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Improving Policy Gradient

Lecture 10: Policy gradient
Lecture 11: Variance Reduction via advantage estimation

Lecture 12 (today!): Leverage the geometry via Natural Policy Gradient (NPG)
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The most commonly used formulation:

ng(ﬂ'gt) =Lk, g% lveln ngt(a | $)A "o(s, a)]

Algorithm: Stochastic Gradient Ascent



Policy Parameterization

Recall that we consider parameterized policy 7,( - |s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:

Neural network

Feature vector (s, a) € R?, and

parameter 9 € R4

exp(0' ¢(s, a)) exp(fy(s, a))

roals) = roals) =

Za, exp(0' (s, a’)) Za, exp(fy(s,a’))



Outline

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient
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Two Observations

Observation 1: Policy gradient estimates have high variance
Observation 2: Small changes in policy’s parameters can lead to

Today’s Question

Can we optimize the policy’s parameters
without drastically ?



Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to
large changes in policy
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Example

Train a robot to “run” forward as fast as possible
State: joint angles, center of mass, velocity, etc
Action: torgues on joints Note: All three

Reward: distance of moving forward between two steps robots achieve

high reward!

Recal: VyJ(1,) = E, [ Vln 7,(a| $)A™(s, a)
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Policy: direction to move in at S1

State distribution
induced by 7y

A = {aleft’ aright}

T ﬂ(a\s;é’)={

Policy 7,

1 if a = argmaxfy(a)
0 otherwise

| | 0, = (0.51, 0.49) [Parameter space]
- | g | I Ty, « Ueft [Policy space]
1V | | J— 81
(0.51, 0.49)

Observation: Small changes in

policy’s parameters can lead to
large changes in policy
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Intuition Behind Observation #2

Observation 2: Small changes in policy’s parameters can lead to

In other words...
“| don’t care how big the change is to parameters (6),
| care about ;

Implicitly, PG considers Euclidean distance in parameter space
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Goal of New Approach

Perform policy optimization
while constraining “policy change”

Q: How do we measure
“policy change™?
A: Look at trajectory T = 150> Ags S15 15 -+ > Sp—1> A1}
distribution po(7) = u(so)my(ag | so)P(s; | S, ag)my(ay | 5). ..
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Perform policy optimization
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At iteration t, with 7, at hand, we compute 0,,, as follows:

A"(s, a)

—a~y(s)

Q: What is Dk.?
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KL-divergence: measures the distance between two distributions

Q: What is Dk.?

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

Examples:
f O = P, then KL(P| Q) = KL(Q|P) = 0
If P = '/V(lula 02])9 Q — '/V(/’t29 62])! then KL(P‘ Q) — H/’tl o /12“%/02

Fact:

KL(P|Q) > 0,and beingOifandonlyif P = Q



Outlines

1. Motivation behind trust-region policy optimization

2. Quick intro on KL-divergence

3. A Trust-Region Formulation for Policy Optimization

4. Algorithm: Natural Policy Gradient



A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @, | as follows:



A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

max [E__ =, A"0(s, a)]

—ar~y(s)



A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

_ u T
max it 7o aNﬂH(S)A (S, a)]

We want to maximize local advantage against Ty

but want the new



A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

max [E__ =, A"0(s, a)]

—ar~y(s)

We want to maximize local advantage against Ty

but want the new

Q: How do we compute KL between trajectory likelihoods?



A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:
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A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

—ar~y(s)

max [E__ =, [ A"o(s, a)]

Q: How do we compute KL between trajectory likelihoods?

High-level strategy

1. Simplify KL expression
2. Use Taylor expansion on KL expression
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1. Simplifying KL constraint

Change from trajectory distribution to state-action distribution:

Pr,(7)

KL (’O”Gt‘pﬂe) — _TNpﬂet In

>,

Pr,(T)

S mylaylsy)

= [ Py In

! _ ﬂg(ah ‘ Sh)
o) () 5) Pl h=0

)Cu, ,S[&a

7o ay, | 5p)

mg(ay | sp)

= H [ In

70
Sh9ahNd,u d

= £(0)

Q: How do we approximate £(6)?

A: Taylor expansion



Recall: A trust region formulation for policy update:

At iteration t, with 7Ty at hand, we compute @,, | as follows:

—ar~y(s)

max = d/f@f [ Aﬂet(s, Cl)]

g

s.t., KL (p%\ p@) <5

Q: How do we compute KL between trajectory likelihoods?

High-level strategy

1. Simplify KL
2. Use Taylor expansion on KL
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2. Taylor expansion on KL

£() =0

Gradients of KL V,£(0) =0 ‘«9=6’

V2£(0) = E [ Vln 7,(a | 5)Volnmy(a | s)T]

Fisher Information Matrix F(0,)
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£@) =0

Gradients of KL Vé,f ((9) = () ‘6’=6’

V2£(6) = F(0) = E lvgln 1y | )V yin my(a | S)T]

1
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H 1
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At iteration t, we update to 0, via:
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At iteration t, we update to 0, via:
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Since the objective is also non-lineatr,
let’s do first order-talyor expansion on it:

[‘ Q(@r (>/. M/> - \ T%
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Simplify Objective Function

H

—ar~y(s)

A"0(s, a)]

Since the objective is also non-lineatr,
let’s do first order-talyor expansion on it:

a~y (S)

A"(s, a)

= V,J(15)T(0 — 6)

_|_

ﬂgt
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Put everything together, we get:

At iteration t, we update to 0, via:

Gradient update Imax VHJ (ﬂQ)T((g — Ht)
H [

KL constraint

Linear objective and quadratic convex constraint: we can solve it optimally!

Orp1 = 0, +nFy " Vo J(m,)
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Algorithm: Natural Policy Gradient
Initialize 6,
Fort=0, ...

Estimate PG VyJ(7y)

Estimate Fisher info-matrix Fy :=[E = Vglnmy(a|s)(Vglnmy(al $)'
t ; 1 t t

Natural Gradient Ascent: 0, = 0, + nFH_t : VHJ(ﬂgt)
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How can we optimize the policy’s parameters while considering policy change?

2. Quick intro on KL-divergence
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3. A Trust-Region Formulation for Policy Optimization
max E__ -, [[E amry(syA (S, a)]

Ty H

s.t., KL <pﬂ9t‘ pﬂ9> <5

4. Algorithm: Natural Policy Gradient

Opp1 = 0, + ﬂFe_tl Vol (my)

Fisher info-matrix FHI = IC 7, V gln ﬂet(d B Vyln ”Ht(a | S))T

s,arvdﬂ



PG vs Natural PG

Max reward from batch

200 +

175 -

150 A

B

2 3 8

N
W
|

\Mwm gkt
{

=~ Policy gradient

- Natural policy gradient

Al

0 50 100 150 200
Batch number

K
K

250

Ll

300




Review on Policy Optimization:

We have huge space space, i.e., | S| might be 2551212

We can only reset from initial state distribution s, ~ u



Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!



Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation



Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A
many classes

Deep Learning Neural Network

P Y
ARSI RRT
Wy f‘fyr‘ Q'{".v&

ey
,“}“‘{M..V’&lﬁt{& ;
NSNS

¢ K

-~

(O Hidden Layer @ Output Layer



Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A )
many classes What about continuous actions a € R“?

Deep Learning Neural Network

0

‘é
e o‘, *"*%?«

Q‘ $" '; i

.& \.gg%.{m: (.ZI«'
/ ‘k‘ i"”;w"' oo
() Hidden Layer

@ Output Layer

S
—
.




Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A )
many classes What about continuous actions a € R“?

Deep Learning Neural Network

' Q2SS QLSS QAT S 9 « T [ﬂ? a]
4 “' ;ﬁ@%&é@%& 723

@ Output Layer

() Hidden Layer




Review on Policy Optimization:

We have huge space space, i.e., | S| might be 25571212

We can only reset from initial state distribution s, ~ u

Numeration over state (e.g., a for loop) is not possible!

Goal: learn w/ function approximation

A Policy is a classifier w/ A )
many classes What about continuous actions a € R“?

Deep Learning Neural Network

gl - |8) =N (//tﬁ(s)aexp(a)ldxd)

0:=1p,al

@ Output Layer

() Hidden Layer




Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

max =, a7 [ A%0(s, a)]

0

—a~my(-|s)



Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

—a~my(-|s)

max =, a7 [ A%0(s, a)]

0

Locally Improve the local-adv a little bit via one-step gradient ascent:



Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

max =, a7 [ A%0(s, a)]

0

—a~my(-|s) >. & | D, ~ @[\2

Locally Improve the local-adv a little bit via one-step gradient ascent:

H

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)




Review on Policy Optimization: PG

Given an current policy 7/, we perform policy update to 't

Third attempt: PG on parameterized policy

J T Ny sd,” [_Me(-\s)Aﬂ@"(S ’ a)]

Locally Improve the local-adv a little bit via one-step gradient ascent:

01=06,+n-E__ [— aN@I(s)Vln my(als) - A%(s, a)

H

When #n — 07, gradient ascent ensures
we improve the objective function
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Given an current policy 7/, we perform policy update to 't

Fourth attempt: Natural Policy Gradient

_ _ T
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s.1.,KL(py |pg) <6

Define fisher info-matrix £y = V%KL(p@ [ po) | o_p

a convex approximation, e.g., linearize obj and quadratize constraint,
gives us the following NPG update:

max V,J(z,)T(0 = 0), s.t., (0 —0)TF,(0—6) <5
9 [ [
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An extension of NPG (even faster in practice):

Given an current policy 7/, we perform policy update to 't

fiftth attempt (new): Proximal Policy Optimization (PPO)

max E__ [_aNﬂg(-\s)Aﬂm(S’ cz)] — A g [KL (ﬂet(d | 5) | 7me(a | S))]

) - - 4

regularization

Use importance weighting & expand KL divergence:

m(a|s)

mo(a|s)

U

£0) :=E,__ [ Sen ATos, a)] — AE, 7 a~y (-13) [—ln my(a | s)]

PPO: Perform a few steps of mini-batch SGA on £(6) to approximate arg max 7 (&)
0



