Q-Learning
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Recap: Bellman Optimality ' 30

Q: if there is some (Q(s, a), such that the following holds:

O(s,a) = r(s,a) + YEg piis.0) max O(s',a’),Vs,a
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Today

/ Given MDP ./ = (S, A, 1, P, ),
how to estimate O*(s, a), VAWITHOUT knowmg P
* N .

i.e., how to learn Q™ (thus, 7*) fromexp
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Motivation

Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly
modeling the world
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Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning
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Q Learning ¥
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Q Learning

O*(s,a) ~ r(s,a) + ymax Q(s', a’)

o
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% (s, ) target
(Bootstrapping agaln)

mas Q(S “ ) Target
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: Cl
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Q-learning update: move to the target with
a small step




\)/; Q/) QLearning” = “

Given a one-step transition (s, a, r, s’) where r = r(s,a) /s’ ~ P( - | s, a):

\_—————
a~ac ’ S ) Q-learning updates the guess at (s, a) as follows:

Q(s, a) < Q(S, a)+n <r + y max Q(s’, a’) — Q(s, a)>

aE——

< o
Q-Target
(Constructed via Bootstrapping!)



Q Learning

How to collect data?

Choice one: trust current estimator (, always use arg max Q(s, a)
a
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How to collect data?

Choice one: trust current estimator (, always use arg max Q(s, a)
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Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): ¢-greedy

o ee(o, ')




A\

Q (5¢) -/ Q Learning f (5.a0)=12)

= W (a‘ How to collect data? QA (S~Gc) =,a,1
o

Choice one: trust current estimator (, always use arg max Q(s, a)
a

Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): ¢-greedy

xplr
W/ prob €, select action uniform randomly ¢ = \) Q

W/ prob 1 — €, select greedy action arg max Q(S, a)

. a el
C/wfce Thrae. "W(“‘S)




. AP Learning

Initialize Q(s, a) = 0,Vs,a. Setinitial states € &
While True:




TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True: (Sa.r. s')

Take action a based on ¢-greedy of Q get reward r and next state s" ~ P( - | s, a)




TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:

Take action a based on e-greedy of Q get reward r and next state s" ~ P( - | s, a)

Form Q-target r + y max Q(S’, a’) ¢— % as\’y\'fvﬂ”;\ 5




TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:

Take action a based on e-greedy of Q get reward r and next state s" ~ P( - | s, a)

Form Q-target r + y max Q(S’, a’)

a

Update for s, a: Q(S, a) & Q(s, a)+n (r + y max Q(S’, a’) — Q(s, a))
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TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:
Take action a based on ¢-greedy of Q get reward r and next state s" ~ P( - | s, a)

Form Q-target r + y max Q(s’, a’)

a

Update for s, a: Q(S, a) < Q(s, a)+n <r + y max Q(s’, a’) — Q(s, a)>

Sets & s’




Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)
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Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)
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Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)
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Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)
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Q Learning Theory

[Informal] Assume the& e-greedy strajegy has non-trivial probability of visiting
every state-action pair. Setting learning rate 1 properly, we will have:

J‘/Z 7 O(s,a) = Q*(s,a),Vs,a

when # of interactions approaches to oo

(concrete convergence rates are known as well)



Demo: Q-learning on CartPole

Note: Cartpole’s state is continuous, so we will need Q-learning w/
function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the € affect the learning
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1. Q Learning

2. Revisit TD: Off-policy TD Learning



TD Learning

Given (s,a,r,s’), Wher@ ~ P(-|s,a), TD updates:
<9~ “:':Yldr
< Vi(s) ><: Vi(s) + n i\« + ;/V”(S’) — V(s’

To—Tarf@R
On-policy: data is generated from the policy 7 itself
—

Off-policy: data is generated from policy 7, where 7, # x

[ —



TD Learning
Given (s,a,r,s’), wherea ~ z( - |s),s" ~ P(-|s,a), TD updates:
V7(s) < V7(s) + 1 (r +yV(s’) — V”(s’))

On-policy: data is generated from the policy 7 itself

Off-policy: data is generated from policy 7, where 7, # x

Q: is Q-learning off-policy or on-policy? @4@?
s
DR




Motivation for off-policy evaluation
Counterfactual: what would happen if | did something different?

Ty T
‘5 /



( b( \5) Off-policy TD Learning

Setting: data is generated by 7,,"but we want to estimate V” for son@;ﬁ T,
Ick: importance weighting

V”(s) aNﬂ( 's) r(s a) + yEy piisa)V (S ))

dfv‘ﬁ, = a% .65 ) )

o
= “'0\)")( *")»2«@»! %(\T)("')




Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

VE(S) — IECIN]T('|S) (I’(S, a) + }/lES’NP(-|S,a)Vﬂ(S/)>

ﬂ(dlS)(
a1 r(s,a) +yk, . ,SaV”S’>
b(|>ﬂb(a|5) (s,a) + YEg pi sV (5)



Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

Vﬂ(S) — IECIN]T('|S) (”’(S, Cl) + ylES'NP(-|S,a)Vﬂ(S/)>

r(s,a) + }/[Esf,\,p(.|s,a)vﬂ(5’)>

Importance weight



Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

VE(S) — IEaNT[('|S) (F(S, a) + }/lESINP(-|S,a)Vﬂ(S/)>

r(s,a) + }/[ES/NP(.|S,a)Vﬂ(S/)>

Now action is Importance weight

sampled from 7,



Learning

Given (s,a,r,s’), @a ~ (- ]s),

Off-policy tpelates as follows:

"~ P(-|s,a),

-,

7(s) < V(s) + 1 (r +y V(s — V”(s))



Off-policy TD Learning

Given (s,a,r,s’), whére g ~ m( - | 5),4 ~ P(-|s,a),

Off-policy TD updates as follows:

() < V7(s) + 1 :;((C;' i)) (r +yUm(s) — V”(s))
b

1 (
Case 1: n(a | 5) is large but nb(a | ) is small )S/

(Jh[S}




Off-policy TD Learning

Given (s,a,r,s’), wherea ~ m( - |s),s" ~ P(- |s,a),

Off-policy TD updates as follows:

n(als)

() < V7(s) + 1 (r +yUm(s) — v”(s)>

m(als)

Case 1: (a | s) is large but m,(a | s) is small

Case 2: n(a| s) is sma o } ~ 0
ﬂ S~
o



Off-policy TD Learning is SGD on TD loss
Given (s, a,r,s’), wherW)7 ¢~ PC. s a) Off-policy TD updates:

Vi(s) < V(s) +

Check if it is doing one-step SGD on the TD loss:

A A 2 A
Z’ﬂtd(vﬂ(s)) = <VE(S) - Y> where Y= [Ea~7r(-|s) (7‘ + y[Es’NP(s,a)Vﬂ(S,)>

The off-policy TD update is one-step SGD on ¢, ; (more in HW2)



Summary

Q-Learning: online algorithm that learns Q™ (bootstrapping)

Exploration & Exploitation tradeoff: e-greedy is an effective heuristic

Off-policy policy evaluation: importance weighting
(also known as inverse probability weighting in causal inference)



