Q-Learning

Recap: Bellman Optimality

Bellman Optimality

$$Q^{\star}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{\star}(s',a'), \forall s,a$$

VI: An iterative approach for estimating Q^{\star}

Recap: Bellman Optimality

Bellman Optimality

$$Q^{\star}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{\star}(s',a'), \forall s,a$$

VI: An iterative approach for estimating Q^{\star}

Recap: Bellman Optimality

Q: if there is some Q(s, a), such that the following holds:

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q(s', a'), \forall s, a$$

is this $Q = Q^{\star}$?

 $\dot{Q} = TQ^{\dagger}$

$$\frac{1}{2}$$

Motivation

Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly modeling the world

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

How to collect data?

<u>Choice one</u>: trust current estimator \hat{Q} , always use $\arg \max_{a} \hat{Q}(s, a)$

How to collect data?

<u>Choice one</u>: trust current estimator \hat{Q} , always use $\arg \max_{a} \hat{Q}(s, a)$ Issue: cannot explore (i.e., need to try something that hasn't been tried)

How to collect data?

<u>Choice one</u>: trust current estimator \hat{Q} , always use $\arg \max_{a} \hat{Q}(s, a)$ Issue: cannot explore (i.e., need to try something that hasn't been tried)

Choice two (quite effective in practice): *c*-greedy

((0,1))

Initialize
$$\hat{Q}(s, a) = 0, \forall s, a$$
. Set initial state $s \in S$
While True:

Initialize $\hat{Q}(s, a) = 0, \forall s, a$. Set initial state $s \in S$ While True: (s, a, r, s')Take action a based on ϵ -greedy of \hat{Q} , get reward r and next state $s' \sim P(\cdot | s, a)$

Initialize $\hat{Q}(s, a) = 0, \forall s, a$. Set initial state $s \in S$

While True:

Take action *a* based on ϵ -greedy of \hat{Q} , get reward *r* and next state $s' \sim P(\cdot | s, a)$ Form Q-target $r + \gamma \max_{a'} \hat{Q}(s', a') \leftarrow \text{Boststrepsing}$

Initialize $\hat{Q}(s, a) = 0, \forall s, a$. Set initial state $s \in S$ While True:

Take action *a* based on *e*-greedy of \hat{Q} , get reward *r* and next state $s' \sim P(\cdot | s, a)$ Form Q-target $r + \gamma \max_{a'} \hat{Q}(s', a')$ Update for *s*, *a*: $\hat{Q}(s, a) \notin \hat{Q}(s, a) + \eta \left(r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)\right)$

Initialize $\hat{Q}(s, a) = 0, \forall s, a$. Set initial state $s \in S$ While True:

> Take action *a* based on *e*-greedy of \hat{Q} , get reward *r* and next state $s' \sim P(\cdot | s, a)$ Form Q-target $r + \gamma \max_{a'} \hat{Q}(s', a')$ Update for *s*, *a*: $\hat{Q}(s, a) \notin \hat{Q}(s, a) + \eta \left(r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)\right)$ Set $s \notin s'$

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning is not the usual SGD, i.e., it is **not** running SGD to minimize a fixed loss function

$$\ell_{be}(\hat{Q}(s,a)) := \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \hat{Q}(s',a')$$

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

$$\ell_{be}(\hat{Q}(s,a)) := \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \hat{Q}(s',a')$$
This keeps changing as we learning

Q-learning is not the usual SGD, i.e., it is **not** running SGD to minimize a fixed loss function

$$\mathcal{\ell}_{be}(\hat{Q}(s,a)) := \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \hat{Q}(s',a')$$

$$\nabla \mathcal{\ell}_{be}(x)|_{x=\hat{Q}(s,a)} := 2 \left(\hat{Q}(s,a) - y\right)^{\ell}$$
This keeps changing as we learning

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

$$\begin{aligned} \ell_{be}(\hat{Q}(s,a)) &:= \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \hat{Q}(s',a') \\ \nabla \ell_{be}(x)|_{x = \hat{Q}(s,a)} &:= 2\left(\hat{Q}(s,a) - y\right) \end{aligned}$$
This keeps changing as we learning
$$\widetilde{\nabla} \ell_{be}(x)|_{x = \hat{Q}(s,a)} &:= 2\left(\hat{Q}(s,a) - \left(r + \gamma \max_{a'} \hat{Q}(s',a')\right)\right)$$

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

$$\begin{aligned} \ell_{be}(\hat{Q}(s,a)) &:= \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \hat{Q}(s',a') \\ \nabla \ell_{be}(x)|_{x=\hat{Q}(s,a)} &:= 2 \left(\hat{Q}(s,a) - y\right) \qquad \text{Unbiased estimate of } y \\ \nabla \ell_{be}(x)|_{x=\hat{Q}(s,a)} &:= 2 \left(\hat{Q}(s,a) - (r+\gamma \max_{a'} \hat{Q}(s',a'))\right) \\ \widehat{Q}(sa) - \eta \int \nabla \ell_{e\in}(x) \left(\sum_{a\in (x)} \sum_{b\in (x)} \sum_{a'\in (x)} \sum_{b'\in (x)} \sum_{b'\in (x)} \sum_{a'\in (x)} \sum_{b'\in (x)}$$

Q Learning Theory [Informal] Assume the *e*-greedy strategy has non-trivial probability of visiting every state-action pair. Setting learning rate η properly, we will have:

when # of interactions approaches to ∞

(concrete convergence rates are known as well)

Demo: Q-learning on CartPole

Note: Cartpole's state is continuous, so we will need Q-learning w/ function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the ϵ affect the learning

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

Given (s, a, r, s'), where $a \sim \pi(\cdot | s), s' \sim P(\cdot | s, a)$, TD updates:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \left(r + \gamma \hat{V}^{\pi}(s') - \hat{V}^{\pi}(s') \right)$$

On-policy: data is generated from the policy π itself

Off-policy: data is generated from policy π_b where $\pi_b \neq \pi$

Motivation for off-policy evaluation

Counterfactual: what would happen if I did something different?

Setting: data is generated by π_b , but we want to estimate V^{π} for some $\pi \neq \pi_b$

Key trick: importance weighting

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left(r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s') \right)$$
$$= \mathbb{E}_{a \sim \pi_b(\cdot|s)} \frac{\pi(a|s)}{\pi_b(a|s)} \left(r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s') \right)$$

Setting: data is generated by π_b , but we want to estimate V^{π} for some $\pi \neq \pi_b$

Key trick: importance weighting

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right)$$
$$= \mathbb{E}_{a \sim \pi_b(\cdot|s)} \left(\frac{\pi(a|s)}{\pi_b(a|s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right) \right)$$
Importance weight

Setting: data is generated by π_b , but we want to estimate V^{π} for some $\pi \neq \pi_b$

Key trick: importance weighting

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right)$$

= $\mathbb{E}_{a \sim \pi_b(\cdot|s)} \left(\frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right) \right)$
Now action is importance weight sampled from π_b

Given
$$(s, a, r, s')$$
, where $a \sim \pi_b(\cdot | s), s' \sim P(\cdot | s, a)$,
Off-policy TD updates as follows:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r + \gamma \hat{V}^{\pi}(s') - V^{\pi}(s) \right)$$

Case 1: $\pi(a \mid s)$ is large but $\pi_b(a \mid s)$ is small

Given (s, a, r, s'), where $a \sim \pi_b(\cdot | s), s' \sim P(\cdot | s, a)$,

Off-policy TD updates as follows:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r + \gamma \hat{V}^{\pi}(s') - V^{\pi}(s) \right)$$

Case 1: $\pi(a \mid s)$ is large but $\pi_b(a \mid s)$ is small Case 2: $\pi(a \mid s)$ is small but $\pi_b(a \mid s)$ is large $\pi_b \sim \mathcal{O}$

Off-policy TD Learning is SGD on TD loss

Given (s, a, r, s'), where $a \sim \pi_b(\cdot | s), s' \sim P(\cdot | s, a)$. Off-policy TD updates:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + n \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r + \gamma \hat{V}^{\pi}(s') - V^{\pi}(s)\right)$$

Check if it is doing one-step SGD on the TD loss:

$$\mathscr{\ell}_{td}(\hat{V}^{\pi}(s)) = \left(\hat{V}^{\pi}(s) - y\right)^2 \text{ where } y = \mathbb{E}_{a \sim \pi(\cdot|s)}\left(r + \gamma \mathbb{E}_{s' \sim P(s,a)}\hat{V}^{\pi}(s')\right)$$

The off-policy TD update is one-step SGD on ℓ_{td} (more in HW2)

Summary

Q-Learning: online algorithm that learns Q^{\star} (bootstrapping)

Exploration & Exploitation tradeoff: *c*-greedy is an effective heuristic

Off-policy policy evaluation: importance weighting (also known as inverse probability weighting in causal inference)