
Q-Learning
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1. Need to know the transition 
2. Only works for discrete small MDPs



Recap: Bellman Optimality

Q: if there is some , such that the following holds:Q(s, a)

Q(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′ 

Q(s′ , a′ ), ∀s, a

is this ? Q = Q⋆



Today

Given MDP , 

how to estimate  WITHOUT knowing  
i.e., how to learn  (thus, ) from experience

ℳ = (S, A, r, P, γ)

Q⋆(s, a), ∀s P
Q⋆ π⋆



Motivation
Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly 

modeling the world



Outline:

2. Revisit TD: Off-policy TD Learning

1. Q Learning
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Q Learning

a
r(s, a)

a a′ a a′ 

s

s′ s′ ′ 
max

a′ 

Q̂(s′ , a′ )
(Bootstrapping again)

Q⋆(s, a) ≈ r(s, a) + γ max
a′ 

Q̂(s′ , a′ )

target

Q̂(s, a)

Target

Q-learning update: move to the target with 
a small step



Q Learning

Given a one-step transition :(s, a, r, s′ ) where r = r(s, a), s′ ∼ P( ⋅ |s, a)

Q-learning updates the guess at  as follows:(s, a)

Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′ 

Q̂(s′ , a′ ) − Q̂(s, a))
Q-Target 


(Constructed via Bootstrapping!)
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Q Learning
How to collect data? 

Choice one: trust current estimator , always use Q̂ arg max
a

Q̂(s, a)
Issue: cannot explore (i.e., need to try something that hasn’t been tried) 

Choice two (quite effective in practice): -greedyϵ

W/ prob ,  select action uniform randomlyϵ
W/ prob ,  select greedy action 1 − ϵ arg max

a
Q̂(s, a)
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TD Learning

Initialize .  Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

Take action  based on -greedy of , get reward  and next state a ϵ Q̂ r s′ ∼ P( ⋅ |s, a)
Form Q-target r + γ max

a′ 

Q̂(s′ , a′ )

Update for : s, a Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′ 

Q̂(s′ , a′ ) − Q̂(s, a))
Set s ⇐ s′ 
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Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
,  where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′ 

Q̂(s′ , a′ )

This keeps changing as 
we learning

∇ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − y)
∇̃ ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − (r + γ max

a′ 

Q̂(s′ , a′ )))

Unbiased 
estimate of y



Q Learning Theory

[Informal] Assume the -greedy strategy has non-trivial probability of visiting 
every state-action pair. Setting learning rate  properly, we will have:

ϵ
η

Q̂(s, a) → Q⋆(s, a), ∀s, a
when # of interactions approaches to ∞

(concrete convergence rates are known as well)



Demo: Q-learning on CartPole
Note: Cartpole’s state is continuous, so we will need Q-learning w/ 

function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the  affect the learningϵ
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TD Learning

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s′ ))
Given , TD updates:(s, a, r, s′ ),  where a ∼ π( ⋅ |s), s′ ∼ P( ⋅ |s, a)

On-policy: data is generated from the policy  itselfπ

Off-policy: data is generated from policy  where πb πb ≠ π

Q: is Q-learning off-policy or on-policy?



Motivation for off-policy evaluation

Counterfactual: what would happen if I did something different?
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Off-policy TD Learning
Setting: data is generated by , but we want to estimate  for some πb Vπ π ≠ πb

Key trick: importance weighting

Vπ(s) = 𝔼a∼π(⋅|s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ ))
= 𝔼a∼πb(⋅|s)

π(a |s)
πb(a |s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ ))

Now action is 
sampled from πb

Importance weight
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Off-policy TD Learning

Given ,(s, a, r, s′ ),  where a ∼ πb( ⋅ |s), s′ ∼ P( ⋅ |s, a)

Off-policy TD updates as follows:

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′ ) − Vπ(s))

Case 1:  is large but  is smallπ(a |s) πb(a |s)
Case 2:  is small but  is largeπ(a |s) πb(a |s)



Off-policy TD Learning is SGD on TD loss
Given , Off-policy TD updates:(s, a, r, s′ ),  where a ∼ πb( ⋅ |s), s′ ∼ P( ⋅ |s, a)

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′ ) − Vπ(s))

Check if it is doing one-step SGD on the TD loss:

ℓtd( ̂Vπ(s)) = ( ̂Vπ(s) − y)
2
 where y = 𝔼a∼π(⋅|s) (r + γ𝔼s′ ∼P(s,a) ̂Vπ(s′ ))

The off-policy TD update is one-step SGD on  (more in HW2)ℓtd



Summary

Q-Learning: online algorithm that learns  (bootstrapping)Q⋆

Exploration & Exploitation tradeoff: -greedy is an effective heuristicϵ

Off-policy policy evaluation: importance weighting 

(also known as inverse probability weighting in causal inference)


