
NPG and PPO



Annoucements

1. We will release HW3 w/ solution — it is optional, but do take a look

2. Prelim scope: first lecture to (and include) next Monday’s lecture

3. We will release a prelim from last year (but don’t overfit to it) 



Recap on NPG:

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Intuition: maximize local adv subject 
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG

Fθt
:= 𝔼s,a∼dπθt

μ [∇θln πθt
(a |s)(∇θln πθt

(a |s))
⊤] ∈ ℝdimθ×dimθ



Outline for Today: 

1. More Explanation of Natural (Policy) Gradient

2. Proximal Policy Optimization (PPO)



NPG update: θ1 = θ0 + ηF−1
θ0

∇θ0

KL (ρπθ0
|ρπθ) ≤ δ ⇒ (θ − θ0)⊤Fθ0

(θ − θ0) ≤ δ

Our goal is to make sure two distributions do not change to much, 

but parameters  could potential change a lot! θ

Consider special case where  is a diagonal matrix:  Fθ0
Fθ0

=
σ1 0 0
0 σ2 0
0 0 σ3

∀i : θ1[i] = θ0[i] + (ησ−1
i )∇θ0

[i]

For tiny , we indeed have a huge learning rate, i.e., , at coordinate  !σi ησ−1
i i

In other words, NPG allows a big jump on some coordinates which do not affect KL-div too much



Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := ( exp(θ0)
1 + exp(θ0)

,
1

1 + exp(θ0) ) i.e., Natural GA can speed up learning when 
 gets largerθ

pθ = ( exp(θ)
1 + exp(θ)

,
1

1 + exp(θ) )
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
=

exp(θ0)
(1 + exp(θ0))2

NPG: θ1 = θ0 + η
g′￼(θ0)

fθ0

GA: θ1 = θ0 + ηg′￼(θ0)

Hence: fθ0
→ 0+, as θ0 → ∞



Outline for Today: 

1. More Explanation of Natural (Policy) Gradient

2. Proximal Policy Optimization (PPO)



Policy Gradient (e.g., REINFORCE) can unstable and slow

The potential high-variance in PG can make learning very unstable

Natural Policy gradient is computational expensive

Even compute fisher information matrix is slow



These methods do not take advantage of GPUs well

Too frequent!

GPU usage can be very low…



Proximal Policy Optimization (PPO)
πθt

𝒟 = {s, a, Aπθt(s, a)}
Collect a large dataset

Now let’s do multiple epoches of 
mini-batch gradient update on the 

dataset



Proximal Policy Optimization (PPO)

Construct a batch Supervised Learning style objective using 𝒟 = {s, a, Aπθt(s, a)}

max
θ

ℓ(θ) = max
θ

𝔼s∼dπθt𝔼a∼πθ(⋅|s) ⋅ Aπθt(s, a)

→ 𝔼s∼dπθt𝔼a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a)IW trick

≈ ∑
s,a

πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a)



Proximal Policy Optimization (PPO)

Construct a batch Supervised Learning style objective using 𝒟 = {s, a, Aπθt(s, a)}

̂ℓ(θ) = ∑
s,a

πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a)

Trick 1: clipping to make sure  stay close to  (ensuring stability in training)πθ πθt

̂ℓclip(θ) = ∑
s,a

clip ( πθ(a |s)
πθt

(a |s)
,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)

clip(x,1 − ϵ,1 + ϵ)
Stop updating  if it is too different from πθ(a |s) πθt

(a |s)



Proximal Policy Optimization (PPO)

Trick 2, take the min of the clipped and uncipped (original) obj

̂ℓfinal(θ) = ∑
s,a

min
πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a), clip ( πθ(a |s)

πθt
(a |s)

,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)

Original obj clipped obj which ensures no abrupt change in action probabilities



Proximal Policy Optimization (PPO)
Trick 2, take the min of the clipped and uncipped (original) obj

̂ℓfinal(θ) = ∑
s,a

min
πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a), clip ( πθ(a |s)

πθt
(a |s)

,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)

Just consider one term inside the summation:

When Aπθt(s, a) > 0

w :=
πθ(a |s)
πθt

(a |s)
1 1 + ϵ1 − ϵ

A
(1 − ϵ)A

(1 + ϵ)A



Proximal Policy Optimization (PPO)
Trick 2, take the min of the clipped and uncipped (original) obj

Just consider one term inside the summation:

When Aπθt(s, a) < 0
w :=

πθ(a |s)
πθt

(a |s)1 1 + ϵ1 − ϵ

A
(1 − ϵ)A

(1 + ϵ)A

̂ℓfinal(θ) = ∑
s,a

min
πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a), clip ( πθ(a |s)

πθt
(a |s)

,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)



Proximal Policy Optimization (PPO)

Trick 2, take the min of the clipped and uncipped (original) obj

̂ℓfinal(θ) = ∑
s,a

min
πθ(a |s)
πθt

(a |s)
⋅ Aπθt(s, a), clip ( πθ(a |s)

πθt
(a |s)

,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)

Original obj clipped obj which ensures no abrupt change in action probabilities

We compute , via performing a few epoches of 

minbatch SG ascent (or Adam/Adagrad) on 

θt+1 ≈ arg max
θ

̂ℓfinal(θ)
̂ℓfinal



Proximal Policy Optimization (PPO)

Initialize  for the policyθ0

For :t = 0 → T

Run  to collect multiple trajectories, and form the dataset πθ {s, a, Aπθt(s, a)}

Construct the loss  using the dataset̂ℓfinal(θ)

Perform a few steps of mini-batch gradient updates  on  to get ̂ℓfinal(θ) θt+1



Summary

NPG controls the changes in the policy space (KL) directly

NPG allows one to have big jumps in parameter space, as long as the 
outcome (distribution) does not change too much

PPO is a more practical versions of NPG — making NPG really scalable 
while maintaing the high level idea of NPG


