Q-Learning

Recap: Bellman Optimality

Bellman Optimality

Q*(s,a) = r(s,a) + yE,_p(|5. Max Q*(s', @), Vs,a
a

D o

VI: An iterative approach for estimating O*

Recap: Bellman Optimality

Bellm

Q*(s,a) = r(s, a)

timality

ax Q*(s’,a"),Vs,a
a/

VI: An iterative approach for estimating Q*

0«70 L

@eed to know the transition ./

2. Only works for discrete small MDPs

~

Recap: Bellman Optimality ' 30

Q: if there is some (Q(s, a), such that the following holds:

O(s,a) = r(s,a) + YEg piis.0) max O(s',a’),Vs,a
7

o isthis 0 = 0*2 O
¥ -
Q=T & oa——ﬁ*r o Ll e:h_,)

=T . — T«
3 & >&"’-76\“’0\—-

Today

/ Given MDP ./ = (S, A, 1, P,),
how to estimate O*(s, a), VAWITHOUT knowmg P
* N .

i.e., how to learn Q™ (thus, 7*) fromexp
0 S
a—=a"
1 € 0\5'“;“ &(Ser)

Motivation

Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly
modeling the world

ALL ST

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

,

Q Learning

Q Learning

a ﬁ
(s,a)
(Bootstrapping again)
max Q(S a’) 93
a

/\'V(S)

Q Learning ¥
=V(5)
Q*(s,a) ~ r(s a) + y max O(s',0)) =
as L = moND(SA)
target On'

r(s, a)
(Bootstrapping again)

maxQ(S a’)
“ .a};{ v a’

Q Learning

O*(s,a) ~ r(s,a) + y max O(s',a')

a <«
% (s, d) target
(Bootstrapping agaln)

mas Q(S “) Target
‘ ‘a/y a °
: Cl

O(s, a)

Q Learning

O*(s,a) ~ r(s,a) + ymay O(s’, a’)

o
a <«
% (s, d) target
(Bootstrapping agaln)

mas Q(S @) ¢ Target
' ‘a/py a °
; CZ

X @ﬁ s, o-')

Q Learning

O*(s,a) ~ r(s,a) + ymax Q(s', a’)

o
a <«
% (s,) target
(Bootstrapping agaln)

mas Q(S “) Target
‘ ‘a/y a °
: Cl

O(s, a)
o

Q-learning update: move to the target with
a small step

\)/; Q/) QLearning” = “

Given a one-step transition (s, a, r, s’) where r = r(s,a) /s’ ~ P(- | s, a):

_—————
a~ac ’ S) Q-learning updates the guess at (s, a) as follows:

Q(s, a) < Q(S, a)+n <r + y max Q(s’, a’) — Q(s, a)>

aE——

< o
Q-Target
(Constructed via Bootstrapping!)

Q Learning

How to collect data?

Choice one: trust current estimator (, always use arg max Q(s, a)
a

—_—

Q Learning

How to collect data?

Choice one: trust current estimator (, always use arg max Q(s, a)
a

Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Q Learning

How to collect data?

Choice one: trust current estimator (, always use arg max Q(s, a)
a

Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): ¢-greedy

o ee(o, ')

A\

Q (5¢) -/ Q Learning f (5.a0)=12)

= W (a‘ How to collect data? QA (S~Gc) =,a,1
o

Choice one: trust current estimator (, always use arg max Q(s, a)
a

Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): ¢-greedy

xplr
W/ prob €, select action uniform randomly ¢ = \) Q

W/ prob 1 — €, select greedy action arg max Q(S, a)

. a el
C/wfce Thrae. "W(“‘S)

. AP Learning

Initialize Q(s, a) = 0,Vs,a. Setinitial states € &
While True:

TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True: (Sa.r. s')

Take action a based on ¢-greedy of Q get reward r and next state s" ~ P(- | s, a)

TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:

Take action a based on e-greedy of Q get reward r and next state s" ~ P(- | s, a)

Form Q-target r + y max Q(S’, a’) ¢— % as\’y\'fvﬂ”;\ 5

TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:

Take action a based on e-greedy of Q get reward r and next state s" ~ P(- | s, a)

Form Q-target r + y max Q(S’, a’)

a

Update for s, a: Q(S, a) & Q(s, a)+n (r + y max Q(S’, a’) — Q(s, a))
e Ay al

<_>> ;‘a’mse'p

@\

TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial states € &
While True:
Take action a based on ¢-greedy of Q get reward r and next state s" ~ P(- | s, a)

Form Q-target r + y max Q(s’, a’)

a

Update for s, a: Q(S, a) < Q(s, a)+n <r + y max Q(s’, a’) — Q(s, a)>

Sets & s’

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)
* «

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

A A 2 A
£30065. @) 1= (O(s.@) — y) . where y = r(s, @) + YE,._p . max O(s', @)
A N “U A %if;ﬂ’ff —

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

£, (Os, a)) = (Q(s, a) — y) where y = r(s,a) + 7Ey._p o max Os'.a)

- X
This keeps changing as
we learning

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

A A 2 A
£, (0(s,a)) = <Q(s a) — y) where y =1(s,a) + YEgp(|5.0) max Q(s’,a’)
ﬁ> —p—— a \
Q(s a) L) This keeps changing as
S ""P('sev—) we learning

Vfbe(X) |x=Q(s,a) =

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

A A 2 A
£30065. @) 1= (O(s.@) = y) . where y = r(s, @) + YE,._p 5 max O(s', @)

\

((s,a) — y) This keeps changing as

V¢, (x
bl we learning

x=0(s,a) *

Vfbe(x) |x—Q(s a) (Q(S a) <I’ + y max Q(S,, Cl’)) >

a/

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

A A 2 A
£30065. @) 1= (O(s.@) = y) . where y = r(s, @) + YE,._p 5 max O(s', @)

\

A Unbiased i i
bt =2 (Os. a) — y) | This keeps changing as
; estimate of y we learning

\
S 154)-—-'3 94, (x)‘]\ &f'"‘ﬁ
“

V fbe(X) |

Q Learning Theory

[Informal] Assume the& e-greedy strajegy has non-trivial probability of visiting
every state-action pair. Setting learning rate 1 properly, we will have:

J‘/Z 7 O(s,a) = Q*(s,a),Vs,a

when # of interactions approaches to oo

(concrete convergence rates are known as well)

Demo: Q-learning on CartPole

Note: Cartpole’s state is continuous, so we will need Q-learning w/
function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the € affect the learning

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

TD Learning

Given (s,a,r,s’), Wher@ ~ P(-|s,a), TD updates:
<9~ “:':Yldr
< Vi(s) ><: Vi(s) + n i\« + ;/V”(S’) — V(s’

To—Tarf@R
On-policy: data is generated from the policy 7 itself
—

Off-policy: data is generated from policy 7, where 7, # x

[—

TD Learning
Given (s,a,r,s’), wherea ~ z(- |s),s" ~ P(-|s,a), TD updates:
V7(s) < V7(s) + 1 (r +yV(s’) — V”(s’))

On-policy: data is generated from the policy 7 itself

Off-policy: data is generated from policy 7, where 7, # x

Q: is Q-learning off-policy or on-policy? @4@?
s
DR

Motivation for off-policy evaluation
Counterfactual: what would happen if | did something different?

Ty T
‘5 /

(b(\5) Off-policy TD Learning

Setting: data is generated by 7,,"but we want to estimate V” for son@;ﬁ T,
Ick: importance weighting

V”(s) aNﬂ('s) r(s a) + yEy piisa)V (S))

dfv‘ﬁ, = a% .65))

o
= “'0\)")(*")»2«@»! %(\T)("')

Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

VE(S) — IECIN]T('|S) (I’(S, a) + }/lES’NP(-|S,a)Vﬂ(S/)>

ﬂ(dlS)(
a1 r(s,a) +yk, . ,SaV”S’>
b(|>ﬂb(a|5) (s,a) + YEg pi sV (5)

Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

Vﬂ(S) — IECIN]T('|S) (”’(S, Cl) + ylES'NP(-|S,a)Vﬂ(S/)>

r(s,a) + }/[Esf,\,p(.|s,a)vﬂ(5’)>

Importance weight

Off-policy TD Learning

Setting: data is generated by 7, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

VE(S) — IEaNT[('|S) (F(S, a) + }/lESINP(-|S,a)Vﬂ(S/)>

r(s,a) + }/[ES/NP(.|S,a)Vﬂ(S/)>

Now action is Importance weight

sampled from 7,

Learning

Given (s,a,r,s’), @a ~ (-]s),

Off-policy tpelates as follows:

"~ P(-|s,a),

-,

7(s) < V(s) + 1 (r +y V(s — V”(s))

Off-policy TD Learning

Given (s,a,r,s’), whére g ~ m(- | 5),4 ~ P(-|s,a),

Off-policy TD updates as follows:

() < V7(s) + 1 :;((C;' i)) (r +yUm(s) — V”(s))
b

1 (
Case 1: n(a | 5) is large but nb(a |) is small)S/

(Jh[S}

Off-policy TD Learning

Given (s,a,r,s’), wherea ~ m(- |s),s" ~ P(- |s,a),

Off-policy TD updates as follows:

n(als)

() < V7(s) + 1 (r +yUm(s) — v”(s)>

m(als)

Case 1: (a | s) is large but m,(a | s) is small

Case 2: n(a| s) is sma o } ~ 0
ﬂ S~
o

Off-policy TD Learning is SGD on TD loss
Given (s, a,r,s’), wherW)7 ¢~ PC. s a) Off-policy TD updates:

Vi(s) < V(s) +

Check if it is doing one-step SGD on the TD loss:

A A 2 A
Z’ﬂtd(vﬂ(s)) = <VE(S) - Y> where Y= [Ea~7r(-|s) (7‘ + y[Es’NP(s,a)Vﬂ(S,)>

The off-policy TD update is one-step SGD on ¢, ; (more in HW2)

Summary

Q-Learning: online algorithm that learns Q™ (bootstrapping)

Exploration & Exploitation tradeoff: e-greedy is an effective heuristic

Off-policy policy evaluation: importance weighting
(also known as inverse probability weighting in causal inference)

