
PPO and GAE

 



Annoucements

Will release the next reading Quiz on the PPO technical report

Will release the next programming assignment on NPG and PPO



Recap: Proximal Policy Optimization (PPO)
Policy optimization objective:

̂ℓfinal(θ) = ∑
s,a

min πθ(a |s)
πθt

(a |s) ⋅ Aπθt(s, a), clip ( πθ(a |s)
πθt

(a |s) ,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)
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When , we want to increase the ratio Aπθt(s, a) > 0 πθ(a |s)/πθt
(a |s)

w := πθ(a |s)
πθt

(a |s)1 1 + ϵ1 − ϵ

A
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(1 + ϵ)A
wA
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Main Question Today:

̂ℓfinal(θ) = ∑
s,a

min πθ(a |s)
πθt

(a |s) ⋅ Aπθt(s, a), clip ( πθ(a |s)
πθt

(a |s) ,1 − ϵ,1 + ϵ) ⋅ Aπθt(s, a)

How to get these advantage values?
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Require the ability to reset: i.e., go back to  again, and do one more rollouts

Can have high variance;
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To further reduce variance, we will give up unbiaseness, 
and trade bias for variance
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1. sample a trajectory , for all :τ ∼ π h

s0 sh yh := rh + γrh+1 + γ2rh+2 + γ3rh+3 + …

{sh, yh}h≥0
2. Repeat this for n times (i.e., n trajectories), form a 
regression dataset:

𝒟π = {s, y}
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Estimate Vπ
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̂Vπ = arg min
V ∑

s,y∈𝒟π

(V(s) − y)2



Generalized Advantage Estimation

Estimate Vπ

Given , perform regression𝒟π = {s, y}

̂Vπ = arg min
V ∑

s,y∈𝒟π

(V(s) − y)2

The Bayes optimal for this regression is , 
so if regression works well we can have 

𝔼[y |s] = Vπ(s)
̂Vπ ≈ Vπ



Generalized Advantage Estimation

Our goal: estimate Aπ(s, a)

We will do the following two steps: 

1. Estimate  using function approximation (neural network, decision tree, etc)Vπ(s)
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Generalized Advantage Estimation

̂A(1)(sh, ah) = rh + γV(sh+1) − V(sh) (Low variance but can be highly biased)

̂A(2)(sh, ah) = rh + γrh+1 + γ2V(sh+2)
≈Qπ(sh,ah)

− V(sh) (Slighly higher var but lower bias)

̂A(3)(sh, ah) = rh + γrh+1 + γ2rh+2 + γ3V(sh+2)
≈Qπ(sh,ah)

− V(sh) (higher var but lower bias)

Denote  as an estimator of , let’s compute estimate for V Vπ Aπ(s, a)

Q: What is ? Would using  in the policy gradient have any bias issue?̂A∞(sh, ah) ̂A∞(sh, ah)



Generalized Advantage Estimation

GAE uses an exponential average to combine these advantage estimators together

λ ∈ (0,1)

̂Agae = (1 − λ)( ̂A(1) + λ ̂A(2) + λ2 ̂A(3) + … . . . )
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When , the GAE estimate becomes λ = 0

When  , the GAE estimate becomes λ = 1
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Generalized Advantage Estimation

In summary, given a trajectory  of length H, and , GAE copmutes  for all  on τ ∼ π V ≈ Vπ ̂Agae(sh, ah) sh, ah τ

(1 − λ)(A(1)
h + λA(2)

h + λ2A(3)
h + …) =

H−1

∑
l=0

(γλ)lBEh+lτ
h = 0 h = H-1h

BE0 BE1 . . . BEh BEH−1BEh+1 BEh+2 . . .

∀h : Agae
h = BEh + (γλ)BEh+1 + (γλ)2BEh+2… . . (γλ)H−h−1BEH−1

Q: can you think about how to compute  recursively using  in a backward fashion? Agae
h Agae

h+1
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Put everything together: PPO w/ GAE:
Initialize  for the policy and  for value functionπθ0

Vω0

For :t = 0 → T

Run  to collect multiple trajectories πθt
τ1, …, τn

Form the regression dataset  using the trajectories𝒟 = {s, y}

Construct V loss:  ℓV(ω) = ∑
s,y

(Vω(s) − y)2

Form : for each   in each trajectory, compute  using Agae (s, a) Agae(s, a) Vωt

Construct policy loss: ℓπ(θ) = − ∑
s,a

min πθ(a |s)
πθt

(a |s) ⋅ Agae(s, a), clip ( πθ(a |s)
πθt

(a |s) ,1 − ϵ,1 + ϵ) ⋅ Agae(s, a)

Update  and  via a few gradient updates on the combined loss π V ℓπ(θ) + ℓV(ω)



Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already? 



Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already? 

There are further tricks to reduce variance, see the handout of the next programming assignment



Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already? 

There are further tricks to reduce variance, see the handout of the next programming assignment

Need to get your hands dirty and try it out in practice!


