
Trust Region  
Policy Optimization

Slides adapted from Wen Sun

(with inspiration from Benjamin Eysenbach)

Nicolas Espinosa Dice



Improving Policy Gradient

Lecture 10: Policy gradient

Lecture 11: Variance Reduction via advantage estimation


Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)
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The most commonly used formulation:

∇θJ(πθt
) = 𝔼s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

J(πθ) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, a ∼ πθ]

Algorithm: Stochastic Gradient Ascent



Policy Parameterization

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) = exp( fθ(s, a))
∑a′ 

exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

1. Motivation behind trust-region policy optimization
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Today’s Question

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

large changes in policy

Can we optimize the policy’s parameters  
without drastically changing the policy?



Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to  
large changes in policy



Example



Example

Train a robot to “run” forward as fast as possible



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 

Note: All three 
robots achieve 
high reward!



Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torques on joints
Reward: distance of moving forward between two steps 

Recall:∇θJ(πθt
) = 𝔼s,a∼dπθtμ [∇θln πθt

(a |s)Aπθt(s, a)]

Note: All three 
robots achieve 
high reward!
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Observation 2: Small changes in policy’s parameters can lead to 

large changes in policy

In other words… 
“I don’t care how big the change is to parameters ( ),


I care about the change to the policy ( )”
θ

πθ

Implicitly, PG considers Euclidean distance in parameter space 
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Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact: 

, and being  if and only if KL(P |Q) ≥ 0 0 P = Q

Q: What is DKL?
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Given an current policy , we perform policy update to γt γt+1

Third attempt: PG on parameterized policy

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)]
Locally Improve the local-adv a little bit via one-step gradient ascent:

θt+1 = θt + ρ ′ ∞s⊤dγθtϕ [∞a⊤γθt(s) 𝔼ln γθt
(a |s) ′ Aγθt(s, a)]

When , gradient ascent ensures 

we improve the objective function

ρ ∀ 0+

15(6)
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Given an current policy , we perform policy update to γt γt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

∞s⊤dγθtϕ [∞a⊤γθ(′|s)Aγθt(s, a)] ℝτ∞s⊤dγt
ϕ [KL (γθt

(a |s) |γθ(a |s))]
regularization

Use importance weighting & expand KL divergence: 

π(θ) := ∞s⊤dγθtϕ [∞a⊤γθt(′|s)
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(a |s) Aγθt(s, a)] ℝ τ∞s⊤dγθtϕ
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PPO: Perform a few steps of mini-batch SGA on  to approximate π(θ) arg max
θ

π(θ)


