
Trust Region
Policy Optimization

Slides adapted from Wen Sun

(with inspiration from Benjamin Eysenbach)

Nicolas Espinosa Dice

Improving Policy Gradient

Lecture 10: Policy gradient

Lecture 11: Variance Reduction via advantage estimation

Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)

Recap Policy Gradient

J(πθ) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = 𝔼s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Recap Policy Gradient

The most commonly used formulation:

∇θJ(πθt
) = 𝔼s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Algorithm: Stochastic Gradient Ascent

Policy Parameterization

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) = exp(fθ(s, a))
∑a′

exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

Outline

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

Two Observations

Two Observations

Observation 1: Policy gradient estimates have high variance

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Today’s Question

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Today’s Question

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Can we optimize the policy’s parameters  
without drastically changing the policy?

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to  
large changes in policy

Example

Example

Train a robot to “run” forward as fast as possible

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Note: All three
robots achieve
high reward!

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps

Recall:∇θJ(πθt
) = 𝔼s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

Note: All three
robots achieve
high reward!

Policy: direction to move in at S1

Policy: direction to move in at S1

𝒜 = {aleft, aright}

Policy: direction to move in at S1

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

𝒜 = {aleft, aright}

Policy: direction to move in at S1

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

Policy: direction to move in at S1

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

Policy: direction to move in at S1

Policy πθ1
π(a ∣ s; θ) = {1 if a = arg max fθ(a)

0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

Policy: direction to move in at S1

Policy πθ1
π(a ∣ s; θ) = {1 if a = arg max fθ(a)

0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

S1

Policy: direction to move in at S1

Policy πθ1
π(a ∣ s; θ) = {1 if a = arg max fθ(a)

0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

S1

Policy: direction to move in at S1

Policy πθ1
π(a ∣ s; θ) = {1 if a = arg max fθ(a)

0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}

S1

Policy: direction to move in at S1

Policy πθ1
π(a ∣ s; θ) = {1 if a = arg max fθ(a)

0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}
State distribution

induced by πθ1

S1

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}
State distribution

induced by πθ1

S1

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}
State distribution

induced by πθ1

S1

← (0.51, 0.49)+(−0.02, ,0.02)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

𝒜 = {aleft, aright}
State distribution

induced by πθ1

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2
S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2
S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2
S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2

Observation: Small changes in
policy’s parameters can lead to

large changes in policy

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2

Observation: Small changes in
policy’s parameters can lead to

large changes in policy

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

[Parameter space]

Policy: direction to move in at S1

Policy πθ1

θ2 ← θ1+η∇θJ(πθ1
)

π(a ∣ s; θ) = {1 if a = arg max fθ(a)
0 otherwise

πθ1
: aleft

θ1 = (0.51, 0.49)

πθ2
: aright

𝒜 = {aleft, aright}
State distribution

induced by πθ1

Policy πθ2

Observation: Small changes in
policy’s parameters can lead to

large changes in policy

S1

← (0.51, 0.49)+(−0.02, ,0.02)
← (0.49, 0.51)

[Parameter space]

[Policy space]

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

In other words…
“I don’t care how big the change is to parameters (),

I care about the change to the policy ()”
θ

πθ

F
Sutt

2

⑦

E-I-

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

In other words…
“I don’t care how big the change is to parameters (),

I care about the change to the policy ()”
θ

πθ

Implicitly, PG considers Euclidean distance in parameter space

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Goal of New Approach

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Goal of New Approach

Perform policy optimization  
while considering “policy change”

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Goal of New Approach

Perform policy optimization  
while considering “policy change”

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while constraining “policy change”

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while constraining “policy change”

A: Look at trajectory
distribution

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while constraining “policy change”

A: Look at trajectory
distribution

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while constraining “policy change”

A: Look at trajectory
distribution

Q: How do we measure
“policy change”?

Goal of New Approach
Perform policy optimization  

while considering “policy change”

Goal of New Approach
Perform policy optimization  

while considering “policy change”

At iteration t, with at hand, we compute as follows: πθt
θt+1

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
At iteration t, with at hand, we compute as follows: πθt

θt+1

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
At iteration t, with at hand, we compute as follows: πθt

θt+1

We want to maximize local advantage against ,πθt

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., DKL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,πθt

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., DKL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,πθt

but we want the new policy to be “close” to πθt

Goal of New Approach
Perform policy optimization  

while considering “policy change”

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., DKL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,πθt

but we want the new policy to be “close” to πθt

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln P(x)
Q(x)]Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Q: What is DKL?

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact:

, and being if and only if KL(P |Q) ≥ 0 0 P = Q

Q: What is DKL?

Outlines

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

A trust region formulation for policy update:

At iteration t, with at hand, we compute as follows: πθt
θt+1

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,  
but want the new policy to be close to

πθt

πθt

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against ,  
but want the new policy to be close to

πθt

πθt

Q: How do we compute KL between trajectory likelihoods?

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

Q: How do we compute KL between trajectory likelihoods?

A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

Q: How do we compute KL between trajectory likelihoods?

High-level strategy
1. Simplify KL expression

2. Use Taylor expansion on KL expression

1. Simplifying KL constraint

1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution:

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

Change from trajectory distribution to state-action distribution:
T
Ndadso

.

-

-
= Inso) to Larks) PLS ,

Ko
,
and ..

350 , 00 , 5, a,3

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

= H 𝔼sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)]

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

= H 𝔼sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)]

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

:= ℓ(θ)

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

= H 𝔼sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)]

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

:= ℓ(θ)

Q: How do we approximate ?ℓ(θ)

1. Simplifying KL constraint

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)
ρπθ

(τ)

= H 𝔼sh,ah∼dπθtμ [ln
πθt

(ah |sh)
πθ(ah |sh)]

Change from trajectory distribution to state-action distribution:

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

:= ℓ(θ)

Q: How do we approximate ?ℓ(θ)

A: Taylor expansion

So
,
Go, ..., 5144k

↓

No(s)t(ar .) P(3 ,
15 ,90)...

Recall: A trust region formulation for policy update:

max
πθ

𝔼s∼dπθtμ [𝔼a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

Q: How do we compute KL between trajectory likelihoods?

High-level strategy
1. Simplify KL

2. Use Taylor expansion on KL

2. Taylor expansion on KL

2. Taylor expansion on KL

2. Taylor expansion on KL

Gradients of KL

2. Taylor expansion on KL

Gradients of KL

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

Gradients of KL

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt
Gradients of KL

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

Fisher Information Matrix F(θt)

Recall ℓ(θ) := H 𝔼s,a∼dπθt [ln
πθt

(a |s)
πθ(a |s)]

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = F(θt) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = F(θt) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

2. Taylor expansion on KL

ℓ(θt) = 0

∇θℓ(θ) = 0 |θ=θt

∇2
θℓ(θ) = F(θt) = 𝔼 [∇θln πθt

(a ∣ s)∇θln πθt
(a ∣ s)⊤]

Gradients of KL

Taylor Expansion

2. Taylor expansion on KL

π(θt) = 0

𝔼θπ(θ) = 0 |θ=θt

𝔼2
θπ(θ) = F(θt) = ∞ [𝔼θln γθt

(a ∼ s)𝔼θln γθt
(a ∼ s)∇]

1
H

KL (μγθt
|μγθ) = π(θ)

Gradients of KL

Taylor Expansion

2. Taylor expansion on KL

π(θt) = 0

𝔼θπ(θ) = 0 |θ=θt

𝔼2
θπ(θ) = F(θt) = ∞ [𝔼θln γθt

(a ∼ s)𝔼θln γθt
(a ∼ s)∇]

1
H

KL (μγθt
|μγθ) = π(θ)

∈ 1
2 (θ ℝ θt)∇Fθt

(θ ℝ θt)

Gradients of KL

Taylor Expansion

Outlines

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

Recall we have

At iteration t, we update to via:θt+1

Recall we have

At iteration t, we update to via:θt+1

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

Simplify Objective Function

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]

Simplify Objective Function

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

Simplify Objective Function

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)] ∈ ∞s⊤dγθtϕ [∞a⊤γθt(s)Aγθt(s, a)] + ∞s⊤dγθtϕ [∞a⊤γθt(s) 𝔼θln γθt
(a |s)Aγθt(s, a)]

𝔼θJ(γθt)

′ (θ ℝ θt)

Q (, a) = utzIn~

#(
v tot

O

Simplify Objective Function

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
Since the objective is also non-linear,

let’s do first order-talyor expansion on it:

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)] ∈ ∞s⊤dγθtϕ [∞a⊤γθt(s)Aγθt(s, a)] + ∞s⊤dγθtϕ [∞a⊤γθt(s) 𝔼θln γθt
(a |s)Aγθt(s, a)]

𝔼θJ(γθt)

′ (θ ℝ θt)

= 𝔼θJ(γθt
)∇(θ ℝ θt)

Put everything together, we get:

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt)

s.t. (θ ℝ θt)∇Fθt
(θ ℝ θt) ∑ η

At iteration t, we update to via:θt+1

Put everything together, we get:

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt)

s.t. (θ ℝ θt)∇Fθt
(θ ℝ θt) ∑ η

At iteration t, we update to via:θt+1

Gradient update

Put everything together, we get:

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt)

s.t. (θ ℝ θt)∇Fθt
(θ ℝ θt) ∑ η

At iteration t, we update to via:θt+1

Gradient update

KL constraint

Put everything together, we get:

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt)

s.t. (θ ℝ θt)∇Fθt
(θ ℝ θt) ∑ η

Linear objective and quadratic convex constraint: we can solve it optimally!

At iteration t, we update to via:θt+1

Gradient update

KL constraint

Put everything together, we get:

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt)

s.t. (θ ℝ θt)∇Fθt
(θ ℝ θt) ∑ η

Linear objective and quadratic convex constraint: we can solve it optimally!

θt+1 = θt + ρFℝ1
θt

𝔼θJ(γθt
)

At iteration t, we update to via:θt+1

Gradient update

KL constraint

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG 𝔼θJ(γθt
)

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG 𝔼θJ(γθt
)

Estimate Fisher info-matrix Fθt
:= ∞s,a⊤dγθtϕ

𝔼θln γθt
(a |s)(𝔼θln γθt

(a |s))∇

Algorithm: Natural Policy Gradient

Initialize θ0

For t = 0, …

Estimate PG 𝔼θJ(γθt
)

Estimate Fisher info-matrix Fθt
:= ∞s,a⊤dγθtϕ

𝔼θln γθt
(a |s)(𝔼θln γθt

(a |s))∇

θt+1 = θt + ρFℝ1
θt

𝔼θJ(γθt
)Natural Gradient Ascent:

Summary

Summary

Summary

1. Motivation behind trust-region policy optimization

Summary

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

Summary

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

Summary

2. Quick intro on KL-divergence

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

Summary

2. Quick intro on KL-divergence

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

Summary

2. Quick intro on KL-divergence

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

θt+1 = θt + ρFℝ1
θt

𝔼θJ(γθt
)

Summary

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

KL(P |Q) = ∞x⊤P [ln P(x)
Q(x)]

max
γθ

∞s⊤dγθtϕ [∞a⊤γθ(s)Aγθt(s, a)]
s.t., KL (μγθt

|μγθ) ∑ η

Fisher info-matrix Fθt
:= ∞s,a⊤dγθtϕ

𝔼θln γθt
(a |s)(𝔼θln γθt

(a |s))∇

θt+1 = θt + ρFℝ1
θt

𝔼θJ(γθt
)

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ↦ ⋅d

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ↦ ⋅d

γδ,σ(′ |s) = Δ (ϕδ(s), exp(σ)Id×d)
θ := [δ, σ]

Review on Policy Optimization:

We have huge space space, i.e., might be |S | 2553×512×512

We can only reset from initial state distribution s0 ⊤ ϕ

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes What about continuous actions ? a ↦ ⋅d

γδ,σ(′ |s) = Δ (ϕδ(s), exp(σ)Id×d)
θ := [δ, σ]

Review on Policy Optimization: PG

Given an current policy , we perform policy update to γt γt+1

Third attempt: PG on parameterized policy

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]

Review on Policy Optimization: PG

Given an current policy , we perform policy update to γt γt+1

Third attempt: PG on parameterized policy

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

Review on Policy Optimization: PG

Given an current policy , we perform policy update to γt γt+1

Third attempt: PG on parameterized policy

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + ρ ′ ∞s⊤dγθtϕ [∞a⊤γθt(s) 𝔼ln γθt
(a |s) ′ Aγθt(s, a)]

S . t . 118 - Alle

Review on Policy Optimization: PG

Given an current policy , we perform policy update to γt γt+1

Third attempt: PG on parameterized policy

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + ρ ′ ∞s⊤dγθtϕ [∞a⊤γθt(s) 𝔼ln γθt
(a |s) ′ Aγθt(s, a)]

When , gradient ascent ensures

we improve the objective function

ρ ∀ 0+

15(6)

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to γt γt+1

Fourth attempt: Natural Policy Gradient

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to γt γt+1

Fourth attempt: Natural Policy Gradient

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
s . t . , KL(μθt

|μθ) ∑ η

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to γt γt+1

Fourth attempt: Natural Policy Gradient

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
s . t . , KL(μθt

|μθ) ∑ η

Define fisher info-matrix ,

a convex approximation, e.g., linearize obj and quadratize constraint,

gives us the following NPG update:

Fθt
= 𝔼2

θKL(μθt
|μθ) |θ=θt

Review on Policy Optimization: NPG

Given an current policy , we perform policy update to γt γt+1

Fourth attempt: Natural Policy Gradient

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
s . t . , KL(μθt

|μθ) ∑ η

Define fisher info-matrix ,

a convex approximation, e.g., linearize obj and quadratize constraint,

gives us the following NPG update:

Fθt
= 𝔼2

θKL(μθt
|μθ) |θ=θt

max
θ

𝔼θJ(γθt
)∇(θ ℝ θt), s.t., (θ ℝ θt)∇Fθt

(θ ℝ θt) ∑ η

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)] ℝτ∞s⊤dγt
ϕ [KL (γθt

(a |s) |γθ(a |s))]
regularization

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)] ℝτ∞s⊤dγt
ϕ [KL (γθt

(a |s) |γθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)] ℝτ∞s⊤dγt
ϕ [KL (γθt

(a |s) |γθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

π(θ) := ∞s⊤dγθtϕ [∞a⊤γθt(′|s)
γθ(a |s)
γθt

(a |s) Aγθt(s, a)] ℝ τ∞s⊤dγθtϕ
∞a⊤γθt(′|s) [ℝln γθ(a |s)]

An extension of NPG (even faster in practice):

Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)] ℝτ∞s⊤dγt
ϕ [KL (γθt

(a |s) |γθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

π(θ) := ∞s⊤dγθtϕ [∞a⊤γθt(′|s)
γθ(a |s)
γθt

(a |s) Aγθt(s, a)] ℝ τ∞s⊤dγθtϕ
∞a⊤γθt(′|s) [ℝln γθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on to approximate π(θ) arg max
θ

π(θ)

