PPO and GAE

Annoucements

Will release the next reading Quiz on the PPO technical report

Will release the next programming assignment on NPG and PPO

Recap: Proximal Policy Optimization (PPO)

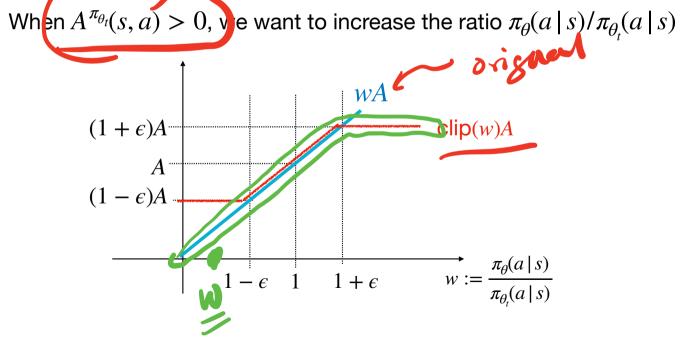
Policy optimization objective:

$$\hat{\ell}_{final}(\theta) = \sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} \cdot A^{\pi_{\theta_{t}}}(s, a), \quad \mathsf{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_{t}}}(s, a) \right\}$$

Recap: Proximal Policy Optimization (PPO)

Policy optimization objective:

$$\hat{\ell}_{final}(\theta) = \sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} \cdot A^{\pi_{\theta_{t}}}(s,a), \quad \text{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_{t}}}(s,a) \right\}$$

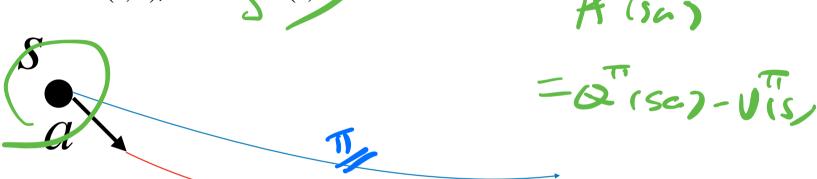


Main Question Today:

$$\hat{\ell}_{final}(\theta) = \sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{l}}(a \mid s)} \left(A^{\pi_{\theta_{l}}}(s, a), \text{ clip} \left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{l}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon \right) \left(A^{\pi_{\theta_{l}}}(s, a) \right) \right\}$$

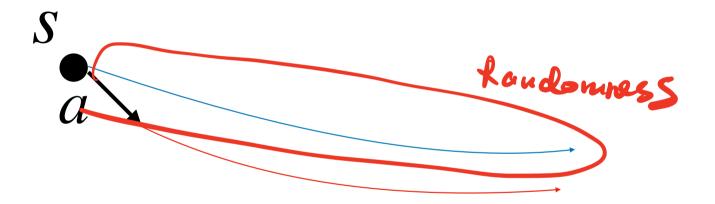
How to get these advantage values?

Given (s, a), estimate $A^{\pi}(s, a)$ via two MC rollouts



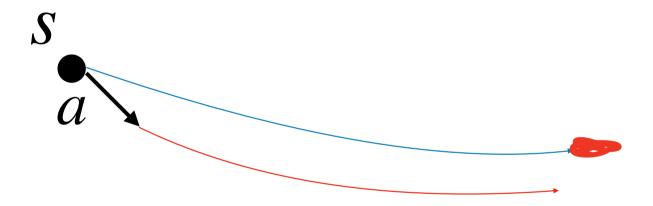
of them Eth free-war

Given (s, a), estimate $A^{\pi}(s, a)$ via two MC rollouts



Can have high variance;

Given (s, a), estimate $A^{\pi}(s, a)$ via two MC rollouts



Can have high variance;

Require the ability to **reset**: i.e., go back to *s* again, and do one more rollout

工

Q: given (s, a), can we estimate $A^{\pi}(s, a)$ via one rollout?

A= Q-V

Q: given (s, a), can we estimate $A^{\pi}(s, a)$ via one rollout?

$$A^{\pi}(s,a)/2 = (Q^{\pi}(s,a) - V^{\pi}(s))/2 = \mathbb{E}_{z \sim \text{Uniform}(\{0,1\})}(zQ^{\pi}(s,a) - (1-z)V^{\pi})$$

$$2 = \begin{cases} 0 & \text{if } z = 0 \\ 1 & \text{if } z = 0 \end{cases}$$

$$2 \cdot (-V) + \frac{1}{2} \cdot (-V) + \frac{1}{2} \cdot (-V)/2 = A/2$$

Q: given (s, a), can we estimate $A^{\pi}(s, a)$ via one rollout?

$$A^{\pi}(s,a)/2 = (Q^{\pi}(s,a) - V^{\pi}(s))/2 = \mathbb{E}_{z \sim \mathsf{Uniform}(\{0,1\})}(zQ^{\pi}(s,a) - (1-z)V^{\pi})$$

Can have high variance still

To further reduce variance, we will give up unbiaseness, and trade bias for variance

Our goal: estimate $A^{\pi}(s, a)$

We will do the following two steps:

Our goal: estimate $A^{\pi}(s, a)$

We will do the following two steps:

1. Estimate $V^{\pi}(s)$ using function approximation (neural network, decision tree, etc)

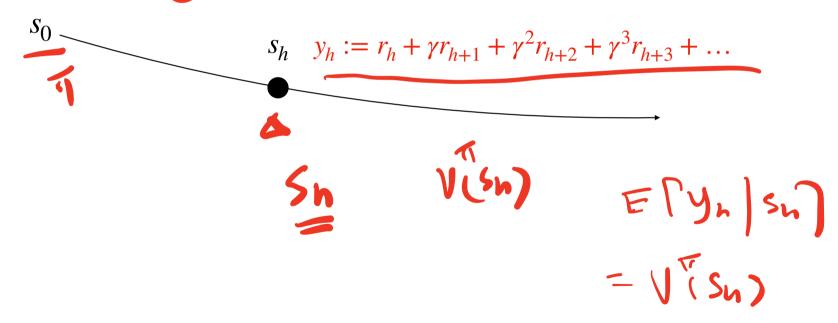
Our goal: estimate $A^{\pi}(s, a)$

We will do the following two steps:

- 1. Estimate $V^{\pi}(s)$ using function approximation (neural network, decision tree, etc)
 - 2. Form an estimate of $A^{\pi}(s,a)$ using the value function estimator V

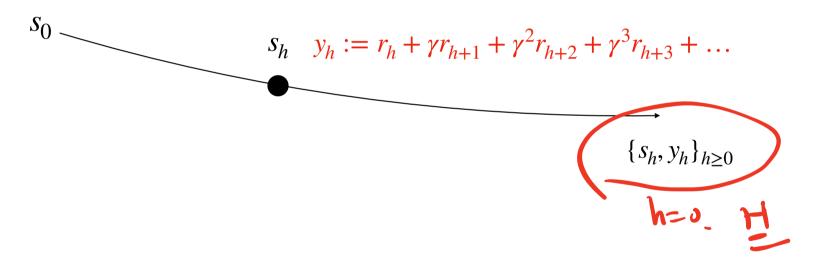
Estimate V^{π}

1. sample a trajectory $\tau \sim \pi$, for all h:



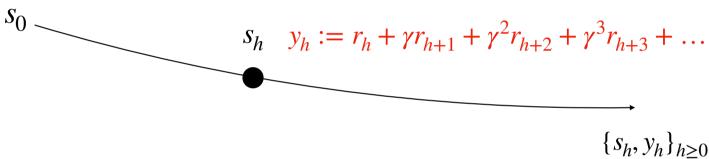
Estimate V^{π}

1. sample a trajectory $\tau \sim \pi$, for all h:



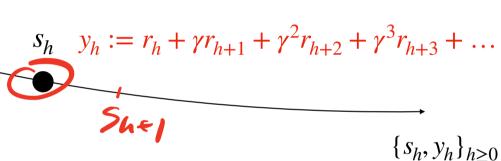
Estimate V^{π}

1. sample a trajectory $\tau \sim \pi$, for all h:



2. Repeat this for n times (i.e., n trajectories), form a regression dataset:

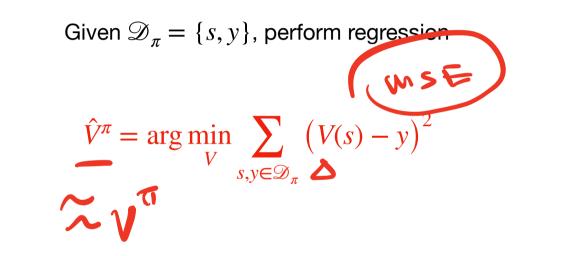
1. sample a trajectory $\tau \sim \pi$, for all h:



2. Repeat this for n times (i.e., n trajectories), form a regression dataset;

$$\mathcal{D}_{\pi} = \{s, y\}$$

Estimate V^{π}



Estimate V^{π}

Given $\mathcal{D}_{\pi} = \{s, y\}$, perform regression

$$\hat{V}^{\pi} = \arg\min_{V} \sum_{s, y \in \mathcal{D}_{\pi}} (V(s) - y)^{2}$$

The Bayes optimal for this regression is $\mathbb{E}[y \mid s] = V^{\pi}(s)$, so if regression works well we can have $\hat{V}^{\pi} \approx V^{\pi}$

Our goal: estimate $A^{\pi}(s, a)$

We will do the following two steps:

1. Estimate $V^{\pi}(s)$ using function approximation (neural network, decision tree_etc)

2. Form an estimate of $A^{\pi}(s,a)$ using the value function estimator V

Denote V as an estimator of V^π , let's compute estimate for $A^\pi(s,a)$

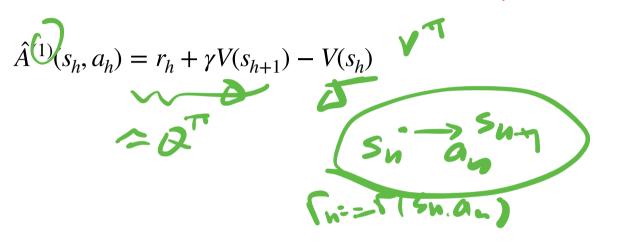
$$A^{T}(SA) = Q^{T}(SA) - V^{T}(S)$$

$$= \Gamma(CA) + \delta E_{SAP(SA)} V^{T}(S') - V^{T}(S)$$

$$= \Gamma(SA) + \delta V(S') - V^{T}(S)$$

$$\approx Q^{T}(SA)$$

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$



Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s,a)$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) \qquad \text{(Low variance but can be highly biased)}$$

$$Sh. a_h. Sh. 1$$

$$(Sh. a_h. Sh. 1, a_{h+1}, S_{h+2}) \qquad \text{(Su.a.)}$$

$$S'(Sh. a_h) - V''(Sh) = (r_h + V'_{h+1} + V'_{h+1} + V'_{h+2})$$

$$- V''(Sh)$$

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$

$$\hat{A}^{(1)}(s_h,a_h)=r_h+\gamma V(s_{h+1})-V(s_h) \qquad \text{(Low variance but can be highly biased)}$$

$$\hat{A}^{(2)}(s_h,a_h)=\underbrace{r_h+\gamma r_{h+1}+\gamma^2 V(s_{h+2})}_{\approx Q^\pi(s_h,a_h)} V(s_h)$$

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h)$$
 (Low variance but can be highly biased)

$$\hat{A}^{(2)}(s_h, a_h) = \underbrace{r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2})}_{\approx Q^{\pi}(s_h, a_h)} - V(s_h) \quad \text{(Slighly higher var but lower bias)}$$

Shan. Suriauri Suri, aurz, Shrz

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$

$$\hat{A}^{(1)}(s_h,a_h)=r_h+\gamma V(s_{h+1})-V(s_h) \qquad \text{(Low variance but can be highly biased)}$$

$$\hat{A}^{(2)}(s_h,a_h)=r_h+\gamma r_{h+1}+\gamma^2 V(s_{h+2})-V(s_h) \qquad \text{(Slighly higher var but lower bias)}$$

$$\hat{A}^{(3)}(s_h,a_h)=r_h+\gamma r_{h+1}+\gamma^2 r_{h+2}+\gamma^3 V(s_{h+2})-V(s_h)$$

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$

$$\hat{A}^{(1)}(s_h,a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) \qquad \text{(Low variance but can be highly biased)}$$

$$\hat{A}^{(2)}(s_h,a_h) = \underbrace{r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2}) - V(s_h)}_{\approx \mathcal{Q}^{\pi}(s_h,a_h)} \qquad \text{(Slighly higher var but lower bias)}$$

$$\hat{A}^{(3)}(s_h,a_h) = \underbrace{r_h + \gamma r_{h+1} + \gamma^2 r_{h+2} + \gamma^3 V(s_{h+2}) - V(s_h)}_{\approx \mathcal{Q}^{\pi}(s_h,a_h)} \qquad \text{(higher var but lower bias)}$$

Denote V as an estimator of V^{π} , let's compute estimate for $A^{\pi}(s, a)$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h)$$
 (Low variance but can be highly biased)

$$\hat{A}^{(2)}(s_h,a_h) = \underbrace{r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2})}_{\approx Q^{\pi}(s_h,a_h)} - V(s_h) \quad \text{(Slighly higher var but lower bias)}$$

$$\hat{A}^{(3)}(s_h, a_h) = \underbrace{r_h + \gamma r_{h+1} + \gamma^2 r_{h+2} + \gamma^3 V(s_{h+2})}_{\approx Q^{\pi}(s_h, a_h)} - V(s_h) \quad \text{(higher var but lower bias)}$$

Q: What is $\hat{A}^{\infty}(s_h, a_h)$? Would using $\hat{A}^{\infty}(s_h, a_h)$ in the policy gradient have any bias issue?

GAE uses an exponential average to combine these advantage estimators together

$$\hat{A}^{gae} = (1 - \lambda) \left(\hat{A}^{(1)} + \lambda \hat{A}^{(2)} + \lambda^2 \hat{A}^{(3)} + \dots \right)$$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$
(2)
$$\hat{A}(S_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$
(3)
$$\hat{A}(S_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$

$$\hat{A}^{(2)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1}$$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$

$$\hat{A}^{(2)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1}$$

$$\hat{A}^{(3)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 r_{h+2} + \gamma^3 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1} + \gamma^2 BE_{h+2}$$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$

$$\hat{A}^{(2)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1}$$

$$\hat{A}^{(3)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 r_{h+2} + \gamma^3 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1} + \gamma^2 BE_{h+2}$$

$$\hat{A}^{(k)}(s_h, a_h) = BE_h + \gamma BE_{h+1} + \gamma^2 BE_{h+2} + \dots \gamma^{k-1} BE_{h+k-1}$$

$$\hat{A}^{(1)}(s_h, a_h) = r_h + \gamma V(s_{h+1}) - V(s_h) = BE_h$$

$$\hat{A}^{(2)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1}$$

$$\hat{A}^{(3)}(s_h, a_h) = r_h + \gamma r_{h+1} + \gamma^2 r_{h+2} + \gamma^3 V(s_{h+2}) - V(s_h) = BE_h + \gamma BE_{h+1} + \gamma^2 BE_{h+2}$$

$$\hat{A}^{(k)}(s_h, a_h) = BE_h + \gamma BE_{h+1} + \gamma^2 BE_{h+2} + \dots + \gamma^{k-1} BE_{h+k-1}$$

$$(1-\lambda)(A^{(1)}+\lambda A^{(2)}+\lambda^2 A^{(3)}+\ldots)=\sum_{l=0}^{\infty}(\gamma\lambda)^lBE_{h+l}$$
(8.7) new Discount factor

Expressing \hat{A}^{gae} using Bellman errors (Bellman residuals): $BE_{\tau} = r_{\tau} + \gamma V(s_{\tau+1}) - V(s_{\tau})$

Expressing \hat{A}^{gae} using Bellman errors (Bellman residuals): $BE_{\tau} = r_{\tau} + \gamma V(s_{\tau+1}) - V(s_{\tau})$

$$(1 - \lambda)(A^{(1)} + \lambda A^{(2)} + \lambda^2 A^{(3)} + \dots) = \sum_{l=0}^{\infty} (\gamma \lambda)^l B E_{h+l}$$

Expressing \hat{A}^{gae} using Bellman errors (Bellman residuals): $BE_{\tau}=r_{\tau}+\gamma V(s_{\tau+1})-V(s_{\tau})$

When
$$\lambda = 0$$
, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

When $\lambda = 1$, the GAE estimate becomes

In summary, given a trajectory $\tau \sim \pi$ of length H, and $V \approx V^{\pi}$, GAE copmutes $\hat{A}^{gae}(s_h, a_h)$ for all s_h, a_h on τ

$$(1 - \lambda)(A_h^{(1)} + \lambda A_h^{(2)} + \lambda^2 A_h^{(3)} + \dots) = \sum_{l=0}^{H-1} (\gamma \lambda)^l B E_{h+l}$$

$$h = 0$$

$$h = H-1$$

$$B E_h = I_h + \lambda V_{h+1} - V_h$$

In summary, given a trajectory $\tau \sim \pi$ of length H, and $V \approx V^{\pi}$, GAE copmutes $\hat{A}^{gae}(s_h, a_h)$ for all s_h, a_h on τ

$$\mathcal{T}$$

$$h = 0$$

$$BE_{0}$$

$$BE_{1}$$

$$ME_{h}$$

$$BE_{h}$$

$$BE_{h}$$

$$BE_{h+1}$$

$$BE_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+2}$$

$$ME_{h+1}$$

$$ME_{h+2}$$

$$ME_{h+$$

In summary, given a trajectory $\tau \sim \pi$ of length H, and $V \approx V^{\pi}$, GAE copmutes $\hat{A}^{gae}(s_h, a_h)$ for all s_h, a_h on τ

$$\mathcal{T}$$

$$h = 0$$

$$BE_0 \quad BE_1 \quad \dots \quad BE_h \quad BE_{h+1} \quad BE_{h+2} \quad \dots \quad (\gamma\lambda)^{H-h-1}BE_{H-1}$$

$$\forall h: A_b^{gae} = BE_h + (\gamma\lambda)BE_{h+1} + (\gamma\lambda)^2BE_{h+2} \dots (\gamma\lambda)^{H-h-1}BE_{H-1}$$

In summary, given a trajectory $\tau \sim \pi$ of length H, and $V \approx V^{\pi}$, GAE copmutes $\hat{A}^{gae}(s_h, a_h)$ for all s_h, a_h on τ

$$\mathcal{T}$$

$$h = 0$$

$$BE_{0}$$

$$BE_{1}$$

$$A_{h}^{(a)} + \lambda A_{h}^{(2)} + \lambda^{2} A_{h}^{(3)} + \dots) = \sum_{l=0}^{H-1} (\gamma \lambda)^{l} BE_{h+l}$$

$$h = 0$$

$$h = H-1$$

$$BE_{0}$$

$$BE_{h+1}$$

Q: can you think about how to compute $A_h^{\it gae}$ recursively using $A_{h+1}^{\it gae}$ in a backward fashion?

Initialize π_{θ_0} for the policy and V_{ω_0} for value function

For
$$t = 0 \rightarrow T$$
:

Run π_{θ_t} to collect multiple trajectories $\tau^1, ..., \tau^n$

Initialize π_{θ_0} for the policy and V_{ω_0} for value function

For
$$t = 0 \rightarrow T$$
:

Run π_{θ_t} to collect multiple trajectories $\tau^1, ..., \tau^n$

Form the regression dataset $\mathcal{D} = \{s, y\}$ using the trajectories

Initialize π_{θ_0} for the policy and V_{ω_0} for value function

For
$$t = 0 \rightarrow T$$
:

Run π_{θ_r} to collect multiple trajectories $\tau^1, ..., \tau^n$

Form the regression dataset $\mathcal{D} = \{s, y\}$ using the trajectories

Form $A^{\it gae}$: for each (s,a) in each trajectory, compute $A^{\it gae}(s,a)$ using V_{ω_t}

Initialize $\pi_{ heta_0}$ for the policy and V_{ω_0} for value function

For $t = 0 \rightarrow T$:

Run $\pi_{\theta_{\tau}}$ to collect multiple trajectories $\tau^1, ..., \tau^n$

Form the regression dataset $\mathcal{D} = \{s, y\}$ using the trajectories

Form A^{gae} : for each (s,a) in each trajectory, compute $A^{gae}(s,a)$ using V_{ω_a}

Construct policy loss:
$$\ell_{\pi}(\theta) = -\sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{l}}(a \mid s)} \cdot A^{gae}(s,a), \text{ clip} \left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{l}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon \right) \cdot A^{gae}(s,a) \right\}$$

Initialize $\pi_{ heta_0}$ for the policy and V_{ω_0} for value function

For $t = 0 \rightarrow T$:

Run π_{θ_r} to collect multiple trajectories $\tau^1, ..., \tau^n$

Form the regression dataset $\mathcal{D} = \{s, y\}$ using the trajectories

Form A^{gae} : for each (s,a) in each trajectory, compute $A^{gae}(s,a)$ using V_{ω}

Construct policy loss:
$$\ell_{\pi}(\theta) = -\sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{i}}(a \mid s)} \cdot A^{gae}(s,a), \text{ clip} \left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{i}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon \right) \cdot A^{gae}(s,a) \right\}$$
Construct V loss: $\ell_{V}(\omega) = \sum_{s,v} (V_{\omega}(s) - y)^{2}$

Initialize $\pi_{ heta_0}$ for the policy and V_{ω_0} for value function

For $t = 0 \rightarrow T$:

Run π_{θ_t} to collect multiple trajectories $\tau^1, ..., \tau^n$

Form the regression dataset $\mathcal{D} = \{s, y\}$ using the trajectories

Form A^{gae} : for each (s,a) in each trajectory, compute $A^{gae}(s,a)$ using V_{ω_a}

Construct policy loss:
$$\mathscr{E}_{\pi}(\theta) = -\sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{i}}(a \mid s)} \cdot A^{gae}(s,a), \text{ clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{i}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{gae}(s,a) \right\}$$

Construct V loss:
$$\ell_V(\omega) = \sum_{s,v} (V_{\omega}(s) - y)^2$$

Update π and V via a few gradient updates on the combined loss $\mathcal{C}_\pi(\theta) + \mathcal{C}_V(\omega)$

Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already?

Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already?

There are further tricks to reduce variance, see the handout of the next programming assignment

Summary

PPO can be complicated, e.g., think about how many hyperparameters are there already?

There are further tricks to reduce variance, see the handout of the next programming assignment

Need to get your hands dirty and try it out in practice!