RL from Human Feedback (RLHF)

The last question shows a proof of Q-learning converging to Q^{\star} and provides a way to calcuate the convergence rate

Recap: prelim exam

They all rely on a key and strong assumption: reward function/signal is given

Recap

We have covered a few RL algorithms, TD, DQN, REINFORCE, PPO;

What to do when the reward function is unknown

Question today:

Outline

- 1. LLM as a policy
- 2. Learning reward functions from preference data
 - 3. KL-regularized RL

Motivation

Modern chatbots are pre-trained via next-token prediction on web data, followed by fine-tuning using human preference via RL (post-training)

The post-training Pipeline: Supervised Fine-tuning (SFT)

Collect instruction-response data

SFT: given prompts, train LLM to predict tokens in human responses

The post-training Pipeline: RLHF

1. Collect preference dataset

2. Learn a reward model \hat{r} using the data from step 1

 $\mathcal{D}_{off} = \{x, \tau, \tau', z\}$

3. train policy via RL (e.g., **PPO**

[ChatGPT blog post: <u>https://openai.com/index/chatgpt/]</u>

What's the benefit of RLHF over SFT?

Evaluation is often easier than generation

Model size	Algorithm	Winr
6.9B	SFT	45.2 (
	DPO	68.4 (
	REINFORCE	70
	PPO	77
	RLOO $(k = 2)$	74
	RLOO $(k = 4)$	<u>77</u>
	REBEL	78.1 (

* directly obtained from Ahmadian et al. (2024)

‡ directly obtained from Huang et al. (2024)

Given a high quality reward, RLHF can often make model outperform humans:

 $ate(\uparrow)$ (± 2.49) (± 2.01)).7* 7.6‡ 4.2* <u>7.9*</u> (±1.74)

RL-based methods learn a model better than humans (task: writing short summaries of reddit posts)

The MDP formulation of text generation

Initial state s₀: prompt x

Action: token y; action space: all possible tokens

State: prompt + generated tokens, e.g.,

Transition: concatenation, i.e., given s_h and y_h , $s_{h+1} = (s_h, y_h)$

Terminate: either hits the maximum content length or hits the special EOS token

$$s_h = (x, y_0, y_1, \dots, y_{h-1})$$

The LLM itself is a differentiable policy

LLM (decoder only transformer w/ parameters θ)

Differentiable: can compute $\nabla_{\theta} \ln \pi_{\theta}(y \mid s_h)$ via backprop

Outline

- 1. LLM as a policy
- 2. Learning reward functions from preference data
 - 3. KL-regularized RL

Learning reward from human data

Reward design can be challenging in RL

Bradley-Terry Model

The BT model assumes that humans generate labels based on the following probablistic model:

 $P(\tau \text{ is prefered over } \tau' \text{ given})$

 $P(\tau \text{ preferred over } \tau')$

 $\Delta(\tau,\tau')=r^{2}$

Assume there is a ground truth reward $r^{\star}(x, \tau)$ (i.e., high reward means response is good)

$$x) = \frac{1}{1 + \exp\left(-\left(\frac{r^{\star}(x,\tau) - r^{\star}(x,\tau')}{\Delta(\tau,\tau')}\right)\right)}$$

$$r^{\star}(x,\tau) - r^{\star}(x,\tau')$$

Learning reward based on the Bradley-Terry assumption

Q: let's assume we have infinite data and perform MLE optimization, can we discover the exact r^* ?

- Given a preference dataset $\mathcal{D} = \{x, \tau, \tau', z\}$, where label $z \in \{1, -1\}$ is generated via BT on r^* (1 indicates τ is preferred over τ' ; -1 otherwise)
 - Q: can you write down the reward learning loss via MLE?

Outline

- 1. LLM as a policy
- 2. Learning reward functions from preference data
 - 3. KL-regularized RL

RL is very good at reward hacking

The boat racing example

https://openai.com/index/faulty-reward-functions/

To avoid reward hacking

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) \right]$$

- We form the following KL regularized RL objective
 - β : controls the strength of KL-reg; $-\beta \mathsf{KL}\left(\pi(\cdot | x) \,\middle| \, \pi_{ref}(\cdot | x) \,\right)$

"stay close" to the SFT policy π_{ref} .

Q: Why this can help avoid reward hacking?

How to optimize the KL-reg RL objective

A simple heuristic is to add KL to reward

$$J(\pi_{\theta}) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot|x)} \hat{r}(x,\tau) - \beta \mathbb{I}_{x} \right]$$
$$= \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot|x)} \underbrace{\left(\hat{r}(x,\tau) - \beta \ln \frac{-\pi}{x} \right)}_{:=r_{new}(x,\tau)} \right]$$

 $\mathsf{KL}\left(\pi(\cdot \mid x) \mid \pi_{ref}(\cdot \mid x)\right)$

Run PG (reinforce or PPO) w/ $r_{new}(x, \tau)$ as the reward signal

Remark: it works, but it is not the exact gradient (see Prelim Q5)

Summary

- RLHF is a tool for post-training LLMs so that Ilms can understand and follow human instructions
 - Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)
 - RM learning is based on the Bradley-Terry model
 - KL regularization is important to avoid hacking the learned RM

