Q-Learning

Recap: Bellman Optimality

Bellman Optimality

0* (s, a) = (s, @) + 7Ey_p(|s 0y max Q*(s', @), Vs, a
d

VI: An iterative approach for estimating O*
Q<=J0

1. Need to know the transition

2. Only works for discrete small MDPs

Recap: Bellman Optimality

Q: if there is some (s, a), such that the following holds:

O(s, @) = r(5,a) + YEq_p(Joq Max s, @), Vs, a

A

is this 0 = O*?

Today

Given MDP .Z = (S, A, r,P,y),

how to estimate O*(s, a), Vs WITHOUT knowing P
i.e., how to learn O™ (thus, 7*) from experience

Motivation

Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly
modeling the world

O),

THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE -~ = 3 “’,‘___ ‘.‘ . N . - L
‘ ’l' * .‘I‘ - ‘
e I‘ \ \ \'
; ~ L ’ »
P - < ’ .
e s 4 -
— = e o, 4 ’ L)
e . - N : ’ .
b .S S - - s]
i X - = o, ' - ' \\ ,
P 8 4 o - - > o 3 . d V4 , :
N e o T , 0 \ xS - -
* Se o= i g ' \ g
e - > 4 : 1 \ s ;
- = "__‘ _7.‘) V4 r\
-— : »-, ~ - >7— - ‘
At last — a computer program that ’
can beat a champion Go player Pact4
- -

ALL SYSTEMS GO

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

Q Learning

O*(s,a) ~ r(s,a) + y max Q(S’, a’)

al
N | - —
a Y/ (s,) target
(Bootstrapping again)

maX Q(S a) }52 % Target

O(s, a)
o

Q-learning update: move to the target with
a small step

Q Learning
Given a one-step transition (s, a, r,s’) wherer = r(s,a), s’ ~ P(- |s,a):

Q-learning updates the guess at (s, a) as follows:

Q(S, a) < Q(S, a)+n (r + y max Q(S’, a’) — Q(S, a))

-—)

Q-Target
(Constructed via Bootstrapping!)

Q Learning

How to collect data?

Choice one: trust current estimator (), always use arg max QJ(s, a)
d

Issue: cannot explore (i.e., need to try something that hasn’t been tried)

Choice two (quite effective in practice): ¢-greedy

W/ prob €, select action uniform randomly

W/ prob 1 — €, select greedy action arg max Q(S, a)
d

TD Learning

Initialize Q(S, a) = 0,Vs,a. Setinitial state s € &
While True:

Take action a based on e-greedy of Q get reward r and next state s' ~ P(- | s, a)

Form Q-target r + y max Q(S’, a’)

A

Update for s, a: Q(s, a) & Q(S, a)+ny (r + y max Q(S’, a’) — Q(S, a))

Sets « s’

Interpret Q-learning as “SGD” on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

A A 2 A
£ (0(s,a)) := (Q(S, a) — y) , where y = r(s,a) + Vg p(.]s5,q) MAX O(s’,a’)

’ \
A Unbiased : .
Ve, (x) ‘x=Q(S g = 2 (Q(s, a) — y) | This keeps cha!nglng as
’ estimate of y we learning

{rmae))

Vz’ﬂbe(x) ‘x=Q(s,a) =2 (Q(S, Cl)

Q Learning Theory

[Informal] Assume the e-greedy strategy has non-trivial probability of visiting
every state-action pair. Setting learning rate »n properly, we will have:

O(s,a) = 0*(s,a),Vs,a

when # of interactions approaches to oo

(concrete convergence rates are known as well)

Demo: Q-learning on CartPole

Note: Cartpole’s state is continuous, so we will need Q-learning w/
function approximation, e.g., neural network (we will get there very soon)

1. Does Q learning eventually learn a good policy

2. How does the € affect the learning

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

TD Learning
Given (s,a,r,s’), wherea ~ (- |s),s" ~ P(-|s,a), TD updates:
V(s) < V() + (r + D7) — f/ﬂ(s'))

On-policy: data is generated from the policy r itself

Off-policy: data is generated from policy 7, where 7, = 7

Q: is Q-learning off-policy or on-policy?

Motivation for off-policy evaluation

Counterfactual: what would happen if | did something different?

Off-policy TD Learning

Setting: data is generated by x;, but we want to estimate V” for some 7 # 7,

Key trick: importance weighting

VA(s) = Epncs) (r (5,@) + YEgp15.0) V(S ,)>

_Cl"’ﬂb(° K

/

Now action Is Importance weight
sampled from 7,

— (r(s, a)+vy -S,NP(,‘S,Q)V”(S’))

Off-policy TD Learning

Given (s,a,r,s’), wherea ~ m(- |s),s" ~ P(- |s,a),

Off-policy TD updates as follows:

V”(S) & V”(S) + 7 71'((61“ s)) (r + y‘A/”(S’) — V”(S))
b

Case 1: n(a| s) is large but 7, (a | 5) is small

Case 2: n(a | s) is small but 7, (a | s) is large

Off-policy TD Learning is SGD on TD loss
Given (s,a,r,s’), wherea ~ m,(- |s),s" ~ P(- |s,a), Off-policy TD updates:

n(a)s)

V(s) < V(s) + 1 <r + V(") — V”(s))

my(al s)

Check if it is doing one-step SGD on the TD loss:

A A 2 A
£ V) = (V75 = v) where y = Eyyyy (7 + PEvepn V760

The off-policy TD update is one-step SGD on ¢, , (more in HW2)

Summary

Q-Learning: online algorithm that learns Q* (bootstrapping)

Exploration & Exploitation tradeoftf: e-greedy is an effective heuristic

Off-policy policy evaluation: importance weighting
(also known as inverse probability weighting in causal inference)

