Trust Region
Policy Optimization

> .
Nicolas Espinosa Dice

Slides adapted from Wen Sun
(with inspiration from Benjamin Eysenbach)

Improving Policy Gradient

Lecture 10: Policy gradient
Lecture 11: Variance Reduction via advantage estimation

Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)

Recap Policy Gradient

Jap) =E | Y v"r(sya,) |50~ pa ~ my
h=0

Recap Policy Gradient

J(zy) = E lZ Y (S) | Sp ~ Hsd ~ 7@]

h=0

The most commonly used formulation:

ng(ﬂ'gt) = [E 9, lveln ngt(a | $)A "o(s, a)]

S,CZNdM

Recap Policy Gradient

J (779) —

O
h
= | s @) s~ poa ~ 7,
h=0

The most commonly used formulation:

ng(ﬂ'gt) =Lk, g% lveln ngt(a | $)A "o(s, a)]

Algorithm: Stochastic Gradient Ascent

Policy Parameterization

Recall that we consider parameterized policy 7,(- |s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:

Neural network

Feature vector (s, a) € R?, and

parameter 9 € R4

exp(0' ¢(s, a)) exp(fy(s, a))

roals) = roals) =

Za, exp(0' (s, a’)) Za, exp(fy(s,a’))

Outline

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

Two Observations

Two Observations

Observation 1: Policy gradient estimates have high variance

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Today’s Question

Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Today’s Question

Can we optimize the policy’s parameters
without drastically ?

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy

Example

Example

Train a robot to “run” forward as fast as possible

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints
Reward: distance of moving forward between two steps

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc

Action: torgues on joints Note: All three

Reward: distance of moving forward between two steps

robots achieve
high reward!

Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints Note: All three

Reward: distance of moving forward between two steps robots achieve

high reward!

Recal: VyJ(1,) = E, [Vln 7,(a| $)A™(s, a)

E

Policy: direction to move in at S1

Policy: direction to move in at S1

A = {aleft’ aright}

Policy: direction to move in at S1

A = {aleft’ aright}

n(a] s;0) = {

1 if a = argmaxfy(a)
0 otherwise

Policy: direction to move in at S1

A = {aleft’ aright}

n(a] s;0) = {

1 if a = argmaxfy(a)
0 otherwise

0, = (0.51, 0.49)

Policy: direction to move in at S1

A = {aleft’ aright}

n(a] s;0) = {

1 if a = argmaxfy(a)
0 otherwise

0, = (0.51, 0.49)

Ty, « Ueft

Policy: direction to move in at S1

N A = {aleft’ aright}

0 T ﬂ(a\s;é’)z{

Policy 7y

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)

Policy: direction to move in at S1

N A = {aleft’ aright}

0 T ﬂ(a\s;é’)z{

Policy 7y

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)

Policy: direction to move in at S1

A = {aleft’ aright}

T ﬂ(a\s;é’)={

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)

Policy: direction to move in at S1

A = {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

. 0, = (0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)

5 | 71'(91 . aleﬁ

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)

& Ty, - Alefy

| (91

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)
& I Ty, - Alefy
| 0,

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)
& I Ty, - Alefy
| 0,

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)
& I Ty, - Alefy
| 0,

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| 0, = (0.51, 0.49)
& I Ty, - Alefy
| 0,

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

16 0, = (0.51, 0.49)
= | g, + Aeft
i A B | J— 91

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

S {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

Sl 0, = (0.51, 0.49)
oS _' | l; 71'(91 . aleﬁ
= I | J— 01

(0.51, 0.49)

Policy: direction to move in at S1

State distribution
induced by 7y

A = {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

15 0, = (0.51, 0.49)

55 _' | l; 71'(91 . aleﬁ
iy A B | J— 91
(0.51, 0.49)

Observation: Small changes in

policy’s parameters can lead to
large changes in policy

Policy: direction to move in at S1

State distribution
induced by 7y

A = {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| | 0, = (0.51, 0.49) [Parameter space]
B3 _' | [71'(91 . aleﬁ
1V | | J_ 91
(0.51, 0.49)

Observation: Small changes in

policy’s parameters can lead to
large changes in policy

Policy: direction to move in at S1

State distribution
induced by 7y

A = {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| | 0, = (0.51, 0.49) [Parameter space]
- | g | I Ty, « Ueft [Policy space]
1V | | J— 81
(0.51, 0.49)

Observation: Small changes in

policy’s parameters can lead to
large changes in policy

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

@ In other words...

“| don’t care how big the change is to parameters (6),
J{ D | care about ’

@l

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

In other words...
“| don’t care how big the change is to parameters (6),
| care about ;

Implicitly, PG considers Euclidean distance in parameter space

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy

Goal of New Approach

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy

Goal of New Approach

Perform policy optimization
while considering “policy change”

Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy

Goal of New Approach

Perform policy optimization
while considering “policy change”

Q: How do we measure
“policy change™?

Goal of New Approach

Perform policy optimization
while constraining “policy change”

Q: How do we measure
“policy change™?

Goal of New Approach

Perform policy optimization
while constraining “policy change”

Q: How do we measure
“policy change™?
A: Look at trajectory
distribution

A: Look at trajectory
distribution

Goal of New Approach

Perform policy optimization
while constraining “policy change”

Q: How do we measure
“policy change™?

T = {S0» 0> S1> Q15 -+ > 15 Apy—1 }

Goal of New Approach

Perform policy optimization
while constraining “policy change”

Q: How do we measure
“policy change™?
A: Look at trajectory T = 150> Ags S15 15 -+ > Sp—1> A1}
distribution po(7) = u(so)my(ag | so)P(s; | S, ag)my(ay | 5). ..

Goal of New Approach

Perform policy optimization
while considering “policy change”

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7Ty at hand, we compute @,, | as follows:

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7, at hand, we compute 0,,, as follows:

A" (s, a)

max it [_a"’ﬂe(é’)

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7, at hand, we compute 0,,, as follows:

A"(s, a)

maxic, 7o [_a"’ﬂe(é’)

We want to maximize local advantage against Ty,

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7, at hand, we compute 0,,, as follows:

A"(s, a)

maxic, 7o [_a"’ﬂe(é’)

We want to maximize local advantage against Ty,

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7, at hand, we compute 0,,, as follows:

A"(s, a)

maxic, 7o [_a"’ﬂe(é’)

We want to maximize local advantage against Ty,

but we want the new

Goal of New Approach

Perform policy optimization
while considering “policy change”

At iteration t, with 7, at hand, we compute 0,,, as follows:

A"(s, a)

—a~y(s)

Q: What is Dk.?

We want to maximize local advantage against Ty,

but we want the new

KL-divergence: measures the distance between two distributions

Q: What is Dk.?

KL-divergence: measures the distance between two distributions

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Q: What is Dk.?

KL-divergence: measures the distance between two distributions

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Q: What is Dk.?

KL-divergence: measures the distance between two distributions

Q: What is Dk.?

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Examples:

f Q = P, then KL(P|Q) = KL(Q|P) = 0

KL-divergence: measures the distance between two distributions

Q: What is Dk.?

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Examples:
If O = P, then KL(P|Q) = KL(Q|P)=0

If P = ,/’/(//tl,GZI), Q — '/V(/’t29 62])’ then KL(P‘ Q) — H/’tl o /12“%/02

KL-divergence: measures the distance between two distributions

Q: What is Dk.?

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Examples:
f O = P, then KL(P| Q) = KL(Q|P) = 0
If P = '/V(lula 02])9 Q — '/V(/’t29 62])! then KL(P‘ Q) — H/’tl o /12“%/02

Fact:

KL(P|Q) > 0,and beingOifandonlyif P = Q

Outlines

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @, | as follows:

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

max [E__ =, A"0(s, a)]

—ar~y(s)

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

_ u T
max it 7o aNﬂH(S)A (S, a)]

We want to maximize local advantage against Ty

but want the new

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

max [E__ =, A"0(s, a)]

—ar~y(s)

We want to maximize local advantage against Ty

but want the new

Q: How do we compute KL between trajectory likelihoods?

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

—ar~y(s)

max [E__ =, [A"o(s, a)]

Q: How do we compute KL between trajectory likelihoods?

A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

—ar~y(s)

max [E__ =, [A"o(s, a)]

Q: How do we compute KL between trajectory likelihoods?

High-level strategy

1. Simplify KL expression
2. Use Taylor expansion on KL expression

1. Simplifying KL constraint

1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution:

1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution: _
Y
Pr,(T) (s No£52) Fleols)Plsiy,

KL (pﬂ'gt‘pﬂ'@) — _TNpﬂgt ln pﬂ (T) - % Ko LCLo\SD W
0

2.50, Ao, 5‘, Q‘ ’.,.,3

1. Simplifying KL constraint
Change from trajectory distribution to state-action distribution:

Pr,(7)

RE <p 1P ”@) A " Pr,(T)
g

S mlaylsy)
- ~Pr Z ln
o= me(ay | sp)

1. Simplifying KL constraint
Change from trajectory distribution to state-action distribution:

Pr,(7)

RE <p 1P ”@) A " Pr,(T)
g

S mlaylsy)
- ~Pr Z ln
o= me(ay | sp)

7o ay, | sp)

mg(ay | sp)

= H [In

70
Sh,ahNdﬂ d

1. Simplifying KL constraint
Change from trajectory distribution to state-action distribution:

Pr,(7)

RE <p 1P ”@) A " Pr,(T)
g

S mlaylsy)
- ~Pr Z ln
o= me(ay | sp)

mg(ay | sp)

7o ay, | sp)
= H & Sy Ay~ d/fef In

= £(0)

1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution:

Pr,(7)

RE (p 1P ”9) A " Pr,(T)
g

S mlaylsy)
= imp, Z In
o= me(ay | sp)

”Ht(ah K,]

— H — g hl
S~ l mo(ay | sp,)

= £(0)

Q: How do we approximate £(6)?

1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution:

Pr,(7)

KL (’O”Gt‘pﬂe) — _TNpﬂet In

>,

Pr,(T)

S mylaylsy)

= [Py In

! _ ﬂg(ah ‘ Sh)
o) () 5) Pl h=0

)Cu, ,S[&a

7o ay, | 5p)

mg(ay | sp)

= H [In

70
Sh9ahNd,u d

= £(0)

Q: How do we approximate £(6)?

A: Taylor expansion

Recall: A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

—ar~y(s)

max = d/f@f [Aﬂet(s, Cl)]

g

s.t., KL (p%\ p@) <5

Q: How do we compute KL between trajectory likelihoods?

High-level strategy

1. Simplify KL
2. Use Taylor expansion on KL

2. Taylor expansion on KL

2. Taylor expansion on KL

2. Taylor expansion on KL

Gradients of KL

2. Taylor expansion on KL

Gradients of KL

2. Taylor expansion on KL

£0) =0

Gradients of KL

2. Taylor expansion on KL

£() =0

Gradients of KL V,£(0) =0 ‘(9:6’

2. Taylor expansion on KL

£() =0

Gradients of KL Vel/ﬂ ((9) = () ‘6’=6’

V2£(0) = E [Vln 7,(a | 5)Volnmy(a | s)T]

2. Taylor expansion on KL

£() =0

Gradients of KL V,£(0) =0 ‘9:9

V2£(0) = E [Vln 7,(a | 5)Volnmy(a | s)T]

T

2. Taylor expansion on KL

£() =0

Gradients of KL V,£(0) =0 ‘«9=6’

V2£(0) = E [Vln 7,(a | 5)Volnmy(a | s)T]

Fisher Information Matrix F(0,)

2. Taylor expansion on KL

£@) =0

Gradients of KL Vé,f (19) = () ‘6’=6’

V2£(60) = F(0,) = E lvgln 1y | $)Vyin my(a | s)T]

2. Taylor expansion on KL

£@) =0

Gradients of KL Vé,f ((9) = () ‘6’=6’

V2£(6) = F(0) = E lvgln 1y |)V yin my(a | S)T]

2. Taylor expansion on KL

£@) =0

Gradients of KL Vé,f ((9) = () ‘6’=6’

V2£(6) = F(0) = E lvgln 1y |)V yin my(a | S)T]

Taylor Expansion

2. Taylor expansion on KL

£@) =0

Gradients of KL Vé,f ((9) = () ‘6’=6’

V2£(6) = F(0) = E lvgln 1y |)V yin my(a | S)T]

1
Taylor Expansion EKL (pﬂﬁr ‘ pﬂe) =7 ((9)

2. Taylor expansion on KL

£@) =0

Gradients of KL Vé,f ((9) = () ‘6’=6’

V2£(6) = F(0) = E lvgln 1y |)V yin my(a | S)T]

1
Taylor Expansion —KL (pﬂe ‘ pﬂe) =7 ((9)

H 1
~ (0 0, Fy(0 — 6,

Outlines

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient

Recall we have

At iteration t, we update to 0, via:

Recall we have

At iteration t, we update to 0, via:

max

— %0,
SNdﬂ

—ar~y(s)

A"o(s, a)]

Simplify Objective Function

_ B T
max & 7, aNﬂg(S)A (S, a)]

Simplify Objective Function

max

71'9
~Y l
S dﬂ

—ar~y(s)

A"0(s, a)]

Since the objective is also non-lineatr,
let’s do first order-talyor expansion on it:

Simplify Objective Function

Iax I i [_arvyz@(s)

A"0(s, a)]

Since the objective is also non-lineatr,
let’s do first order-talyor expansion on it:

[‘ Q(@r (>/. M/> - \ T%

= gy (s) Y oI g (a | $)A™(s, a)

Vol ()

- (0 —

T
s~d. o1

—a~my(s)

A"(s, a)

&

max ([o] Ot

ﬂ@t
SNdM _

Simplify Objective Function

H

—ar~y(s)

A"0(s, a)]

Since the objective is also non-lineatr,
let’s do first order-talyor expansion on it:

a~y (S)

A"(s, a)

= V,J(15)T(0 — 6)

|

ﬂgt
SNdﬂ _

= gy (s) Y oI g (a | $)A™(s, a)

Vol ()

) (‘9 o QI)

Put everything together, we get:

At iteration t, we update to 0, via:

max V,J(z,)" (0 — 0)
9 [

Put everything together, we get:

At iteration t, we update to 0, via:

Gradient update Imax VHJ (ﬂQ)T(Q — Ht)
Q [

Put everything together, we get:

At iteration t, we update to 0, via:

Gradient update Imax VHJ (ﬂQ)T(Q — Ht)
Q [

KL constraint

Put everything together, we get:

At iteration t, we update to 0, via:

Gradient update Imax VHJ (ﬂQ)T((g — Ht)
H [

KL constraint

Linear objective and quadratic convex constraint: we can solve it optimally!

Put everything together, we get:

At iteration t, we update to 0, via:

Gradient update Imax VHJ (ﬂQ)T((g — Ht)
H [

KL constraint

Linear objective and quadratic convex constraint: we can solve it optimally!

Orp1 = 0, +nFy " Vo J(m,)

Algorithm: Natural Policy Gradient
Initialize 6,

Fort=0, ...

Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...

Estimate PG VyJ(7y)

Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...

Estimate PG VyJ(7y)

Estimate Fisher info-matrix Fy :=[E = Vglnmy(a|s)(Vglnmy(al $)'
t ; 1 t t

Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...

Estimate PG VyJ(7y)

Estimate Fisher info-matrix Fy :=[E = Vglnmy(a|s)(Vglnmy(al $)'
t ; 1 t t

Natural Gradient Ascent: 0, = 0, + nFH_t : VHJ(ﬂgt)

Summary

Summary

Summary

1. Motivation behind trust-region policy optimization

Summary

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

Summary

1. Motivation behind trust-region policy optimization

How can we optimize the policy’s parameters while considering policy change?

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

P(x)
Q%) _

KL(P|Q)=LE, p|In

3. A Trust-Region Formulation for Policy Optimization

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

4. Algorithm: Natural Policy Gradient

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

4. Algorithm: Natural Policy Gradient

Opp1 = 0, + ﬂFe_tl Vol (my)

Summary

1. Motivation behind trust-region policy optimization
How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence

KL(P|O) = E. _,|In P
] 0w

3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

4. Algorithm: Natural Policy Gradient

Opp1 = 0, + ﬂFe_tl Vol (my)

Fisher info-matrix FHI = IC 7, V gln ﬂet(d B Vyln ”Ht(a | S))T

s,arvdﬂ

PG vs Natural PG

Max reward from batch

200 +

175 -

150 A

B

2 3 8

N
W
|

\Mwm gkt
{

=~ Policy gradient

- Natural policy gradient

Al

0 50 100 150 200
Batch number

K
K

250

Ll

300

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 2551212

We can only reset from initial state distribution s, ~ u

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Deep Learning Neural Network

P Y
ARSI RRT
Wy f‘fyr‘ Q'{".v&

ey
,“}“‘{M..V’&lﬁt{& ;
NSNS

¢ K

-~

(O Hidden Layer @ Output Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

0

‘é
e o‘, *"*%?«

Q‘ $" '; i

.& \.gg%.{m: (.ZI«'
/ ‘k‘ i"”;w"' oo
() Hidden Layer

@ Output Layer

S
—
.

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

' Q2SS QLSS QAT S 9 « T [ﬂ? a]
4 “' ;ﬁ@%&é@%& 723

@ Output Layer

() Hidden Layer

Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A)
many classes What about continuous actions a € R“?

Deep Learning Neural Network

gl - |8) =N (//tﬁ(s)aexp(a)ldxd)

0:=1p,al

@ Output Layer

() Hidden Layer

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

—a~my(-|s)

max =, a7 [A%0(s, a)]

0

Locally Improve the local-adv a little bit via one-step gradient ascent:

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

max =, a7 [A%0(s, a)]

0

—a~my(-|s) >. & | D, ~ @[\2

Locally Improve the local-adv a little bit via one-step gradient ascent:

H

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)

Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

J T Ny sd,” [_Me(-\s)Aﬂ@"(S ’ a)]

Locally Improve the local-adv a little bit via one-step gradient ascent:

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)

H

When #n — 07, gradient ascent ensures
we improve the objective function

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~my(-|s)

s.1.,KL(py |pg) <6

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

max =, a7 [A%0(s, a)]

0

—a~m(-|s)

s.1.,KL(py |pg) <6

Define fisher info-matrix £y = V%KL(p@ [po) | o_p

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

Review on Policy Optimization: NPG

Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

_ _ T
X E,_ o [y A705,)]

s.1.,KL(py |pg) <6

Define fisher info-matrix £y = V%KL(p@ [po) | o_p

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

max V,J(z,)T(0 = 0), s.t., (0 —0)TF,(0—6) <5
9 [[

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fiftth attempt (new): Proximal Policy Optimization (PPO)

_ N T
X E, o [y A5,)]

An extension of NPG (even faster in practice):

Given an current policy z’, we perform policy update to '™

1

fiftth attempt (new): Proximal Policy Optimization (PPO)

max

_aNﬂ'g(- ‘S)A ﬂgt(‘ga CZ)] —A

| -

- i [KL (Jz@t(a | 5) | my(a] S))]

4

regularization

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fiftth attempt (new): Proximal Policy Optimization (PPO)

max E__ [‘aN@(-\S)A”HI(S’ a)] — A g [KL (ﬂet(él | 5) | 7me(a | S))]

\ - - 4

regularization

Use importance weighting & expand KL divergence:

An extension of NPG (even faster in practice):

Given an current policy 7', we perform policy update to ait]

fiftth attempt (new): Proximal Policy Optimization (PPO)

max E__ [‘aN@(-\S)A”HI(S’ a)] — A g [KL (ﬂ@t(a | 5) | 7me(a | S))]

) - -

regularization

Use importance weighting & expand KL divergence:

m(a|s)

mo(a|s)

U

£0) :=E,__ [Sen ATos, a)] — AE, 7 a~y (-13) [—ln my(a | s)]

An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fiftth attempt (new): Proximal Policy Optimization (PPO)

max E__ [_aNﬂg(-\s)Aﬂm(S’ cz)] — A g [KL (ﬂet(d | 5) | 7me(a | S))]

) - - 4

regularization

Use importance weighting & expand KL divergence:

m(a|s)

mo(a|s)

U

£0) :=E,__ [Sen ATos, a)] — AE, 7 a~y (-13) [—ln my(a | s)]

PPO: Perform a few steps of mini-batch SGA on £(6) to approximate arg max 7 (&)
0

