Q-Learning

Recap: Bellman Optimality

Bellman Optimality

$$Q^{\star}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{\star}(s',a'), \forall s, a$$

VI: An iterative approach for estimating Q^{\star}

$$Q \leftarrow \mathcal{I}Q$$

- 1. Need to know the transition
- 2. Only works for discrete small MDPs

Recap: Bellman Optimality

Q: if there is some Q(s, a), such that the following holds:

$$Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \max_{a'} Q(s',a'), \forall s,a$$
 is this $Q = Q^*$?

Today

Given MDP $\mathcal{M} = (S, A, r, P, \gamma)$,

how to estimate $Q^*(s,a), \forall s$ WITHOUT knowing P i.e., how to learn Q^* (thus, π^*) from experience

Motivation

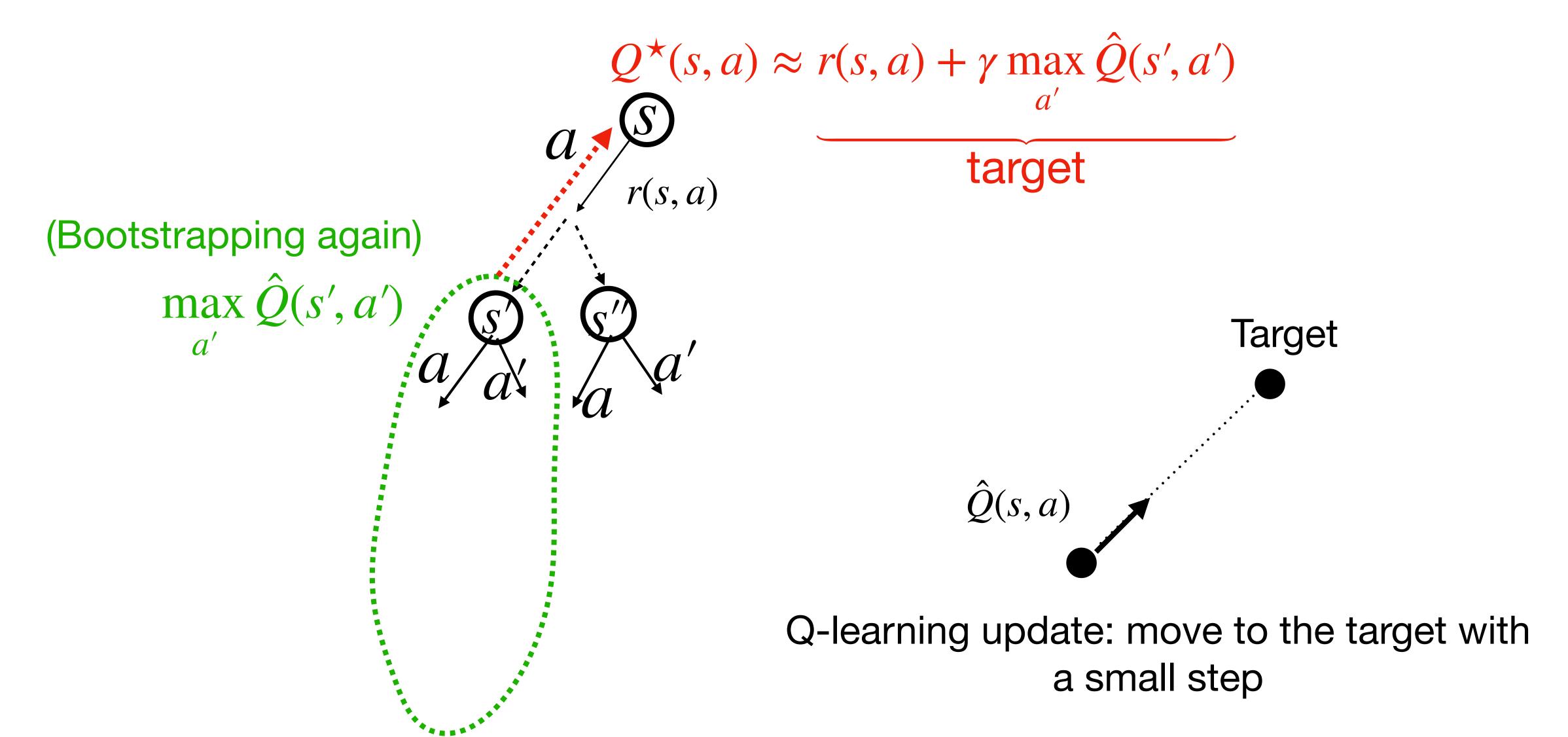
Computing a near-optimal policy to achieve the long-term goals w/o knowing or explicitly modeling the world

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

Q Learning



Q Learning

Given a one-step transition (s, a, r, s') where $r = r(s, a), s' \sim P(\cdot \mid s, a)$:

Q-learning updates the guess at (s, a) as follows:

$$\hat{Q}(s,a) \Leftarrow \hat{Q}(s,a) + \eta \left(r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)\right)$$
Q-Target
(Constructed via Bootstrapping!)

Q Learning

How to collect data?

Choice one: trust current estimator \hat{Q} , always use $\arg\max_{a}\hat{Q}(s,a)$

Issue: cannot explore (i.e., need to try something that hasn't been tried)

Choice two (quite effective in practice): ϵ -greedy

W/ prob ϵ , select action uniform randomly

W/ prob $1 - \epsilon$, select greedy action $\arg\max\hat{Q}(s,a)$

 \mathcal{A}

TD Learning

Initialize $\hat{Q}(s, a) = 0, \forall s, a$. Set initial state $s \in \mathcal{S}$ While True:

Take action a based on ϵ -greedy of \hat{Q} , get reward r and next state $s' \sim P(\cdot \mid s, a)$ Form Q-target $r + \gamma \max_{a'} \hat{Q}(s', a')$ Update for s, a: $\hat{Q}(s, a) \Leftarrow \hat{Q}(s, a) + \eta \left(r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)\right)$ Set $s \Leftarrow s'$

Interpret Q-learning as "SGD" on Bellman error

Q-learning is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Q-learning may be interpreted as running SGD on an evolving loss function (Bellman error)

$$\mathcal{C}_{be}(\hat{Q}(s,a)) := \left(\hat{Q}(s,a) - y\right)^2, \text{ where } y = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \max_{a'} \hat{Q}(s',a')$$

$$\nabla \mathcal{C}_{be}(x)|_{x = \hat{Q}(s,a)} := 2\left(\hat{Q}(s,a) - y\right)$$

$$\nabla \mathcal{C}_{be}(x)|_{x = \hat{Q}(s,a)} := 2\left(\hat{Q}(s,a) - (r + \gamma \max_{a'} \hat{Q}(s',a'))\right)$$

$$\nabla \mathcal{C}_{be}(x)|_{x = \hat{Q}(s,a)} := 2\left(\hat{Q}(s,a) - (r + \gamma \max_{a'} \hat{Q}(s',a'))\right)$$

Q Learning Theory

[Informal] Assume the ϵ -greedy strategy has non-trivial probability of visiting every state-action pair. Setting learning rate η properly, we will have:

$$\hat{Q}(s,a) \rightarrow Q^{\star}(s,a), \forall s,a$$

when # of interactions approaches to ∞

(concrete convergence rates are known as well)

Demo: Q-learning on CartPole

Note: Cartpole's state is continuous, so we will need Q-learning w/function approximation, e.g., neural network (we will get there very soon)

- 1. Does Q learning eventually learn a good policy
 - 2. How does the ϵ affect the learning

Outline:

1. Q Learning

2. Revisit TD: Off-policy TD Learning

TD Learning

Given (s, a, r, s'), where $a \sim \pi(\cdot | s), s' \sim P(\cdot | s, a)$, TD updates:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \left(r + \gamma \hat{V}^{\pi}(s') - \hat{V}^{\pi}(s') \right)$$

On-policy: data is generated from the policy π itself

Off-policy: data is generated from policy π_b where $\pi_b \neq \pi$

Q: is Q-learning off-policy or on-policy?

Motivation for off-policy evaluation

Counterfactual: what would happen if I did something different?

Off-policy TD Learning

Setting: data is generated by π_b , but we want to estimate V^{π} for some $\pi \neq \pi_b$

Key trick: importance weighting

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right)$$

$$= \mathbb{E}_{a \sim \pi_b(\cdot|s)} \frac{\pi(a|s)}{\pi_b(a|s)} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s') \right)$$

Now action is sampled from π_h

Now action is Importance weight

Off-policy TD Learning

Given (s, a, r, s'), where $a \sim \pi_b(\cdot | s), s' \sim P(\cdot | s, a)$,

Off-policy TD updates as follows:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r + \gamma \hat{V}^{\pi}(s') - V^{\pi}(s) \right)$$

Case 1: $\pi(a \mid s)$ is large but $\pi_b(a \mid s)$ is small

Case 2: $\pi(a \mid s)$ is small but $\pi_b(a \mid s)$ is large

Off-policy TD Learning is SGD on TD loss

Given (s, a, r, s'), where $a \sim \pi_b(\cdot | s), s' \sim P(\cdot | s, a)$, Off-policy TD updates:

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \frac{\pi(a \mid s)}{\pi_b(a \mid s)} \left(r + \gamma \hat{V}^{\pi}(s') - V^{\pi}(s) \right)$$

Check if it is doing one-step SGD on the TD loss:

$$\mathscr{C}_{td}(\hat{V}^{\pi}(s)) = \left(\hat{V}^{\pi}(s) - y\right)^2 \text{ where } y = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left(r + \gamma \mathbb{E}_{s' \sim P(s, a)} \hat{V}^{\pi}(s')\right)$$

The off-policy TD update is one-step SGD on \mathcal{E}_{td} (more in HW2)

Summary

Q-Learning: online algorithm that learns Q^{\star} (bootstrapping)

Exploration & Exploitation tradeoff: ϵ -greedy is an effective heuristic

Off-policy policy evaluation: importance weighting (also known as inverse probability weighting in causal inference)