RL from Human Feedback (RLHF)

Recap: prelim exam

The last question shows a proof of Q-learning converging to Q^\star and provides a way to calcuate the convergence rate

Recap

We have covered a few RL algorithms, TD, DQN, REINFORCE, PPO;

Recap

We have covered a few RL algorithms, TD, DQN, REINFORCE, PPO;

They all rely on a key and strong assumption: reward function/signal is given

Question today:

What to do when the reward function is unknown

Outline

1. LLM as a policy

2. Learning reward functions from preference data

3. KL-regularized RL

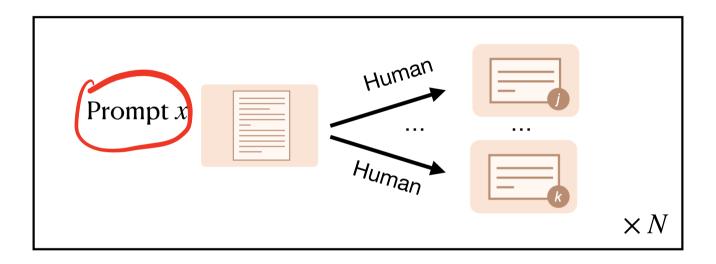
Motivation

Modern chatbots are pre-trained via next-token prediction on web data, followed by fine-tuning

using human feedback (post-training)

The post-training Pipeline: Supervised Fine-tuning (SFT)

Collect instruction-response data



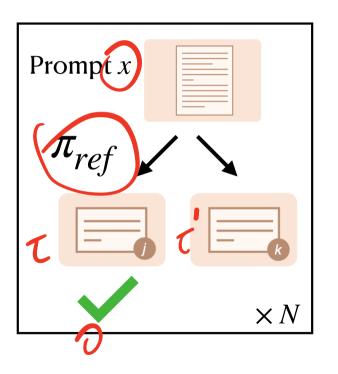
The post-training Pipeline: Supervised Fine-tuning (SFT)

Collect instruction-response data

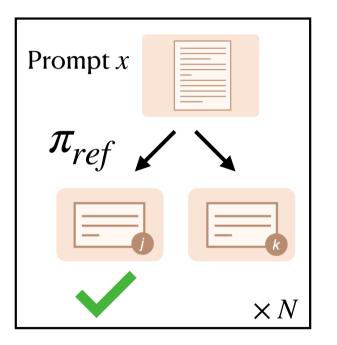


SFT: given prompts, train LLM to predict tokens in human responses

1. Collect preference dataset

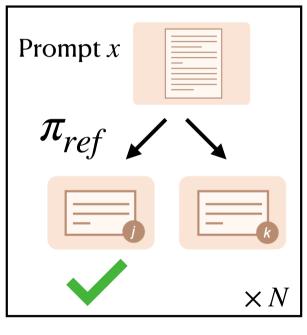


1. Collect preference dataset



$$\mathcal{D}_{off} = \{x, \tau, \tau', z\}$$

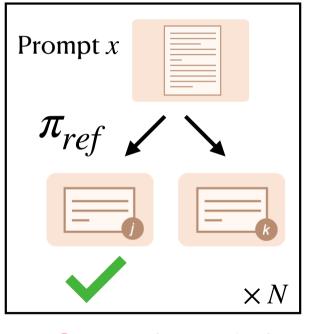
1. Collect preference dataset



 $\mathcal{D}_{off} = \{x, \tau, \tau', z\}$

2. Learn a reward model \hat{r} using the data from step 1

1. Collect preference dataset

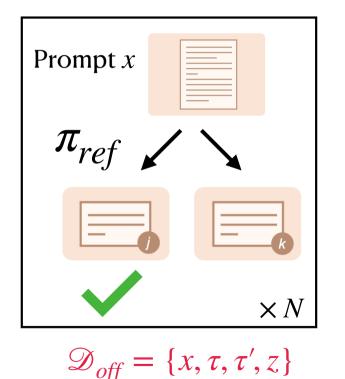


 $\mathcal{D}_{off} = \{x, \tau, \tau', z\}$

2. Learn a reward model \hat{r} using the data from step 1

3. train policy via RL (e.g., PPO)

1. Collect preference dataset

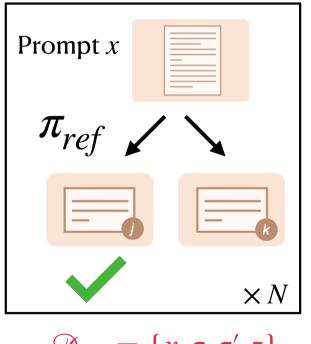


2. Learn a reward model \hat{r} using the data from step 1

3. train policy via RL (e.g., PPO)

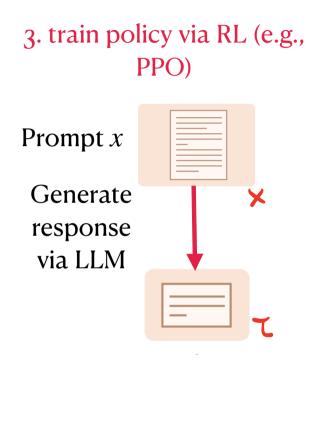
Prompt x

1. Collect preference dataset

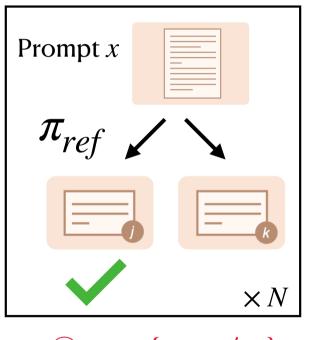


 $\mathcal{D}_{off} = \{x, \tau, \tau', z\}$

2. Learn a reward model \hat{r} using the data from step 1



1. Collect preference dataset

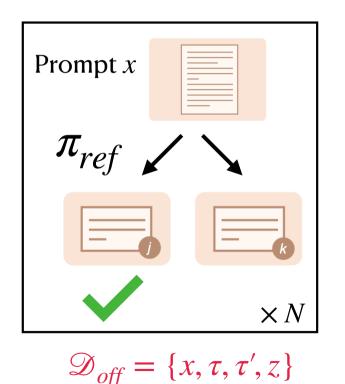


 $\mathcal{D}_{off} = \{x, \tau, \tau', z\}$

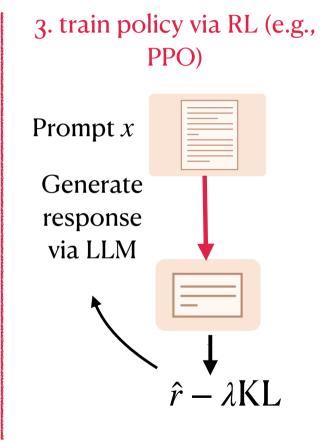
2. Learn a reward model \hat{r} using the data from step 1



1. Collect preference dataset



2. Learn a reward model \hat{r} using the data from step 1



What's the benefit of RLHF over SFT?

Evaluation is often easier than generation

What's the benefit of RLHF over SFT?

Evaluation is often easier than generation

Given a high quality reward, RLHF can often make model outperform humans:

What's the benefit of RLHF over SFT?

Evaluation is often easier than generation

Given a high quality reward, RLHF can often make model outperform humans:

Model size	Algorithm	Winrate (†)
6.9B	SFT	45.2 (±2.49)
	DPO	$68.4~(\pm 2.01)$
	REINFORCE	70.7*
	PPO	77.6^{\ddagger}
	RLOO $(k=2)$	74.2*
	RLOO $(k=4)$	<u>77.9*</u>
	REBEL	78.1 (±1.74)

RL-based methods learn a model better than humans (task: writing short summaries of reddit posts)

^{*} directly obtained from Ahmadian et al. (2024)

[‡] directly obtained from Huang et al. (2024)

The MDP formulation of text generation

Initial state s_0 : prompt k

Action: token y; action space: all possible tokens

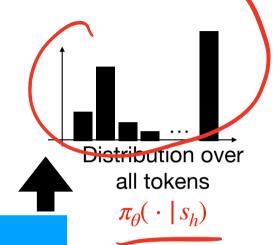
State: prompt + generated tokens, e.g., $s_h = (x, y_0, y_1, ..., y_{h-1})$

Transition: concatenation, i.e., given s_h and y_h , $s_{h+1} = (s_h, y_h)$

Terminate: either hits the maximum content length or hits the special EOS token

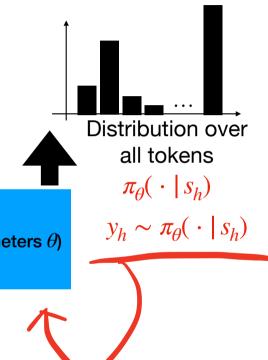
LLM (decoder only transformer w/ parameters θ)

State $s_h = (s_0, y_0, y_1, ... y_{h-1})$



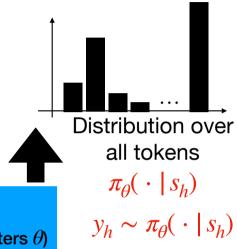
LLM (decoder only transformer w/ parameters θ)

State $s_h = (s_0, y_0, y_1, ... y_{h-1})$



LLM (decoder only transformer w/ parameters θ)

State $s_h = (s_0, y_0, y_1, \dots y_{h-1})$



LLM (decoder only transformer w/ parameters θ)

State $s_h = (s_0, y_0, y_1, \dots y_{h-1})$

Differentiable: can compute $\nabla_{\theta} \ln \pi_{\theta}(y \,|\, s_h)$ via backprop

Outline

1. LLM as a policy

2. Learning reward functions from preference data

3. KL-regularized RL

Learning reward from human data

Reward design can be challenging in RL

Bradley-Terry Model

Assume there is a ground truth reward $r^{\star}(x,\tau)$ (.e., high reward means response is good)

Bradley-Terry Model

Assume there is a ground truth reward $r^*(x,\tau)$ (i.e., high reward means response is good)

The BT model assumes that humans generate labels based on the following probablistic model:

$$P(\tau \text{ is prefered over } \tau' \text{ given } x) = \frac{1}{1 + \exp\left(-\left(\underbrace{r^{\star}(x,\tau) - r^{\star}(x,\tau')}_{\Delta(\tau,\tau')}\right)\right)}$$

Bradley-Terry Model

Assume there is a ground truth reward $r^*(x, \tau)$ (i.e., high reward means response is good)

The BT model assumes that humans generate labels based on the following probablistic model:

$$P(\tau \text{ is preferred over } \tau' \text{ given } x) = \frac{1}{1 + \exp\left(-\left(\frac{r^*(x,\tau) - r^*(x,\tau')}{\Delta(\tau,\tau')}\right)\right)}$$

$$P(\tau \text{ preferred over } \tau')$$

$$\Delta(\tau,\tau') = r^*(x,\tau) - r^*(x,\tau')$$

$$= r^*(x,\tau) - r^*(x,\tau')$$

Learning reward based on the Bradley-Terry assumption

Given a preference dataset $\mathscr{D} = \{x, \tau, \tau', z\}$, where label $z \in \{1, -1\}$ is generated via BT on r^* indicates τ is prefered over τ' ; -1 otherwise) T, t'~ Thef! 1.1x)

Z=51, (is preferred ver t'

B, orlervise

Learning reward based on the Bradley-Terry assumption

Given a preference dataset $\mathcal{D} = \{\underline{x}, \tau, \tau', z\}$, where labe $z \in \{1, -1\}$ is generated via BT on r^* (1 indicates τ is prefered over τ' ; -1 otherwise)

Learning reward based on the Bradley-Terry assumption

Given a preference dataset $\mathcal{D} = \{x, \tau, \tau', z\}$, where label $z \in \{1, -1\}$ is generated via BT on r^* (1 indicates τ is prefered over τ' ; -1 otherwise)

Q: can you write down the reward learning loss via MLE?

Q: let's assume we have infinite data and perform MLE optimization, can we discover the exact
$$r^*$$
?

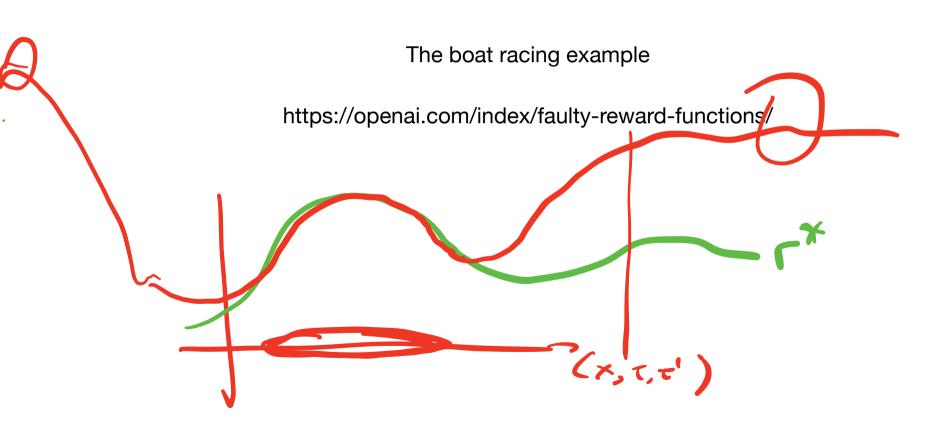
Outline

1. LLM as a policy

2. Learning reward functions from preference data

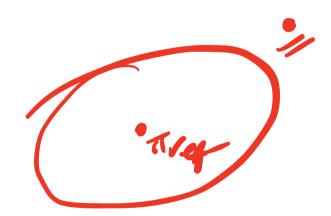
3. KL-regularized RL

RL is very good at reward hacking



We form the following KL regularized RL objective

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \middle| \pi_{ref}(\cdot \mid x) \right) \right]$$



We form the following KL regularized RL objective

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \middle| \pi_{\mathit{ref}}(\cdot \mid x) \right) \right]$$

We form the following KL regularized RL objective

$$\beta$$
: controls the strength of KL-reg;

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \, \middle| \, \pi_{\mathit{ref}}(\cdot \mid x) \right) \right]$$

"stay close" to the SFT policy π_{ref}

We form the following KL regularized RL objective

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \middle| \pi_{ref}(\cdot \mid x) \right) \right]$$

"stay close" to the SFT policy π_{ref} .

Q: Why this can help avoid reward hacking?

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot|x)} \hat{r}(x,\tau) - \beta \mathsf{KL} \left(\pi(\cdot|x) \middle| \pi_{ref}(\cdot|x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot|x)} \left(\hat{r}(x,\tau) - \beta \ln \frac{\pi(\tau|x)}{\pi_{ref}(\tau|x)} \right) \right]$$

$$:= r_{new}(x,\tau)$$

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \, \middle| \, \pi_{ref}(\cdot \mid x) \right) \right]$$

$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \left(\hat{r}(x, \tau) - \beta \ln \frac{\pi(\tau \mid x)}{\pi_{ref}(\tau \mid x)} \right) \right]$$
Run PG (reinforce or PPO) w/
 $r_{new}(x, \tau)$ as the reward signal

Remark: it works, but it is not the exact gradient (see Prelim Q5)

RLHF is a tool for post-training LLMs so that Ilms can understand and follow human instructions

RLHF is a tool for post-training LLMs so that Ilms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RLHF is a tool for post-training LLMs so that Ilms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RM learning is based on the Bradley-Terry model

RLHF is a tool for post-training LLMs so that Ilms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RM learning is based on the Bradley-Terry model

KL regularization is important to avoid hacking the learned RM