
Q-Learning

Recap: Bellman Optimality

Bellman Optimality

Q⋆(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Q⋆(s′ , a′), ∀s, a

Q ⇐ 𝒯Q

VI: An iterative approach for estimating Q⋆

Recap: Bellman Optimality

Bellman Optimality

Q⋆(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Q⋆(s′ , a′), ∀s, a

Q ⇐ 𝒯Q

VI: An iterative approach for estimating Q⋆

1. Need to know the transition
2. Only works for discrete small MDPs

Recap: Bellman Optimality

Q: if there is some , such that the following holds:Q(s, a)

Q(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max
a′

Q(s′ , a′), ∀s, a

is this ? Q = Q⋆

Today

Given MDP ,

how to estimate WITHOUT knowing
i.e., how to learn (thus,) from experience

ℳ = (S, A, r, P, γ)

Q⋆(s, a), ∀s P
Q⋆ π⋆

Motivation
Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly

modeling the world

Outline:

2. Revisit TD: Off-policy TD Learning

1. Q Learning

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′
max

a′

Q̂(s′ , a′)
(Bootstrapping again)

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′
max

a′

Q̂(s′ , a′)
(Bootstrapping again)

Q⋆(s, a) ≈ r(s, a) + γ max
a′

Q̂(s′ , a′)

target

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′
max

a′

Q̂(s′ , a′)
(Bootstrapping again)

Q⋆(s, a) ≈ r(s, a) + γ max
a′

Q̂(s′ , a′)

target

Q̂(s, a)

Target

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′
max

a′

Q̂(s′ , a′)
(Bootstrapping again)

Q⋆(s, a) ≈ r(s, a) + γ max
a′

Q̂(s′ , a′)

target

Q̂(s, a)

Target

Q Learning

a
r(s, a)

a a′ a a′

s

s′ s′ ′
max

a′

Q̂(s′ , a′)
(Bootstrapping again)

Q⋆(s, a) ≈ r(s, a) + γ max
a′

Q̂(s′ , a′)

target

Q̂(s, a)

Target

Q-learning update: move to the target with
a small step

Q Learning

Given a one-step transition :(s, a, r, s′) where r = r(s, a), s′ ∼ P(⋅ |s, a)

Q-learning updates the guess at as follows:(s, a)

Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′

Q̂(s′ , a′) − Q̂(s, a))
Q-Target

(Constructed via Bootstrapping!)

Q Learning
How to collect data?

Choice one: trust current estimator , always use Q̂ arg max
a

Q̂(s, a)

Q Learning
How to collect data?

Choice one: trust current estimator , always use Q̂ arg max
a

Q̂(s, a)
Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Q Learning
How to collect data?

Choice one: trust current estimator , always use Q̂ arg max
a

Q̂(s, a)
Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): -greedyϵ

Q Learning
How to collect data?

Choice one: trust current estimator , always use Q̂ arg max
a

Q̂(s, a)
Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): -greedyϵ

W/ prob , select action uniform randomlyϵ
W/ prob , select greedy action 1 − ϵ arg max

a
Q̂(s, a)

TD Learning

Initialize . Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

TD Learning

Initialize . Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

Take action based on -greedy of , get reward and next state a ϵ Q̂ r s′ ∼ P(⋅ |s, a)

TD Learning

Initialize . Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

Take action based on -greedy of , get reward and next state a ϵ Q̂ r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Q̂(s′ , a′)

TD Learning

Initialize . Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

Take action based on -greedy of , get reward and next state a ϵ Q̂ r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Q̂(s′ , a′)

Update for : s, a Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′

Q̂(s′ , a′) − Q̂(s, a))

TD Learning

Initialize . Set initial state Q̂(s, a) = 0,∀s, a s ∈ 𝒮
While True:

Take action based on -greedy of , get reward and next state a ϵ Q̂ r s′ ∼ P(⋅ |s, a)
Form Q-target r + γ max

a′

Q̂(s′ , a′)

Update for : s, a Q̂(s, a) ⇐ Q̂(s, a) + η (r + γ max
a′

Q̂(s′ , a′) − Q̂(s, a))
Set s ⇐ s′

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′

Q̂(s′ , a′)

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′

Q̂(s′ , a′)

This keeps changing as
we learning

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′

Q̂(s′ , a′)

This keeps changing as
we learning

∇ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − y)

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′

Q̂(s′ , a′)

This keeps changing as
we learning

∇ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − y)
∇̃ ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − (r + γ max

a′

Q̂(s′ , a′)))

Interpret Q-learning as “SGD” on Bellman error
Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

ℓbe(Q̂(s, a)) := (Q̂(s, a) − y)
2
, where y = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) max

a′

Q̂(s′ , a′)

This keeps changing as
we learning

∇ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − y)
∇̃ ℓbe(x) |x=Q̂(s,a) := 2 (Q̂(s, a) − (r + γ max

a′

Q̂(s′ , a′)))

Unbiased
estimate of y

Q Learning Theory

[Informal] Assume the -greedy strategy has non-trivial probability of visiting
every state-action pair. Setting learning rate properly, we will have:

ϵ
η

Q̂(s, a) → Q⋆(s, a), ∀s, a
when # of interactions approaches to ∞

(concrete convergence rates are known as well)

Demo: Q-learning on CartPole
Note: Cartpole’s state is continuous, so we will need Q-learning w/

function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the affect the learningϵ

Outline:

2. Revisit TD: Off-policy TD Learning

1. Q Learning

TD Learning

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s′))
Given , TD updates:(s, a, r, s′), where a ∼ π(⋅ |s), s′ ∼ P(⋅ |s, a)

On-policy: data is generated from the policy itselfπ

Off-policy: data is generated from policy where πb πb ≠ π

TD Learning

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s′))
Given , TD updates:(s, a, r, s′), where a ∼ π(⋅ |s), s′ ∼ P(⋅ |s, a)

On-policy: data is generated from the policy itselfπ

Off-policy: data is generated from policy where πb πb ≠ π

Q: is Q-learning off-policy or on-policy?

Motivation for off-policy evaluation

Counterfactual: what would happen if I did something different?

Off-policy TD Learning
Setting: data is generated by , but we want to estimate for some πb Vπ π ≠ πb

Key trick: importance weighting

Vπ(s) = 𝔼a∼π(⋅|s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))

Off-policy TD Learning
Setting: data is generated by , but we want to estimate for some πb Vπ π ≠ πb

Key trick: importance weighting

Vπ(s) = 𝔼a∼π(⋅|s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))
= 𝔼a∼πb(⋅|s)

π(a |s)
πb(a |s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))

Off-policy TD Learning
Setting: data is generated by , but we want to estimate for some πb Vπ π ≠ πb

Key trick: importance weighting

Vπ(s) = 𝔼a∼π(⋅|s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))
= 𝔼a∼πb(⋅|s)

π(a |s)
πb(a |s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))
Importance weight

Off-policy TD Learning
Setting: data is generated by , but we want to estimate for some πb Vπ π ≠ πb

Key trick: importance weighting

Vπ(s) = 𝔼a∼π(⋅|s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))
= 𝔼a∼πb(⋅|s)

π(a |s)
πb(a |s) (r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′))

Now action is
sampled from πb

Importance weight

Off-policy TD Learning

Given ,(s, a, r, s′), where a ∼ πb(⋅ |s), s′ ∼ P(⋅ |s, a)

Off-policy TD updates as follows:

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′) − Vπ(s))

Off-policy TD Learning

Given ,(s, a, r, s′), where a ∼ πb(⋅ |s), s′ ∼ P(⋅ |s, a)

Off-policy TD updates as follows:

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′) − Vπ(s))

Case 1: is large but is smallπ(a |s) πb(a |s)

Off-policy TD Learning

Given ,(s, a, r, s′), where a ∼ πb(⋅ |s), s′ ∼ P(⋅ |s, a)

Off-policy TD updates as follows:

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′) − Vπ(s))

Case 1: is large but is smallπ(a |s) πb(a |s)
Case 2: is small but is largeπ(a |s) πb(a |s)

Off-policy TD Learning is SGD on TD loss
Given , Off-policy TD updates:(s, a, r, s′), where a ∼ πb(⋅ |s), s′ ∼ P(⋅ |s, a)

̂Vπ(s) ⇐ ̂Vπ(s) + η
π(a |s)
πb(a |s) (r + γ ̂Vπ(s′) − Vπ(s))

Check if it is doing one-step SGD on the TD loss:

ℓtd(̂Vπ(s)) = (̂Vπ(s) − y)
2
 where y = 𝔼a∼π(⋅|s) (r + γ𝔼s′ ∼P(s,a) ̂Vπ(s′))

The off-policy TD update is one-step SGD on (more in HW2)ℓtd

Summary

Q-Learning: online algorithm that learns (bootstrapping)Q⋆

Exploration & Exploitation tradeoff: -greedy is an effective heuristicϵ

Off-policy policy evaluation: importance weighting

(also known as inverse probability weighting in causal inference)

