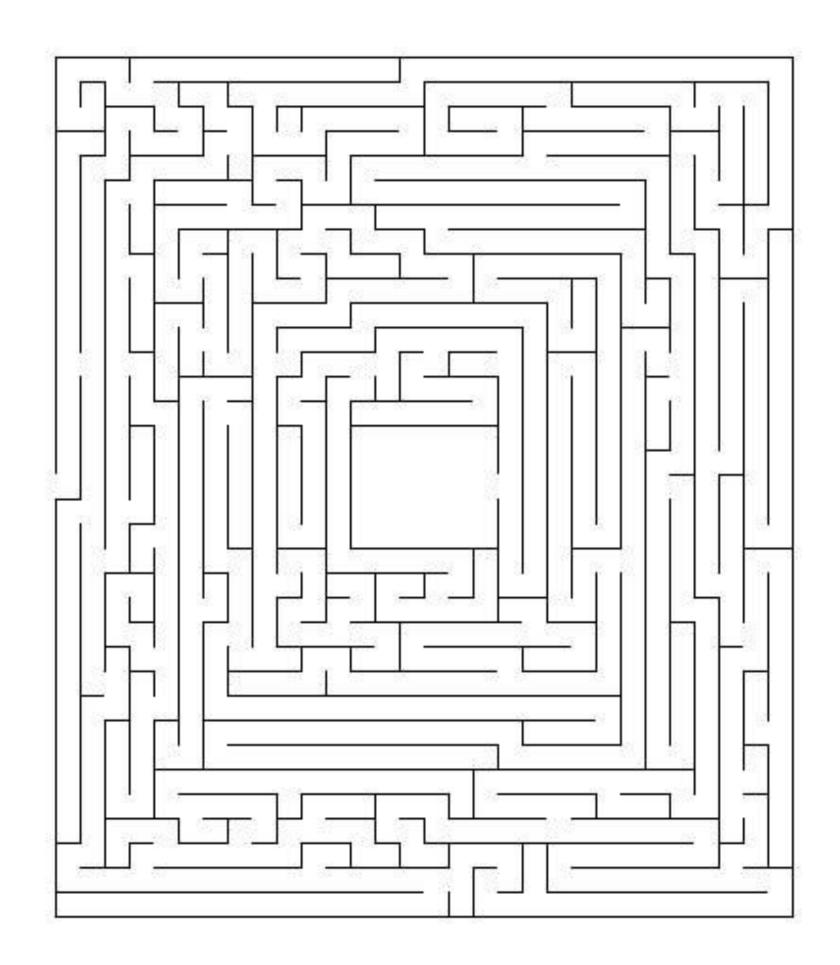


Policy: direction to move in at S₁



Policy: direction to move in at S₁

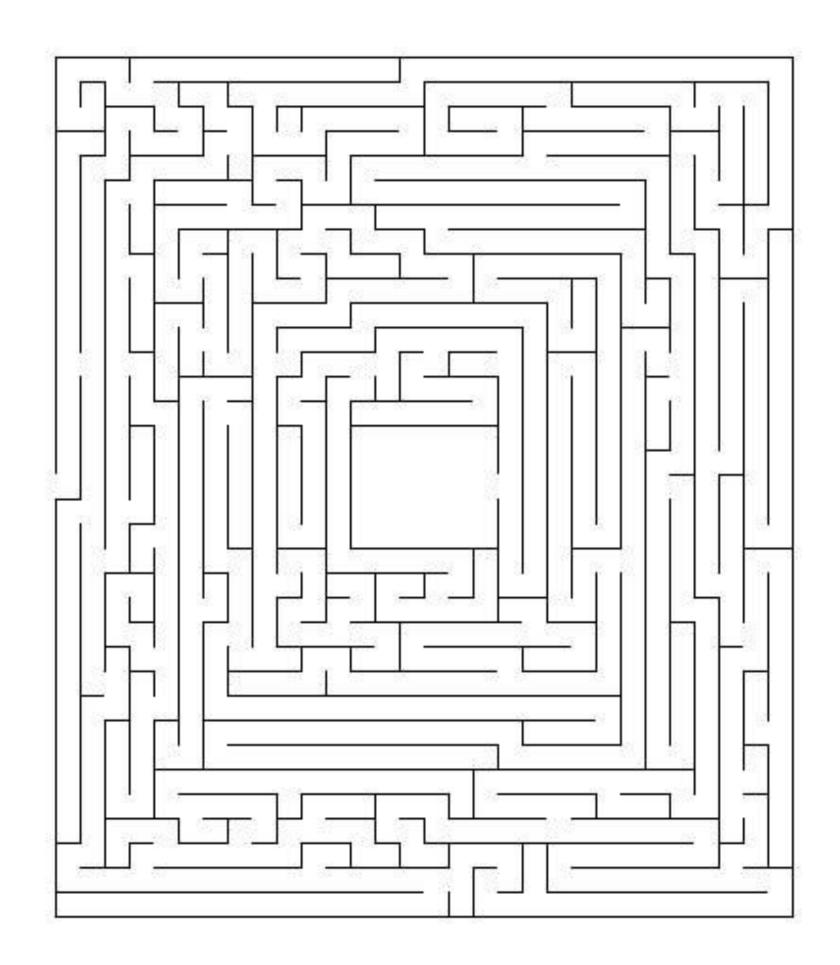
 $\mathcal{A} = \{a_{left}, a_{right}\}$



Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$

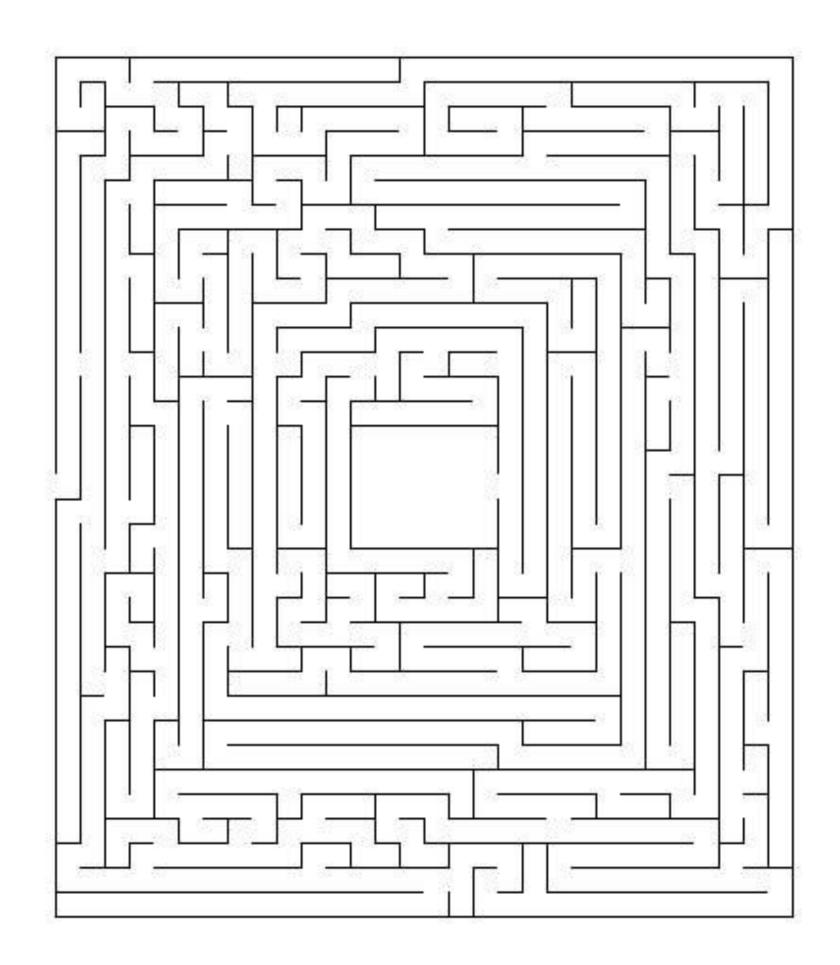
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$



Policy: direction to move in at S₁

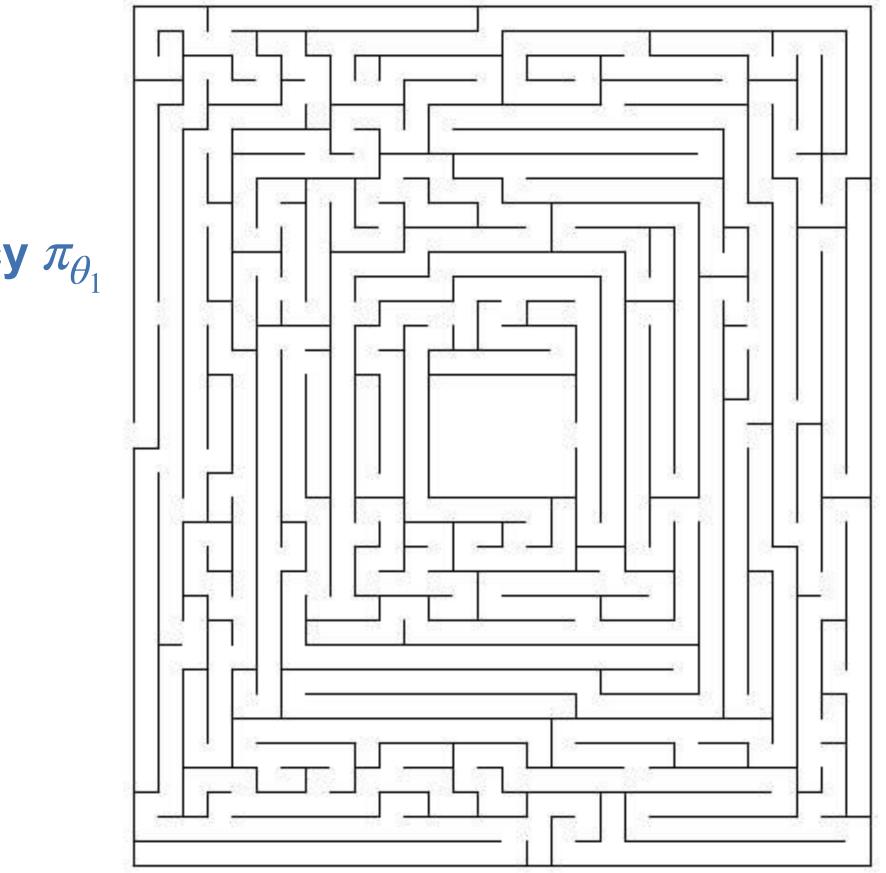
$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$



Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

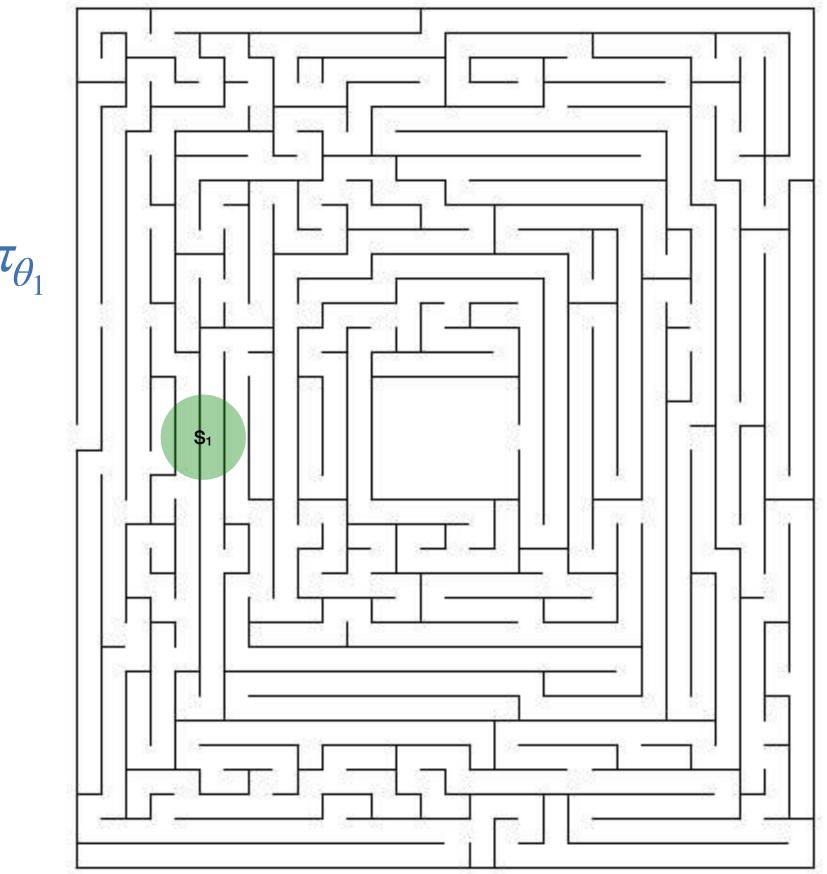


Policy π_{θ_1}

 $\pi($

Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

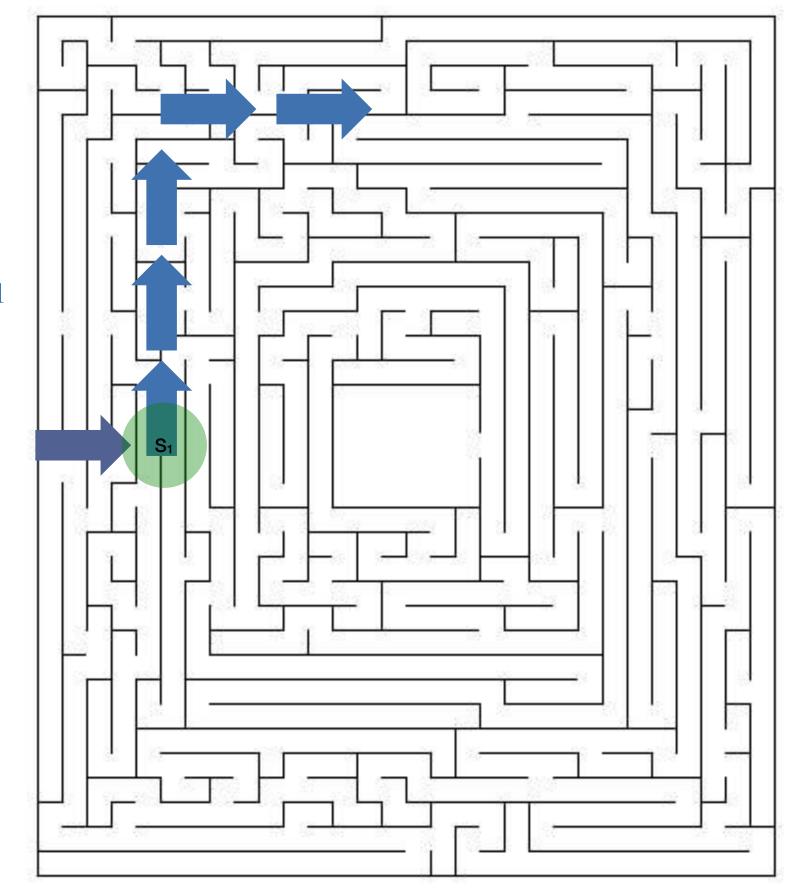


Policy π_{θ_1}

 $\pi($

Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

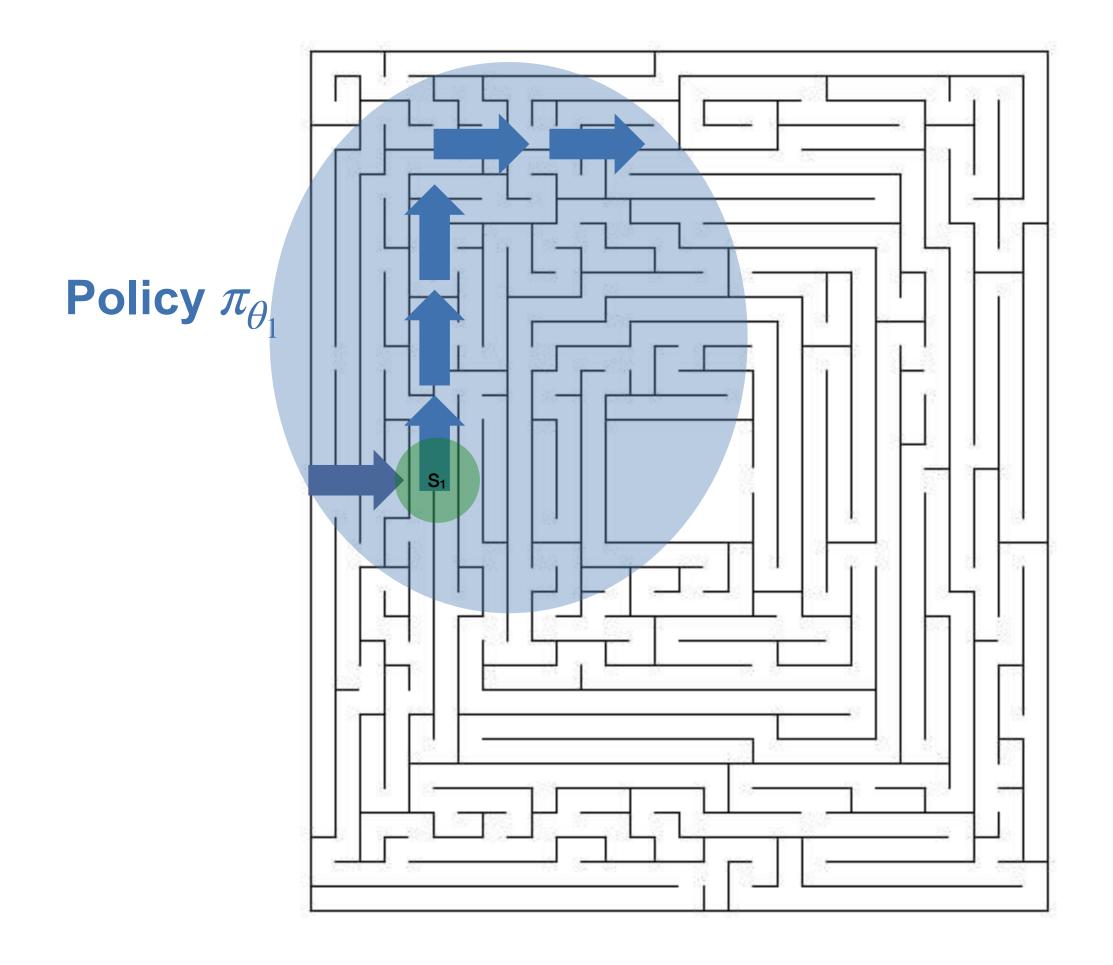


Policy π_{θ_1}

 $\pi($

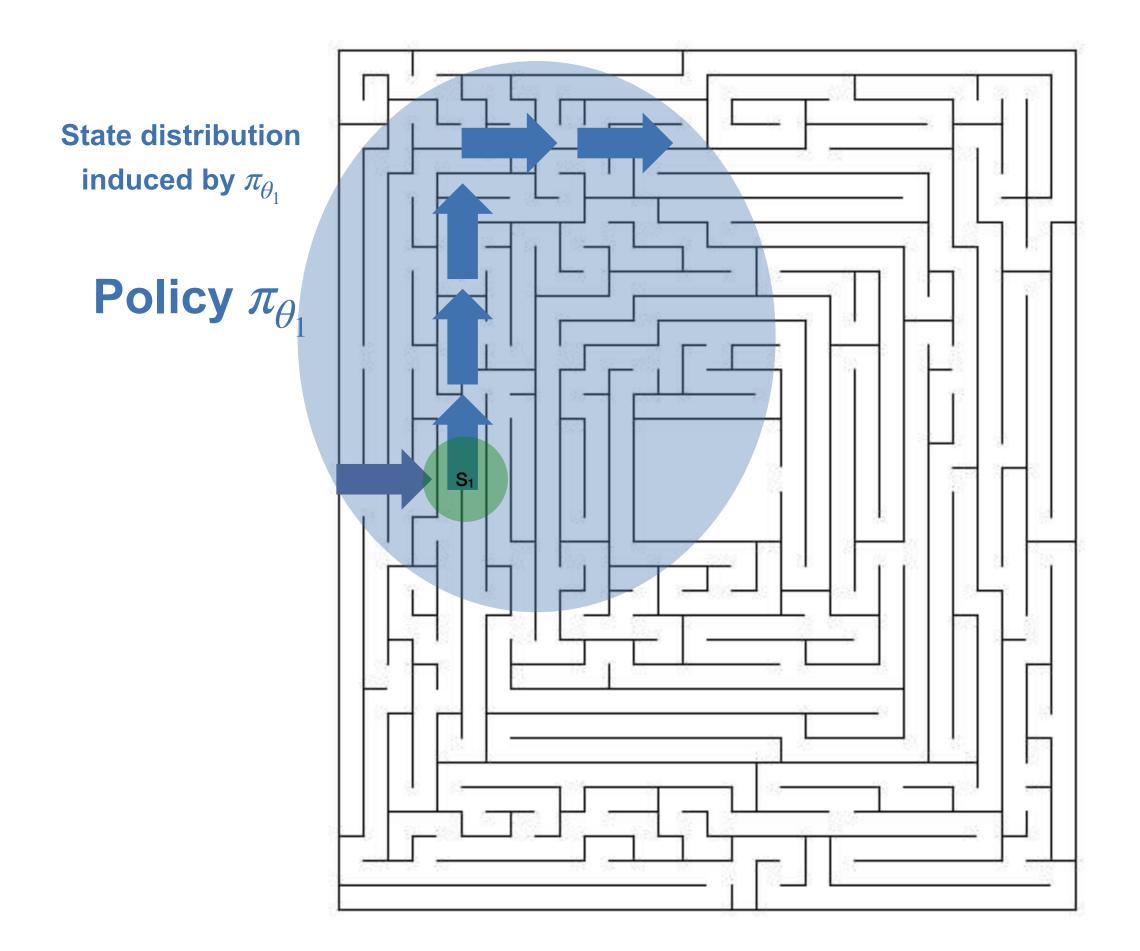
Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$



Policy: direction to move in at S₁

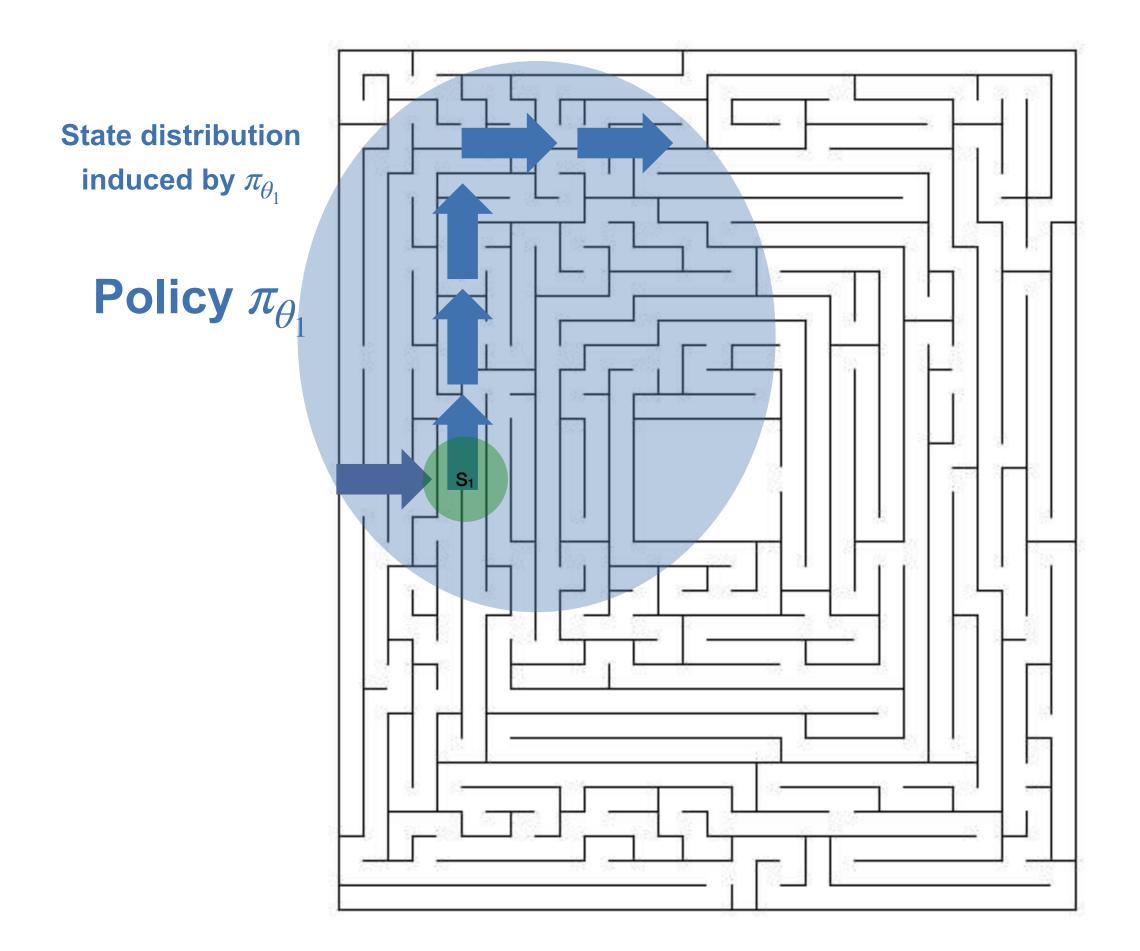
$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$



Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$ $\pi_{\theta_1} : a_{left}$



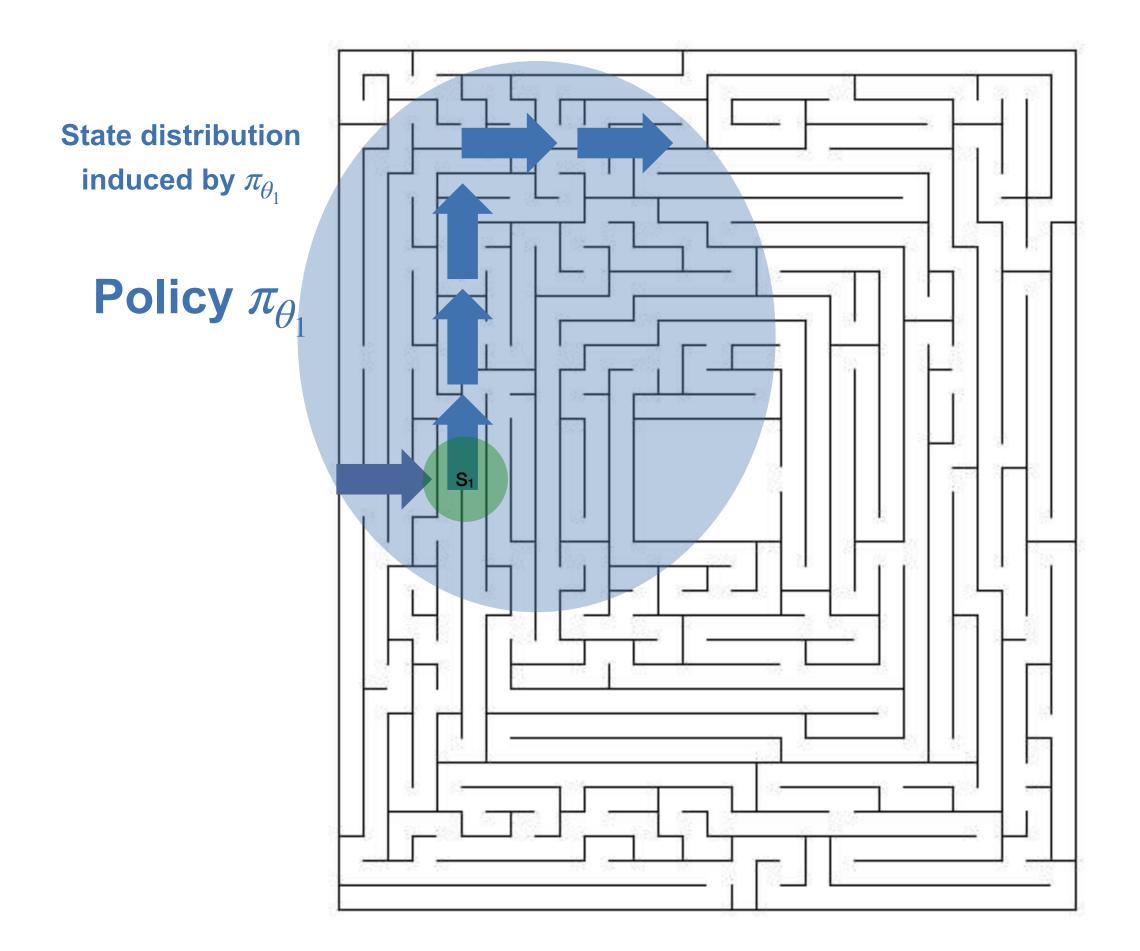
Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$

 $\pi_{\theta_1}: a_{left}$

 $\theta_2 \leftarrow \theta_1 + \eta \, \nabla_\theta J(\pi_{\theta_1})$



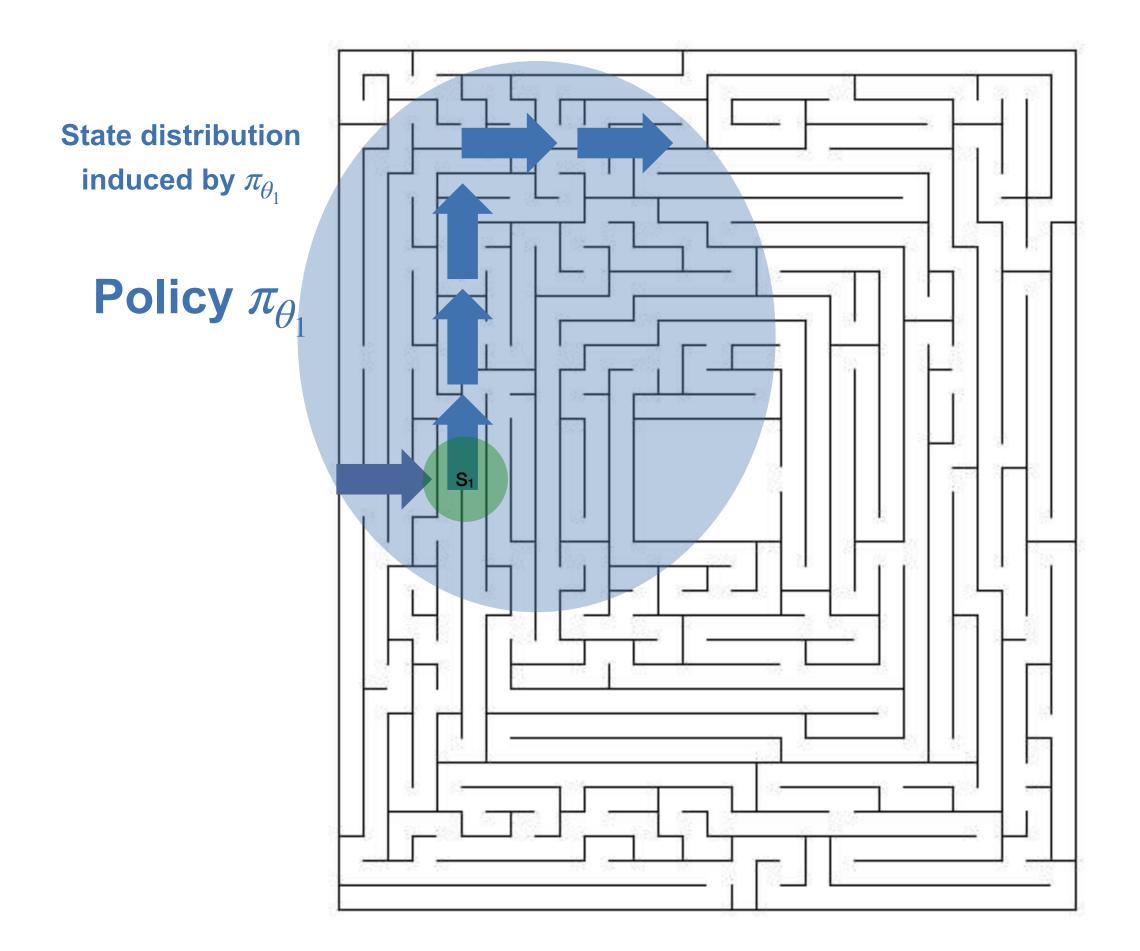
Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_1 = (0.51, 0.49)$$

 π_{θ_1} : a_{left}

 $\theta_{2} \leftarrow \theta_{1} + \eta \nabla_{\theta} J(\pi_{\theta_{1}}) \\ \leftarrow (0.51, 0.49) + (-0.02, , 0.02)$

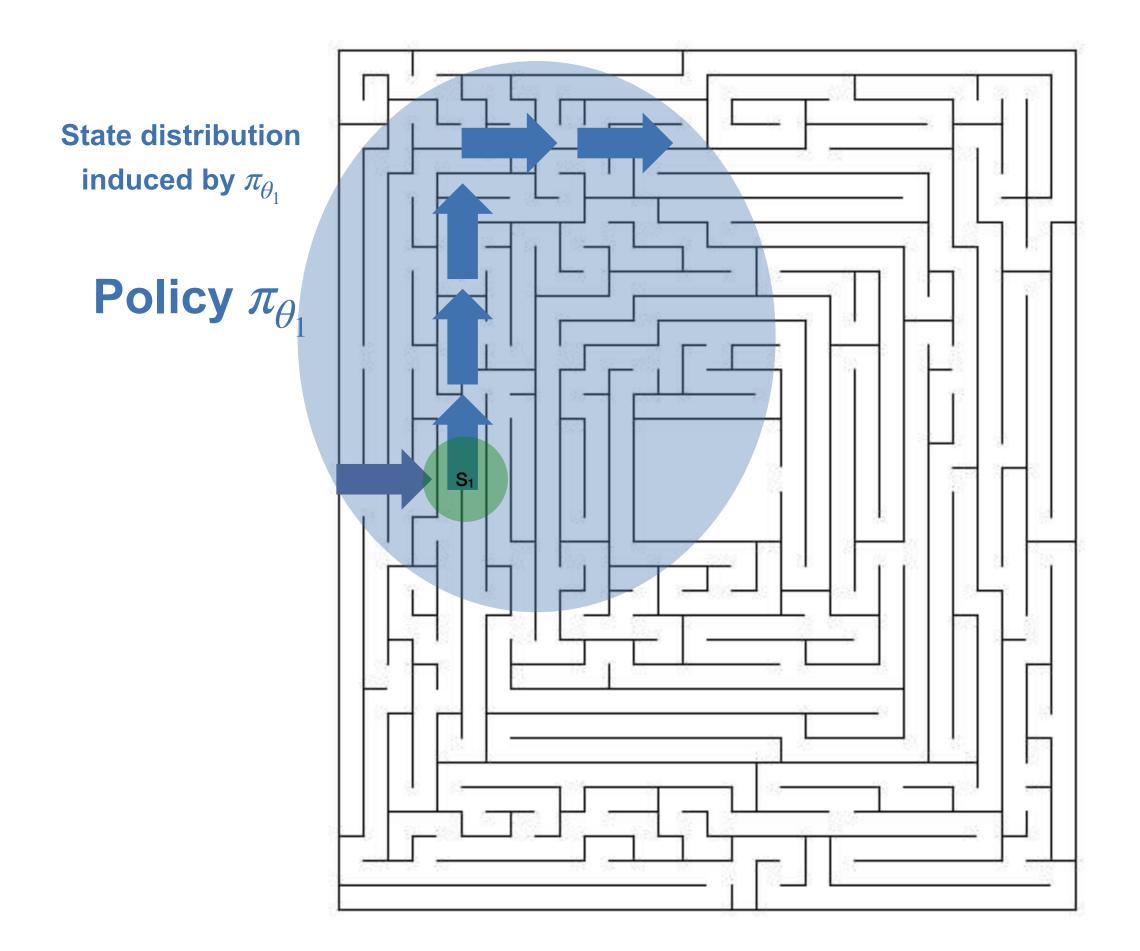


Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_1 = (0.51, 0.49)$$

 $\pi_{\theta_1}: a_{left}$

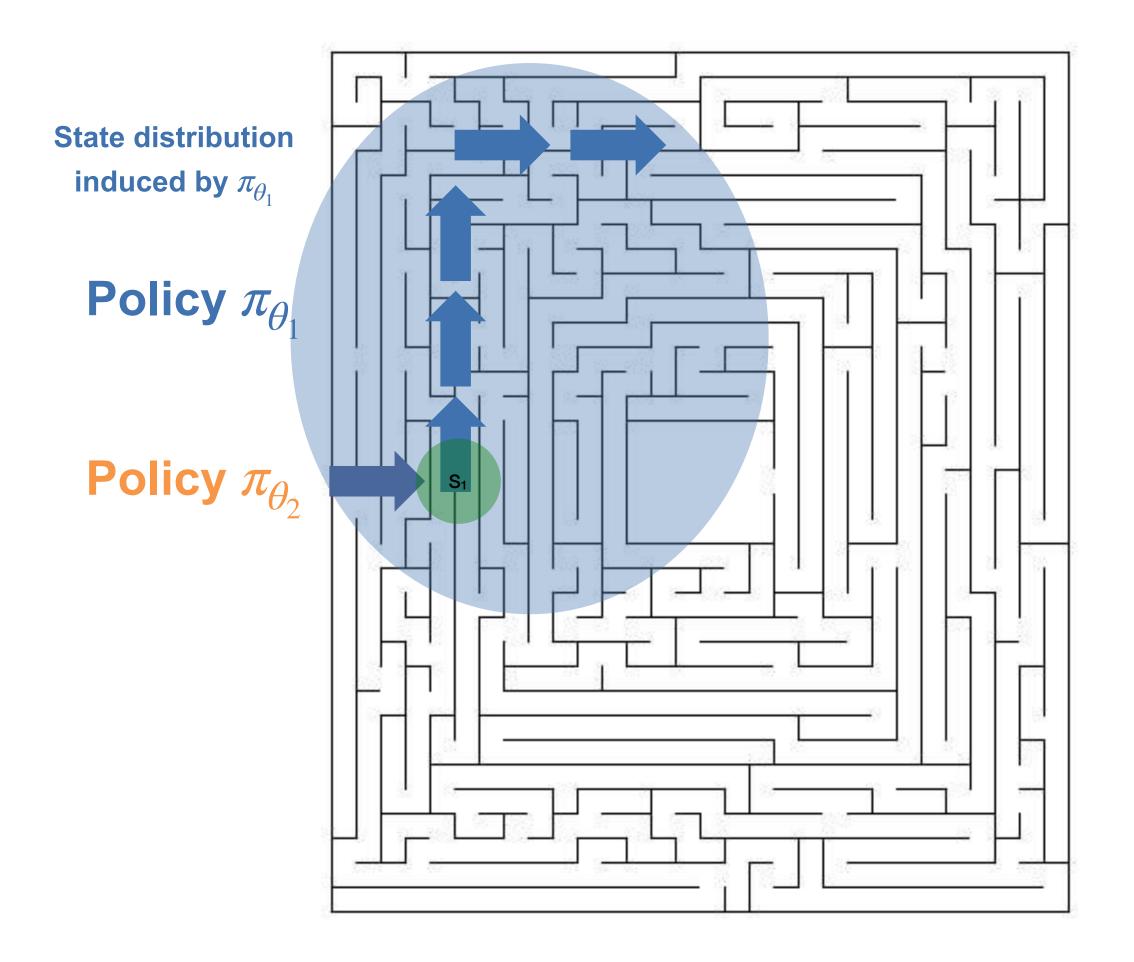


Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$

 $\pi_{\theta_1}: a_{left}$

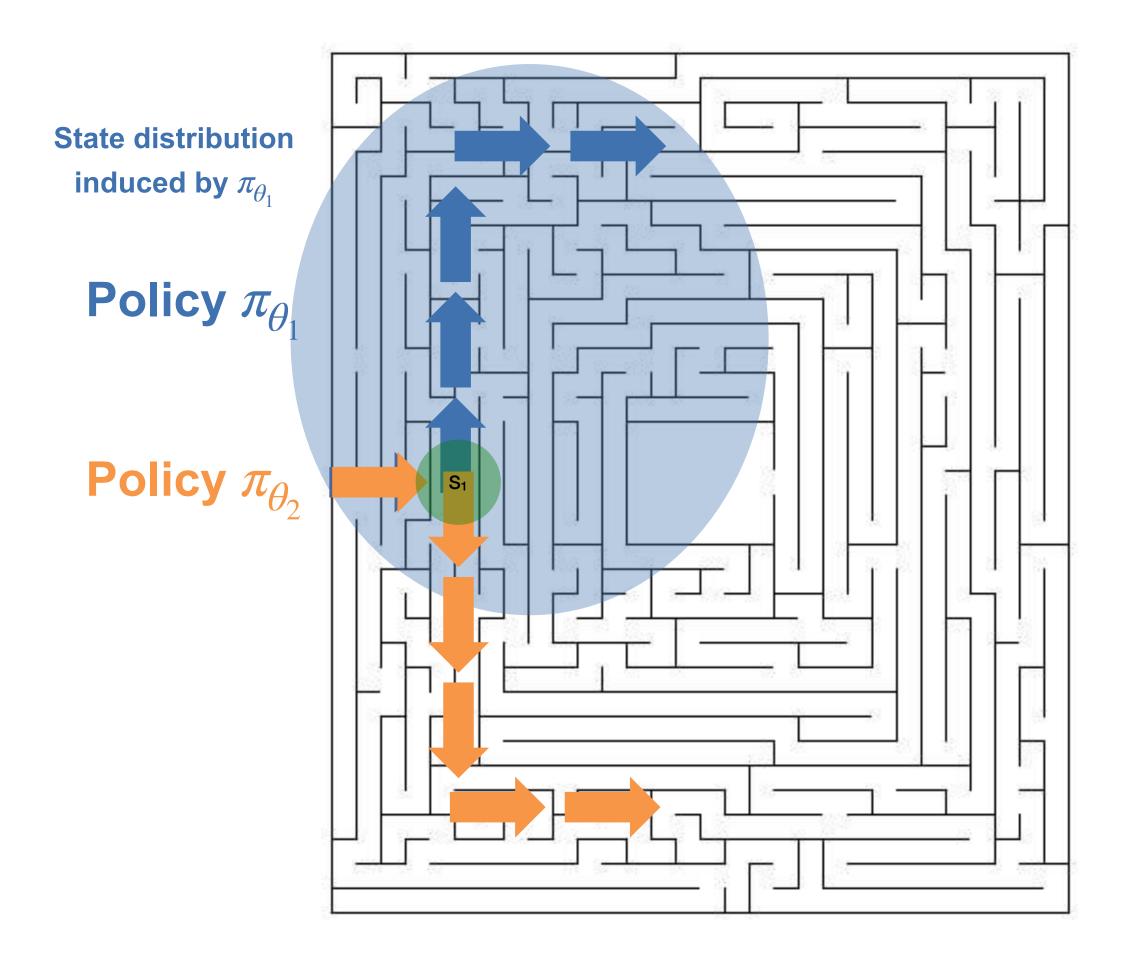


Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$

 $\pi_{\theta_1}: a_{left}$

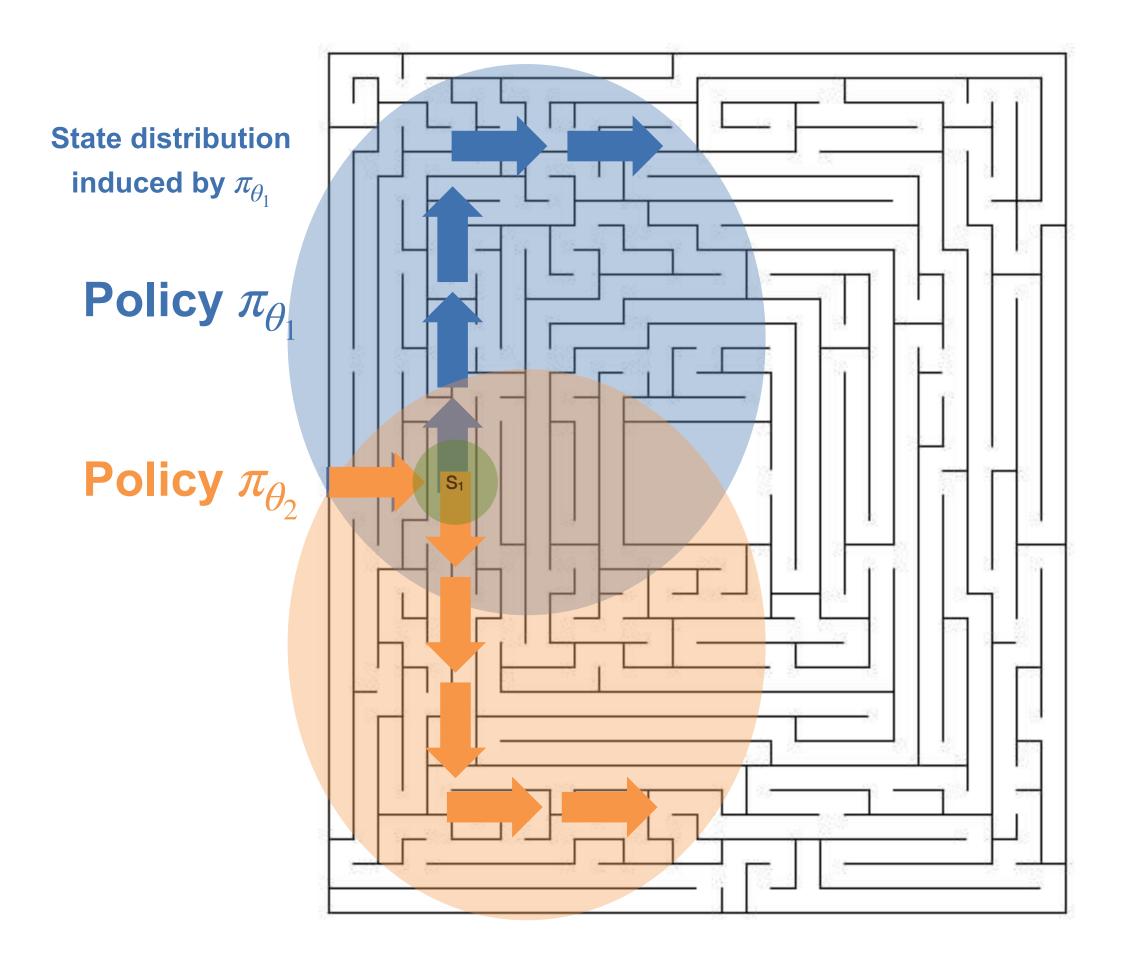


Policy: direction to move in at S₁

$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$

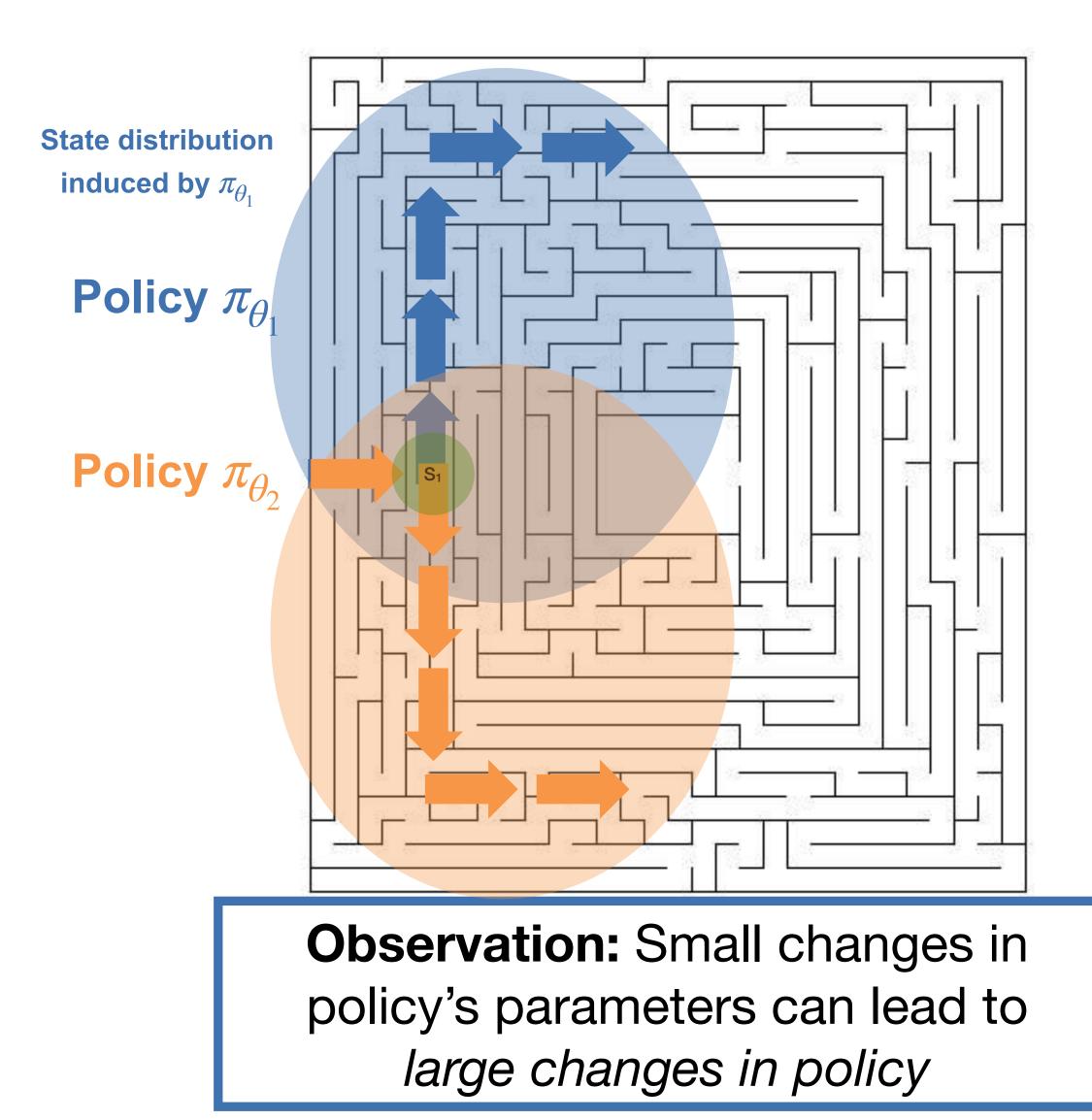
 $\pi_{\theta_1}: a_{left}$



$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$

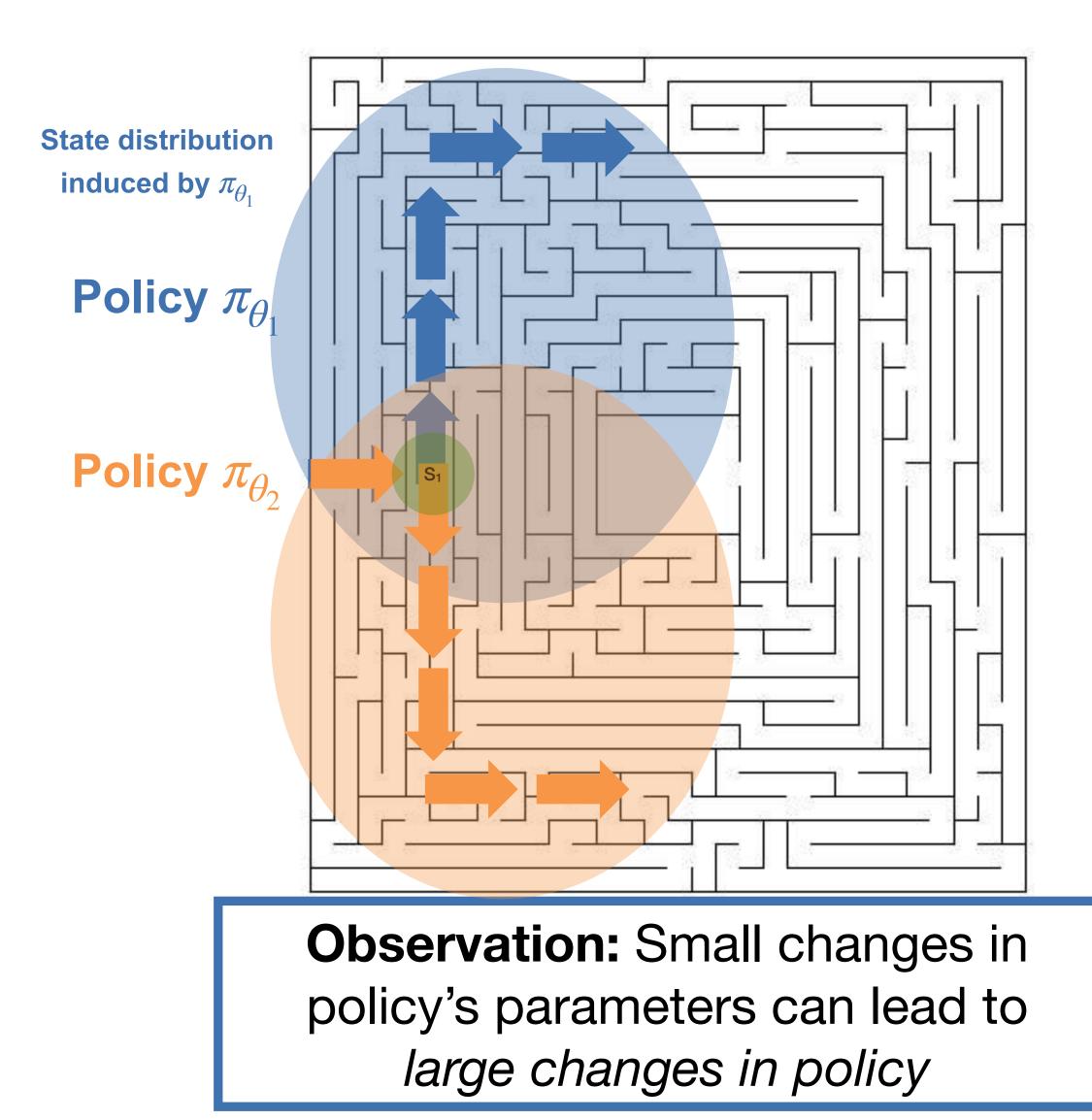
 $\pi_{\theta_1}: a_{left}$



$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

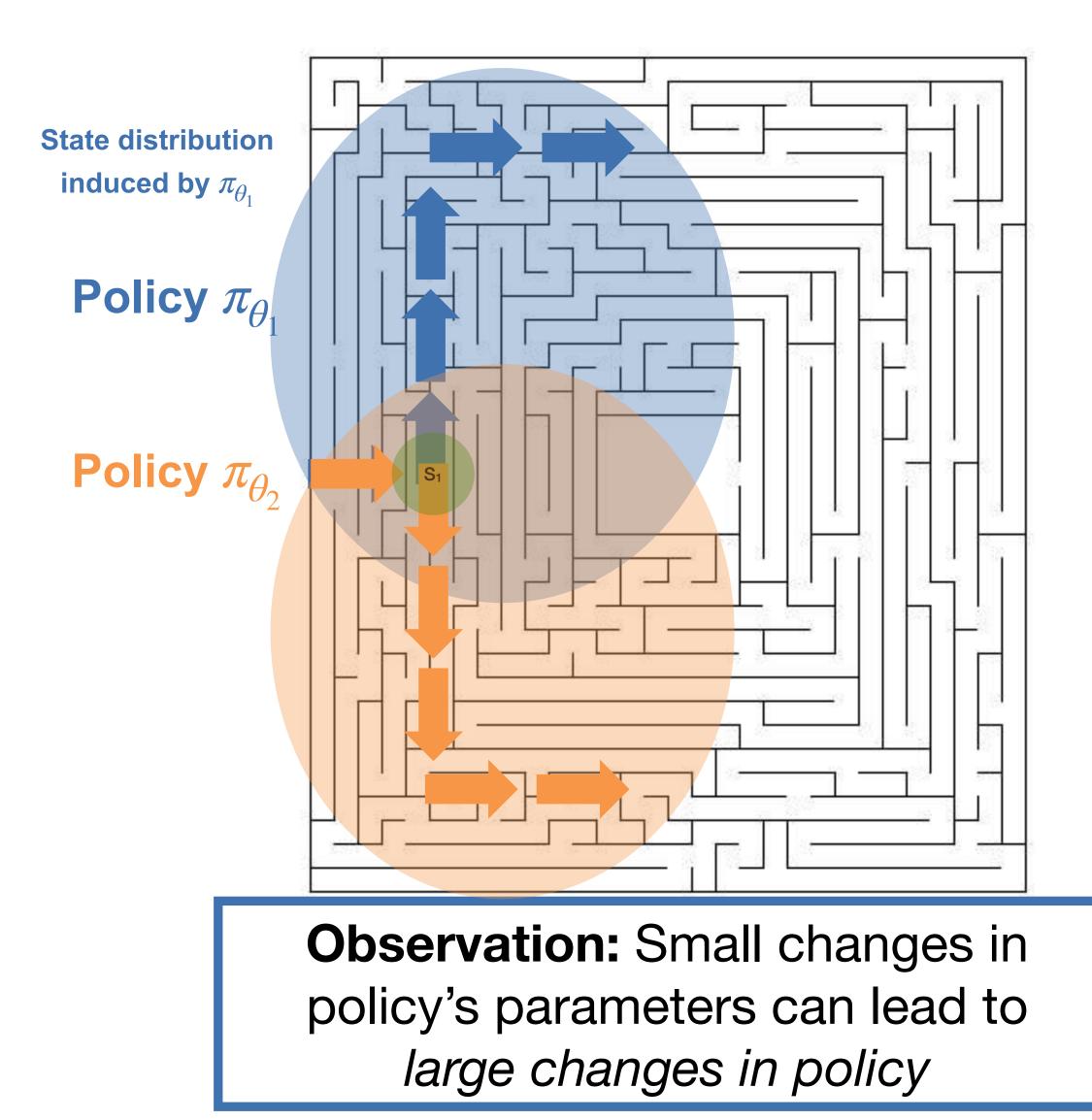
 $\theta_1 = (0.51, 0.49)$

 $\pi_{\theta_1}: a_{left}$



$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg\max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

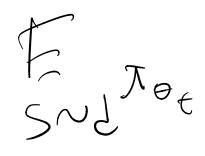
 $\theta_1 = (0.51, 0.49)$ [Parameter space] $\pi_{\theta_1} : a_{left}$



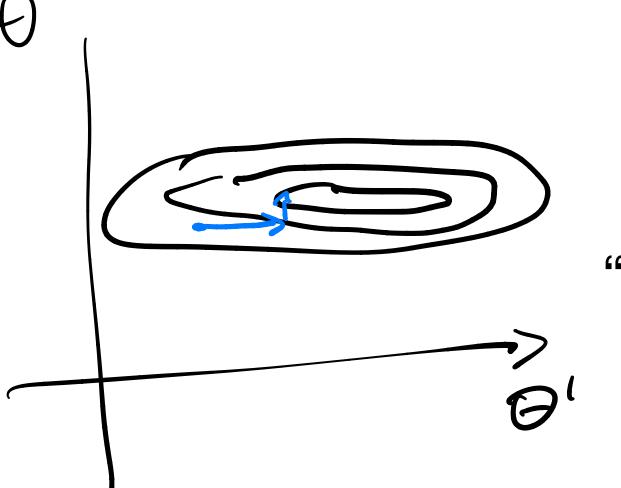
$$\mathcal{A} = \{a_{left}, a_{right}\}\$$
$$(a \mid s; \theta) = \begin{cases} 1 & \text{if } a = \arg \max f_{\theta}(a) \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_1 = (0.51, 0.49)$ [Parameter space] $\pi_{\theta_1} : a_{left}$ [Policy space]

Observation 2: Small changes in policy's parameters can lead to *large changes in policy*



Observation 2: Small changes in policy's parameters can lead to large changes in policy



In other words...

"I don't care how big the change is to parameters (θ), I care about the change to the policy (π_{θ}) "

Observation 2: Small changes in policy's parameters can lead to large changes in policy

In other words...

Implicitly, PG considers Euclidean distance in parameter space

"I don't care how big the change is to parameters (θ), I care about the change to the policy (π_{θ}) "

Observation 2: Small changes in policy's parameters can lead to *large changes in policy*

Observation 2: Small changes in policy's parameters can lead to *large changes in policy*

Goal of New Approach

Observation 2: Small changes in policy's parameters can lead to *large changes in policy*

Goal of New Approach

Observation 2: Small changes in policy's parameters can lead to *large changes in policy*

Goal of New Approach

Perform **policy optimization** while considering "**policy change**"

Q: How do we measure "policy change"?

Perform policy optimization while constraining "policy change"

Q: How do we measure "policy change"?

Perform policy optimization while constraining "policy change"

A: Look at trajectory distribution

Q: How do we measure "policy change"?

Perform **policy optimization** while constraining "**policy change**"

> **Q:** How do we measure "policy change"?

A: Look at trajectory distribution

 $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$

Perform **policy optimization** while constraining "**policy change**"

> **Q:** How do we measure "policy change"?

A: Look at trajectory distribution

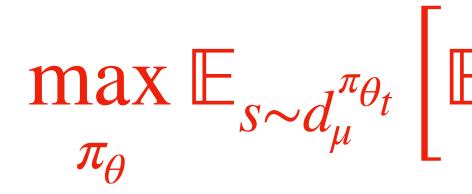
 $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \,|\, s_0)P(s_1 \,|\, s_0, a_0)\pi_{\theta}(a_1 \,|\, s_1)\dots$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

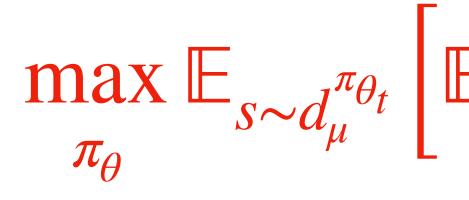


Perform **policy optimization** while considering "policy change"

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

We want to maximize local advantage against π_{θ_t} ,

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



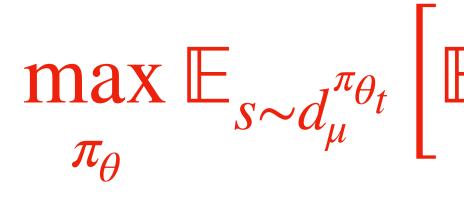
s.t., D_{KI}

We want to maximize local advantage against π_{θ_t} ,

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}(s, a)}$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

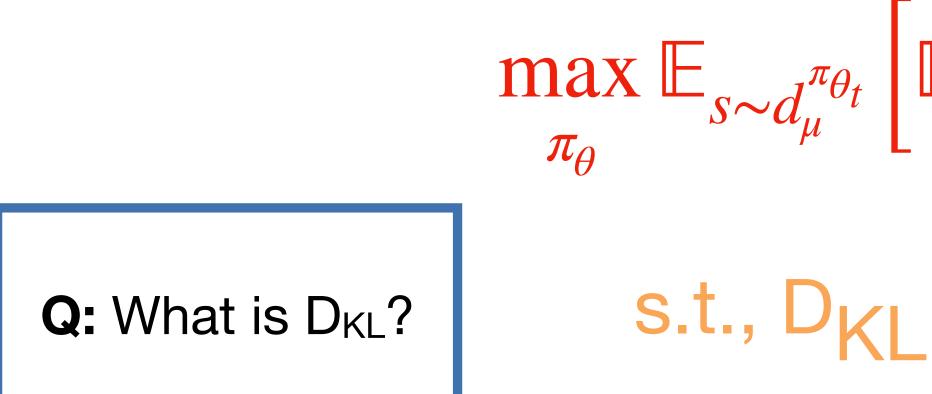


s.t., D_{KI}

We want to maximize local advantage against π_{θ_t} , but we want the new policy to be "close" to $\pi_{\theta_{t}}$

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}(s, a)}$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$



We want to maximize local advantage against $\pi_{\theta_{\star}}$, but we want the new policy to be "close" to $\pi_{\theta_{i}}$

Perform **policy optimization** while considering "policy change"

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

Q: What is D_{KL}?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

Q: What is D_{KL}?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

Q: What is D_{KL}?

 $KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$

 $KL(P \mid Q) =$

Q: What is D_{KL}?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If Q = P, then KL(P | Q) = KL(Q | P) = 0

 $KL(P \mid Q) =$

Q: What is D_{KL} ?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If Q = P, then KL(P | Q) = KL(Q | P) = 0

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then $KL(P | Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$

 $KL(P \mid Q) =$

If Q = P, then KL(

 $KL(P \mid Q) \ge 0$, and being 0 if and only if P = Q

Q: What is D_{KL}?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P \mid Q) = KL(Q \mid P) = 0$$

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then $KL(P | Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$

Fact:

2. Quick intro on KL-divergence

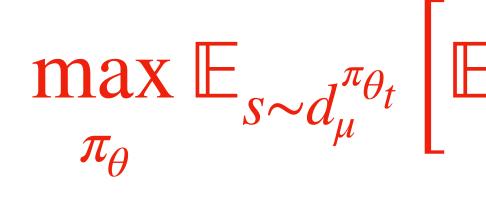
3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

Outlines

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

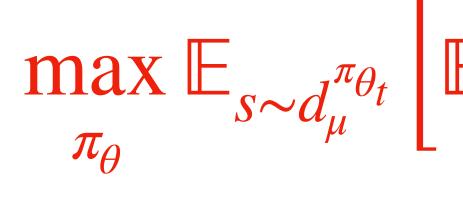
At iteration t, with $\pi_{\theta_{t}}$ at hand, we compute θ_{t+1} as follows:



$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

s.t., $KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



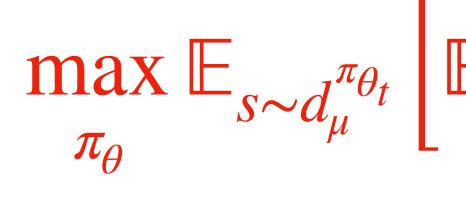
s.t., *KL* (

We want to maximize local advantage against π_{θ_t} , but want the new policy to be close to π_{θ_t}

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

$$\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



s.t., *KL* (

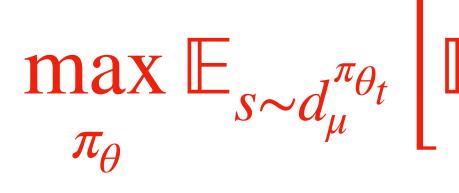
Q: How do we compute KL between trajectory likelihoods?

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}(s, a)}$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

We want to maximize local advantage against π_{θ_t} , but want the new policy to be close to π_{θ_t}

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



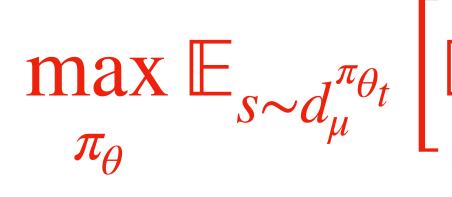
s.t., *KL*

Q: How do we compute KL between trajectory likelihoods?

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}
ight) \leq \delta$$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



s.t., *KL*

Q: How do we compute KL between trajectory likelihoods?

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}
ight) \leq \delta$$

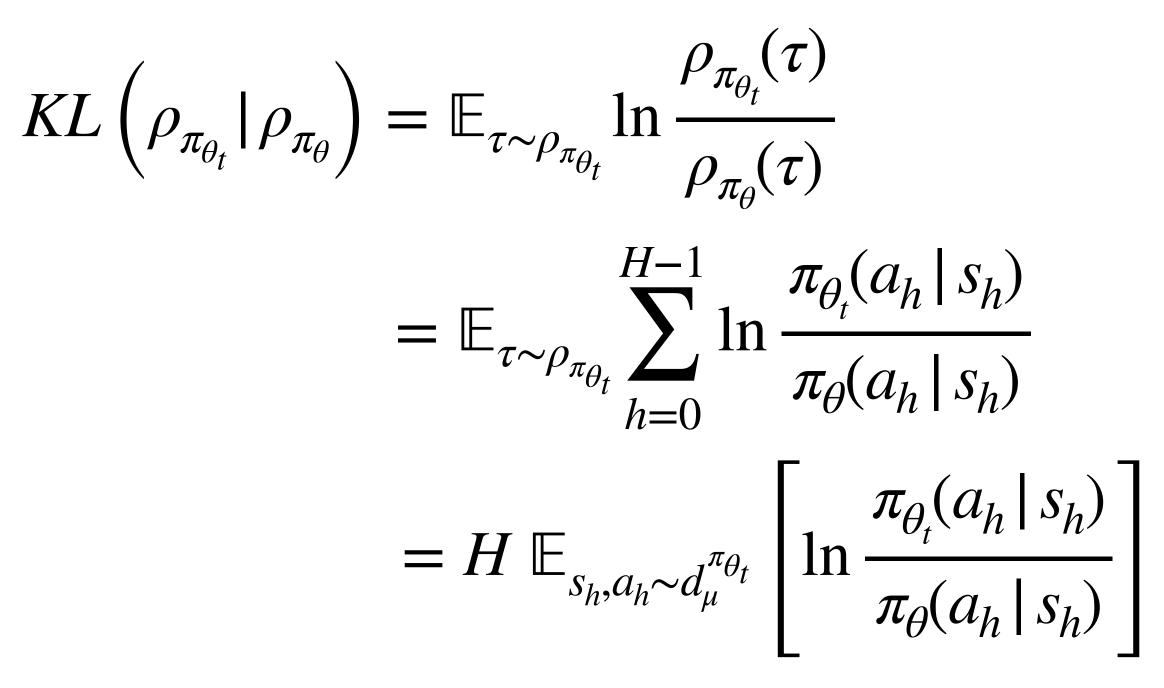
High-level strategy 1. Simplify KL expression 2. Use Taylor expansion on KL expression

 $KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right)$

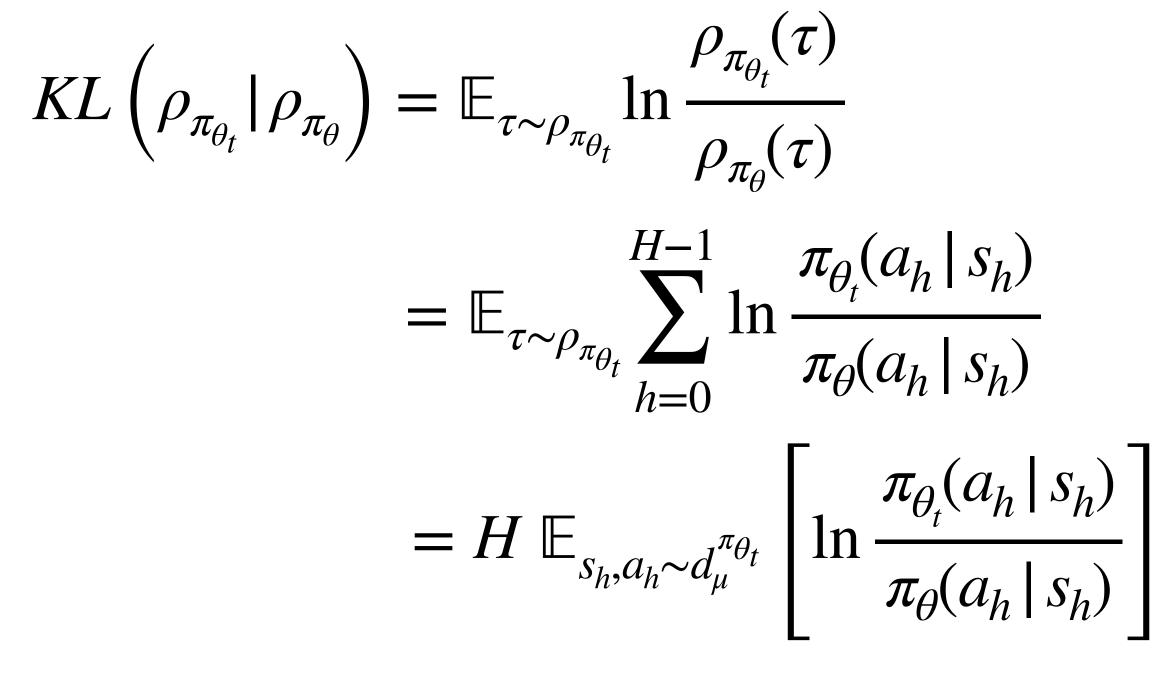
$$= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \simeq \left(\sqrt{\frac{N_{o}(s_{0})}{N_{o}(s_{0})}} \frac{\tau_{\theta_{t}}}{\tau_{\theta}(u_{o})s_{0}} \right) P(s_{1}), \dots$$

$$\{s_{0}, a_{0}, s_{1}, a_{1}, \dots\}$$

 $KL\left(\rho_{\pi_{\theta_{t}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}$ $= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)}$



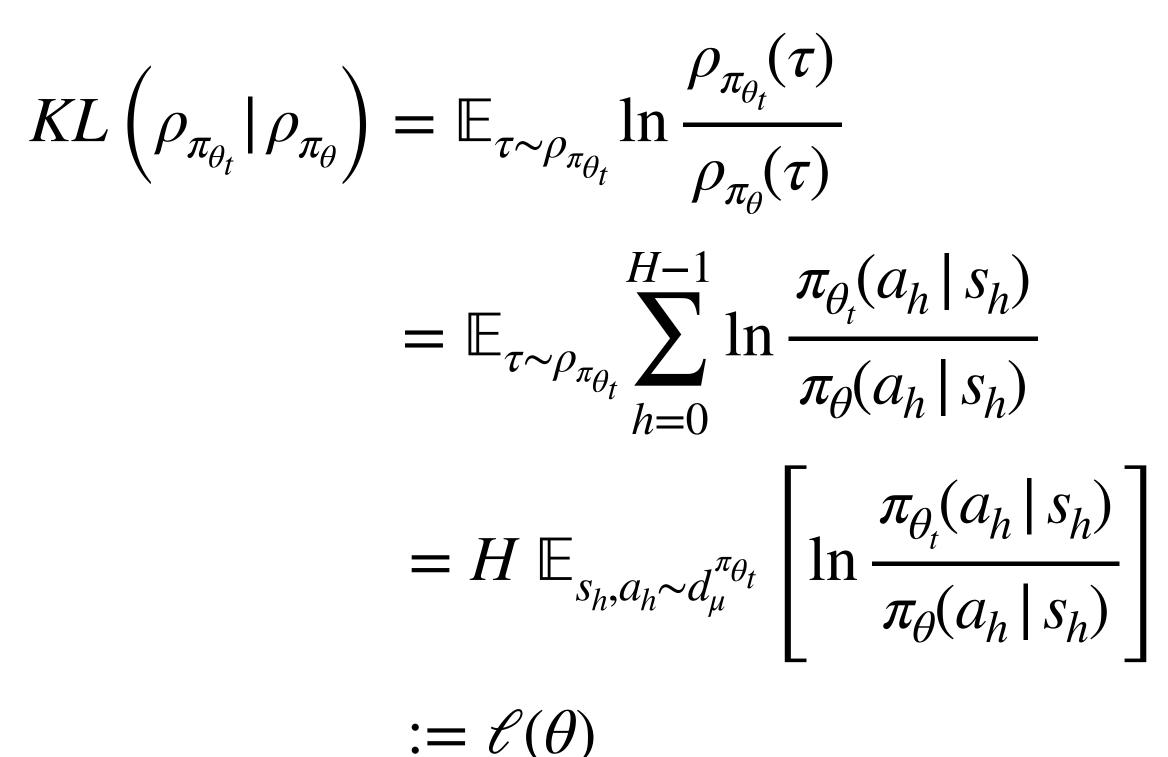
Change from trajectory distribution to state-action distribution:



 $:= \ell(\theta)$

Change from trajectory distribution to state-action distribution:

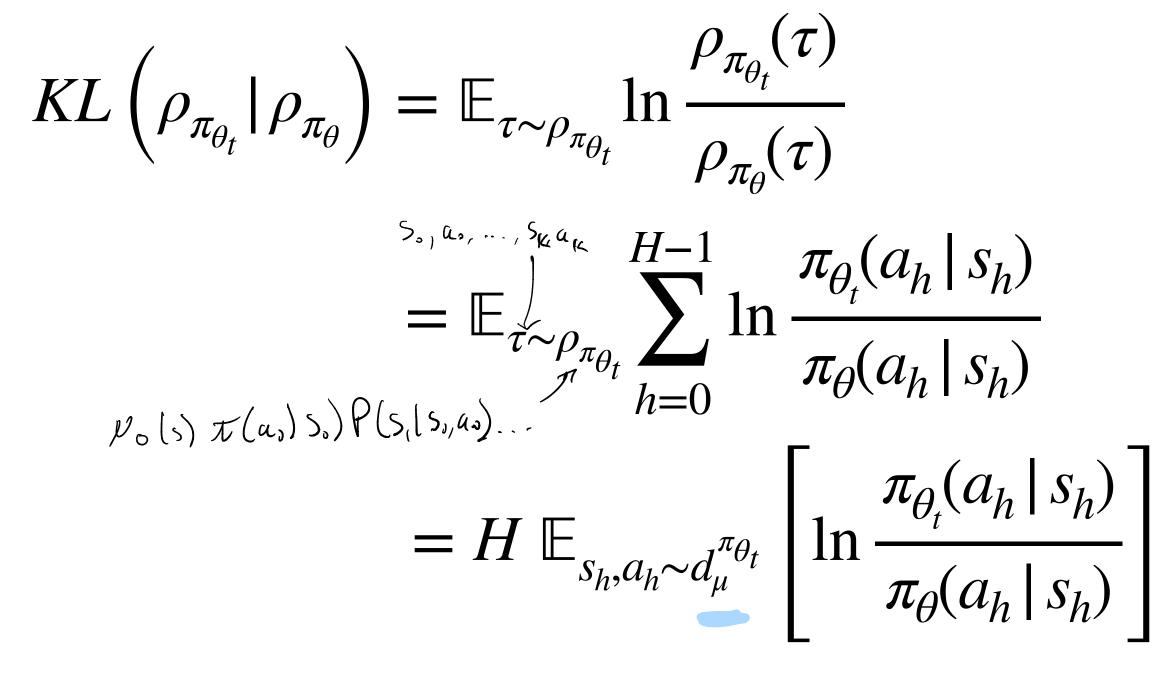
Q: How do we approximate $\ell(\theta)$?



Change from trajectory distribution to state-action distribution:

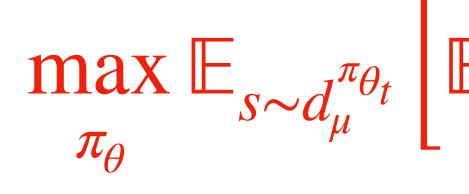
Q: How do we approximate $\ell(\theta)$?

A: Taylor expansion



 $:= \ell(\theta)$

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:



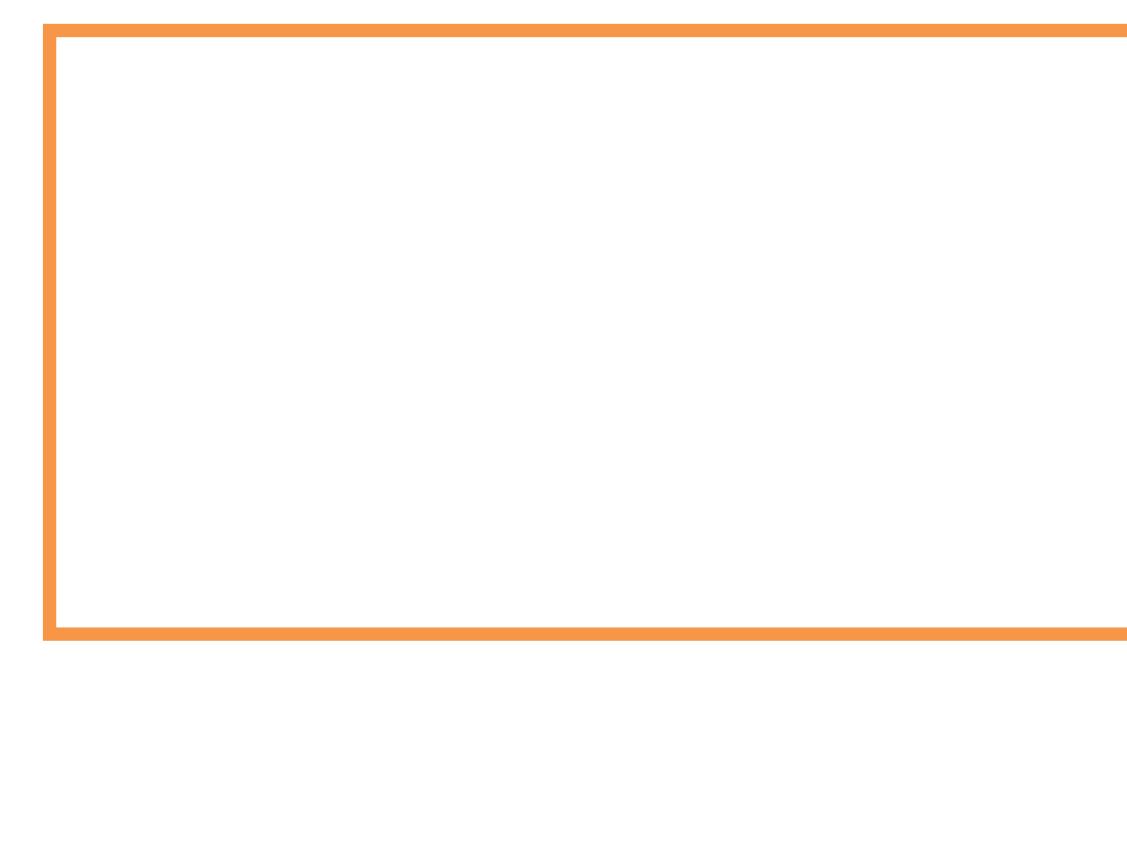
s.t., *KL*

Q: How do we compute KL between trajectory likelihoods?

High-level strategy
1. Simplify KL
2. Use Taylor expansion on KL

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$$

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$



$$\operatorname{Recall} \mathscr{E}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

$$\ell(\theta_t) = 0$$

$$\operatorname{Recall} \mathscr{E}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

$$\ell(\theta_t) = 0$$

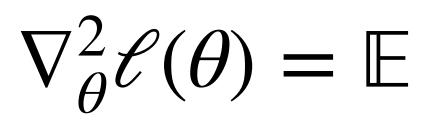
Gradients of KL

 $\nabla_{\theta} \ell(\theta) = 0|_{\theta = \theta_t}$

Recall
$$\mathscr{E}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

$$\ell(\theta_t) = 0$$

$\nabla_{\theta} \ell(\theta) = 0 \big|_{\theta = \theta_{t}}$

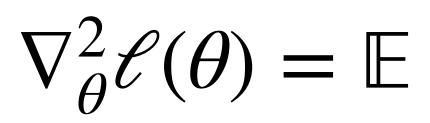


Recall
$$\mathscr{C}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

 $\nabla_{\theta}^{2} \mathscr{E}(\theta) = \mathbb{E} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}} \right]$

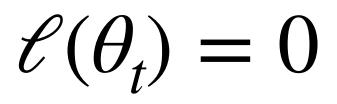
$$\ell(\theta_t) = 0$$

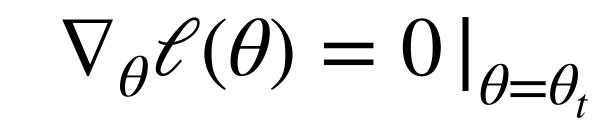
$\nabla_{\theta} \ell(\theta) = 0 \big|_{\theta = \theta_{t}}$



Recall
$$\mathscr{C}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

 $\nabla_{\theta}^{2} \mathscr{E}(\theta) = \mathbb{E} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}} \right]$





Fisher Information Matrix $F(\theta_t)$

Recall
$$\mathscr{C}(\theta) := H \mathbb{E}_{s, a \sim d^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta}(a \mid s)} \right]$$

 $\nabla_{\theta}^{2} \mathscr{E}(\theta) = \mathbb{E} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}} \right]$

$$\ell(\theta_t) = 0$$

$\nabla_{\theta} \ell(\theta) = 0 \big|_{\theta = \theta_{t}}$

$\nabla_{\theta}^{2} \mathscr{E}(\theta) = F(\theta_{t}) = \mathbb{E}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}}\right]$

 $\ell(\theta_t) = 0$

Gradients of KL

- $\nabla_{\theta} \ell(\theta) = 0 \big|_{\theta = \theta_{t}}$

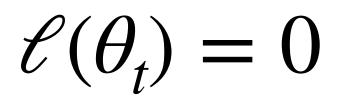
$\nabla_{\theta}^{2} \mathscr{E}(\theta) = F(\theta_{t}) = \mathbb{E}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)^{\mathsf{T}}\right]$

$$\ell(\theta_t) = 0$$

$\nabla_{\theta} \ell(\theta) = 0|_{\theta = \theta_{t}}$ $\nabla(\theta_t) = \mathbb{E}\left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s)^{\mathsf{T}}\right]$

$$\nabla_{\theta}^2 \mathscr{E}(\theta) = F(\theta)$$

Taylor Expansion



$\nabla_{\theta} \ell(\theta) = 0$

 $\nabla^2_{\theta} \mathscr{E}(\theta) = F(\theta)$

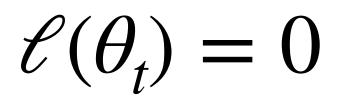
Taylor Expansion

 $\frac{1}{H} KL \left(\rho_{\pi_{\theta_t}} | \rho_{\tau} \right)$

$$\theta = \theta_t$$

$$(\theta_t) = \mathbb{E} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right]$$

$$(\boldsymbol{p}_{\pi_{\theta}}) = \ell(\theta)$$



$\nabla_{\theta} \ell(\theta) = 0$

 $\nabla^2_{\theta} \mathscr{E}(\theta) = F(\theta)$

Taylor Expansion

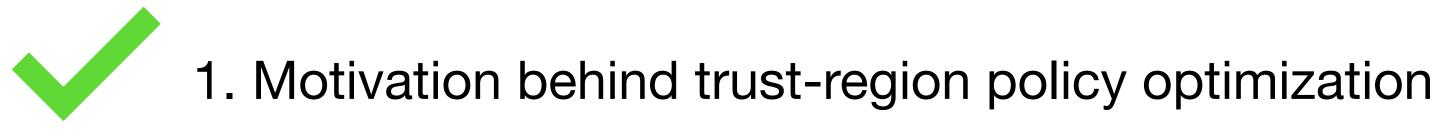
 $\frac{1}{H} KL \left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta_t}} \right)$

$$\theta = \theta_t$$

$$(\theta_t) = \mathbb{E} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right]$$

$$(p_{\pi_{\theta}}) = \ell(\theta)$$

 $\approx \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t}(\theta - \theta_t)$



3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

Outlines

Recall we have

At iteration t, we update to θ_{t+1} via:

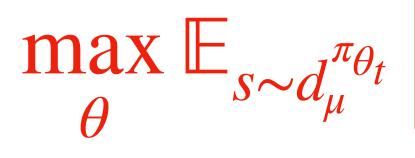
Recall we have

At iteration t, we update to θ_{t+1} via:

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$

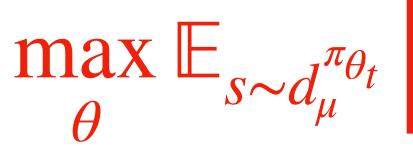
s.t., $KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Simplify Objective Function



 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$

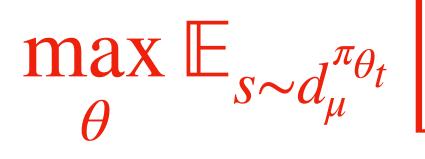
Simplify Objective Function



Since the objective is also non-linear, let's do first order-talyor expansion on it:

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$

Simplify Objective Function



Since the objective is also non-linear, let's do first order-talyor expansion on it: $\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{l}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{l}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{l}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{l}}(s)} A^{\pi_{\theta_{l}}}(s, a) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{l}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{l}}(s)} \nabla_{\theta} \ln \pi_{\theta}(a) \right]$

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$

$$\underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right]}_{\nabla_{\theta} J(\pi_{\theta_{t}})} \cdot (\theta - \theta_{t})$$

Simplify Objective Function

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}}$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot (\theta - \theta_{t})$$

 $= \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t)$

 $\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a)$

 $\nabla_{\theta} J(\pi_{\theta_t})$

At iteration t, we update to θ_{t+1} via:

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta - \theta_t)$

s.t. $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t}(\theta - \theta_t) \leq \delta$

At iteration t, we update to θ_{t+1} via:

Gradient update

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta - \theta_t)$

s.t. $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$

At iteration t, we update to θ_{t+1} via:

Gradient update

KL constraint

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta - \theta_t)$

s.t. $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$

At iteration t, we update to θ_{t+1} via:

KL constraint **S.t.** $(\theta - \theta_t)^{\top} F_{\theta_t}(\theta - \theta_t) \leq \delta$

Linear objective and quadratic convex constraint: we can solve it optimally!

 $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta - \theta_t)$

At iteration t, we update to θ_{t+1} via:

KL constraint

 $\theta_{t+1} = \theta_t + \theta_t$

- $\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta \theta_t)$
- s.t. $(\theta \theta_t)^{\mathsf{T}} F_{\theta} (\theta \theta_t) \leq \delta$
- Linear objective and quadratic convex constraint: we can solve it optimally!

$$-\eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

Initialize θ_0

For t = 0, ...

Initialize θ_0

For t = 0, ...

Estimate PG $\nabla_{\theta} J(\pi_{\theta_t})$

Initialize θ_0

For t = 0, ...

Estimate PG $\nabla_{\theta} J(\pi_{\theta_{t}})$

Estimate Fisher info-matrix $F_{\theta_t} := \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t} (a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t} (a \mid s))^{\mathsf{T}}$

Initialize θ_0

For t = 0, ...

Estimate PG $\nabla_{\theta} J(\pi_{\theta_{t}})$

Estimate Fisher info-matrix $F_{\theta_r} := \mathbb{E}_s$

Natural Gradient Ascent: $\theta_{t+1} = \theta_t$

$$S_{s,a \sim d_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) (\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s))^{\top}$$
$$S_{t} + \eta F_{\theta_{t}}^{-1} \nabla_{\theta} J(\pi_{\theta_{t}})$$

1. Motivation behind trust-region policy optimization

KL(P | Q)

Summary

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

KL(P | Q)

Summary

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

How can we optimize the policy's parameters while considering policy change?

 $KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{O(x)} \right]$

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\lambda}}$ s.t., *k*

Summary

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$KL\left(\rho_{\pi_{\theta_{t}}} \middle| \rho_{\pi_{\theta_{t}}} \middle| \right) \leq \delta$$

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}}^{\pi}$ s.t., *K*

Summary

1. Motivation behind trust-region policy optimization

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$KL\left(\rho_{\pi_{\theta_{t}}} \middle| \rho_{\pi_{\theta_{t}}} \middle| \right) \leq \delta$$

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}}^{\pi}$ s.t., *k*

Summary

1. Motivation behind trust-region policy optimization

How can we optimize the policy's parameters while considering policy change?

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

3. A Trust-Region Formulation for Policy Optimization

$$KL\left(\rho_{\pi_{\theta_{t}}} \middle| \rho_{\pi_{\theta_{t}}} \middle| \right) \leq \delta$$

4. Algorithm: Natural Policy Gradient

3. A Trust-Region Formulation for Policy Optimization

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}}^{\pi}$ s.t., *k*

4. Algorithm: Natural Policy Gradient

 $\theta_{t+1} = \theta_t$

Summary

1. Motivation behind trust-region policy optimization

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$KL\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta_{t}}} | A^{\pi_{\theta_{t}}}(s, a)\right]$$

$$\theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

3. A Trust-Region Formulation for Policy Optimization

 $\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}}^{\pi}$ s.t., *K*

4. Algorithm: Natural Policy Gradient

 $\theta_{t+1} = \theta_t$

Summary

1. Motivation behind trust-region policy optimization

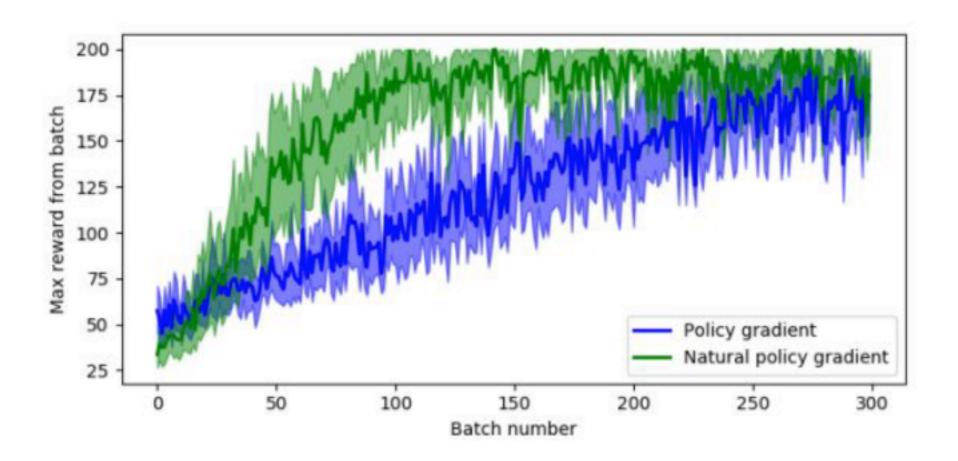
How can we optimize the policy's parameters while considering policy change?

$$P = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$KL\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

$$\theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$$

Fisher info-matrix $F_{\theta_t} := \mathbb{E}_{s,a \sim d_u^{\pi_{\theta_t}}} \nabla_{\theta} \ln \pi_{\theta_t} (a \mid s) (\nabla_{\theta} \ln \pi_{\theta_t} (a \mid s))^{\top}$

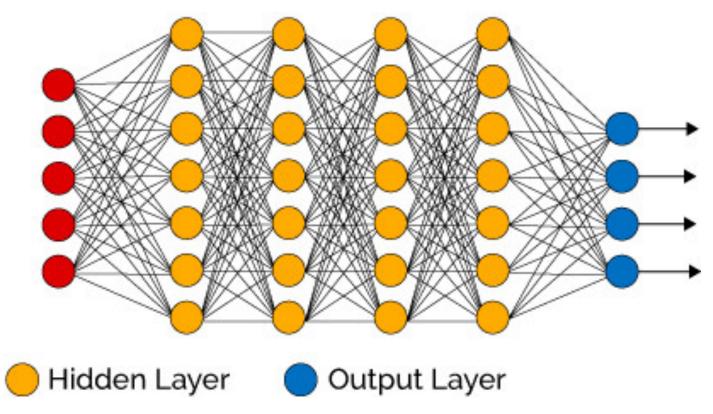


- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$

- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!

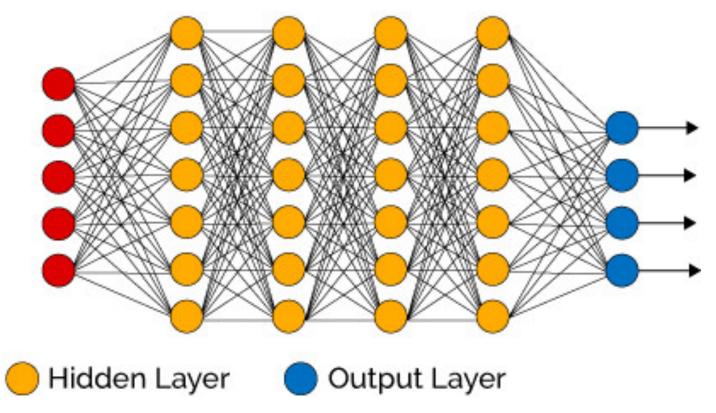
- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!
 - Goal: learn w/ function approximation

A Policy is a classifier w/ A many classes



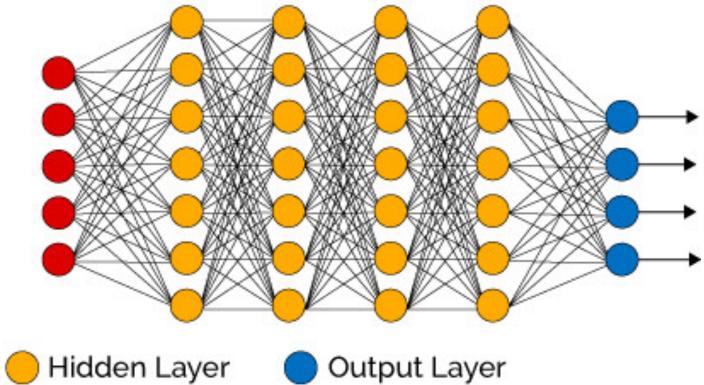
- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!
 - Goal: learn w/ function approximation

A Policy is a classifier w/ A many classes



- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!
 - Goal: learn w/ function approximation
 - What about continuous actions $a \in \mathbb{R}^d$?

A Policy is a classifier w/ A many classes



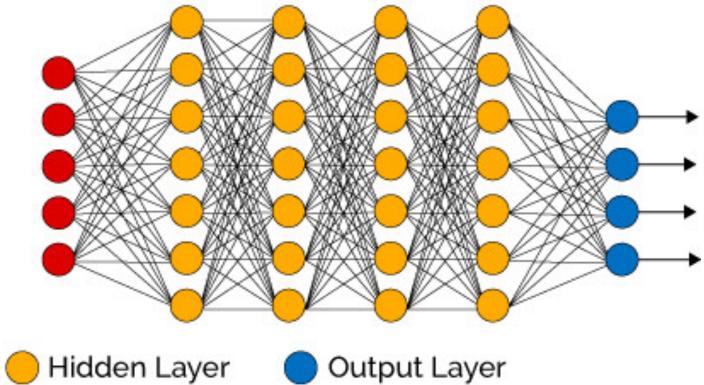
 $\pi_{\beta,\alpha}$

- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!
 - Goal: learn w/ function approximation
 - What about continuous actions $a \in \mathbb{R}^d$?

$$(\cdot | s) = \mathcal{N}\left(\mu_{\beta}(s), \exp(\alpha)I_{d \times d}\right)$$

 $\theta := [\beta, \alpha]$

A Policy is a classifier w/ A many classes

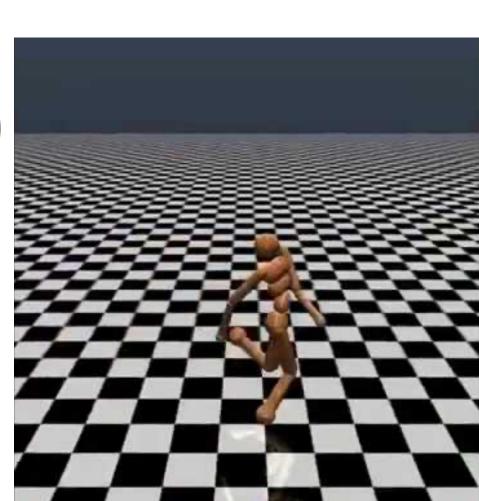


 $\pi_{\beta,\alpha}$

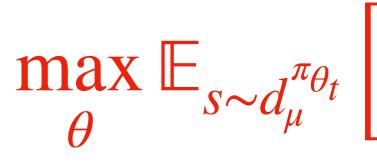
- We have huge space space, i.e., |S| might be $255^{3 \times 512 \times 512}$
 - We can only reset from initial state distribution $s_0 \sim \mu$
 - Numeration over state (e.g., a for loop) is not possible!
 - Goal: learn w/ function approximation
 - What about continuous actions $a \in \mathbb{R}^d$?

$$(\cdot | s) = \mathcal{N}\left(\mu_{\beta}(s), \exp(\alpha)I_{d\times d}\right)$$

 $\theta := [\beta, \alpha]$



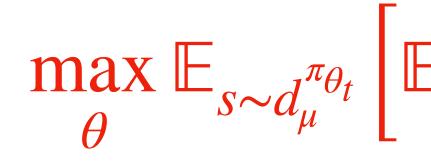
Given an current policy π^t , we perform policy update to π^{t+1}



Third attempt: **PG on parameterized policy**

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_{t}}}(s,a) \right]$

Given an current policy π^t , we perform policy update to π^{t+1}



Locally Improve the local-adv a little bit via one-step gradient ascent:

Third attempt: **PG on parameterized policy**

$$\mathbb{E}_{a \sim \pi_{\theta}(\cdot | s)} A^{\pi_{\theta_t}(s, a)}$$

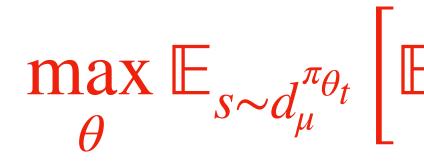
Given an current policy π^t , we perform policy update to π^{t+1}

Locally Improve the local-adv a little bit via one-step gradient ascent:

$$\theta_{t+1} = \theta_t + \eta \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta_t}(s)} \nabla \ln \pi_{\theta_t}(a \mid s) \cdot A^{\pi_{\theta_t}}(s, a) \right]$$

Third attempt: **PG on parameterized policy**

Given an current policy π^t , we perform policy update to π^{t+1}



Locally Improve the local-adv a little bit via one-step gradient ascent:

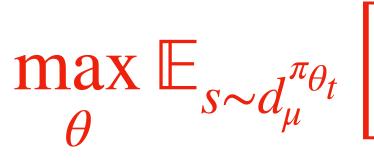
$$\theta_{t+1} = \theta_t + \eta \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta_t}(s)} \nabla \ln \pi_{\theta_t}(a \mid s) \cdot A^{\pi_{\theta_t}}(s, a) \right]$$

Third attempt: PG on parameterized policy

$$\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_t}(s,a)}$$

When $\eta \rightarrow 0^+$, gradient ascent ensures we improve the objective function

Given an current policy π^t , we perform policy update to π^{t+1}



Fourth attempt: Natural Policy Gradient

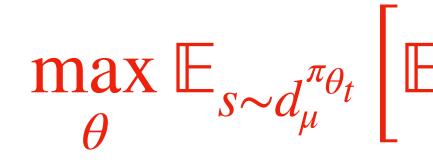
 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_{t}}}(s,a) \right]$

Given an current policy π^t , we perform policy update to π^{t+1}

 $s.t., \mathsf{KL}(\rho_{\theta_t}|\rho_{\theta}) \leq \delta$

Fourth attempt: Natural Policy Gradient

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_{t}}}(s,a) \right]$



 $s.t., \mathsf{KL}(\rho_{\theta_t} | \rho_{\theta}) \leq \delta$

Define fisher info-mat

a convex approximation, e.g., linearize obj and quadratize constraint, gives us the following NPG update:

Given an current policy π^t , we perform policy update to π^{t+1}

Fourth attempt: Natural Policy Gradient

$$\mathbb{E}_{a \sim \pi_{\theta}(\cdot | s)} A^{\pi_{\theta_t}(s, a)}$$

$$\operatorname{rix} F_{\theta_t} = \nabla_{\theta}^2 \mathsf{KL}(\rho_{\theta_t} | \rho_{\theta}) |_{\theta = \theta_t},$$

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_{t}}}(s,a) \right]$$

 $s.t., \mathsf{KL}(\rho_{\theta_t} | \rho_{\theta}) \leq \delta$

- Define fisher info-mat

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}}(\theta - \theta_t),$$

Given an current policy π^t , we perform policy update to π^{t+1}

Fourth attempt: Natural Policy Gradient

$$\operatorname{rix} F_{\theta_t} = \nabla_{\theta}^2 \operatorname{KL}(\rho_{\theta_t} | \rho_{\theta}) |_{\theta = \theta_t},$$

a convex approximation, e.g., linearize obj and quadratize constraint, gives us the following NPG update:

s.t., $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$

Given an current policy π^t , we perform policy update to π^{t+1}

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} A^{\pi_{\theta_{t}}} \right]$

fifth attempt (new): Proximal Policy Optimization (PPO)

$$\pi_{\theta_t}(s,a)$$

Given an current policy π^t , we perform policy update to π^{t+1}

fifth attempt (new): Proximal Policy Optimization (PPO)

 $\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot | s)} A^{\pi_{\theta}} \right]$

$$\tau_{\theta_{t}}(s,a) \left[-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL}\left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right] \right]$$

regularization

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$

Use importance weighting & expand KL divergence:

Given an current policy π^t , we perform policy update to π^{t+1}

fifth attempt (new): Proximal Policy Optimization (PPO)

regularization

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$

Use importance weighting & expand KL divergence:

$$\mathscr{E}(\theta) := \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \left[-\ln \pi_{\theta}(a \mid s) \right]$$

Given an current policy π^t , we perform policy update to π^{t+1}

fifth attempt (new): Proximal Policy Optimization (PPO)

regularization

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$

Use importance weighting & expand KL divergence:

$$\mathscr{E}(\theta) := \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \left[-\ln \pi_{\theta}(a \mid s) \right]$$

PPO: Perform a few steps of mini-batch SGA on $\ell(\theta)$ to approximate arg max $\ell(\theta)$ θ

Given an current policy π^t , we perform policy update to π^{t+1}

fifth attempt (new): Proximal Policy Optimization (PPO)

regularization