
RL from Human Feedback
(RLHF)

Recap: prelim exam

The last question shows a proof of Q-learning converging to
and provides a way to calcuate the convergence rate

Q⋆

Recap

We have covered a few RL algorithms, TD, DQN,
REINFORCE, PPO;

They all rely on a key and strong assumption: reward function/signal is given

Question today:

What to do when the reward function is unknown

Outline

2. Learning reward functions from preference data

3. KL-regularized RL

1. LLM as a policy

Motivation

Modern chatbots are pre-trained via next-token prediction on web data, followed by fine-tuning
using human preference via RL (post-training)

Collect instruction-response data

Prompt x

× N

The post-training Pipeline: Supervised Fine-tuning (SFT)

Human

Human

SFT: given prompts, train LLM to predict tokens in human responses

… …

1. Collect preference dataset

Prompt x

πref

× N

𝒟off = {x, τ, τ′￼, z}

3. train policy via RL (e.g.,
PPO)

Prompt x

Generate
response
via LLM

̂r − λKL

2. Learn a reward
model using the
data from step 1

̂r

The post-training Pipeline: RLHF

[ChatGPT blog post: https://openai.com/index/chatgpt/]

https://openai.com/index/chatgpt/%5D

What’s the benefit of RLHF over SFT?

Evaluation is often easier than generation

Given a high quality reward, RLHF can often make model outperform humans:

RL-based methods learn a model
better than humans (task: writing
short summaries of reddit posts)

The MDP formulation of text generation

Initial state : prompt s0 x

Action: token ; action space: all possible tokensy

State: prompt + generated tokens, e.g., sh = (x, y0, y1, …, yh−1)

Transition: concatenation, i.e., given and , sh yh sh+1 = (sh, yh)

Terminate: either hits the maximum content length or hits the special EOS token

The LLM itself is a differentiable policy

LLM (decoder only transformer w/ parameters)θ

State sh = (s0, y0, y1, …yh−1)

…
Distribution over

all tokens
πθ(⋅ |sh)

yh ∼ πθ(⋅ |sh)

Differentiable: can compute
 via backprop∇θln πθ(y |sh)

Outline

2. Learning reward functions from preference data

3. KL-regularized RL

1. LLM as a policy

Learning reward from human data

Reward design can be challenging in RL

Bradley-Terry Model

Assume there is a ground truth reward (i.e., high reward means response is good)r⋆(x, τ)

The BT model assumes that humans generate labels based on the following probablistic model:

P(τ is prefered over τ′￼ given x) =
1

1 + exp − r⋆(x, τ) − r⋆(x, τ′￼)
Δ(τ,τ′￼)

Δ(τ, τ′￼) = r⋆(x, τ) − r⋆(x, τ′￼)

P(τ preferred over τ′￼)

Learning reward based on the Bradley-Terry assumption

Given a preference dataset is generated via BT on 𝒟 = {x, τ, τ′￼, z}, where label z ∈ {1, − 1} r⋆

(1 indicates is prefered over ; -1 otherwise)τ τ′￼

Q: can you write down the reward learning loss via MLE?

Q: let’s assume we have infinite data and perform MLE optimization, can we discover the exact ?r⋆

Outline

2. Learning reward functions from preference data

3. KL-regularized RL

1. LLM as a policy

RL is very good at reward hacking

The boat racing example

https://openai.com/index/faulty-reward-functions/

To avoid reward hacking

We form the following KL regularized RL objective

J(πθ) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]
“stay close” to the SFT policy . πref

Q: Why this can help avoid reward hacking?

 controls the strength of KL-reg;β :

How to optimize the KL-reg RL objective

A simple heuristic is to add KL to reward

J(πθ) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]

= 𝔼x∼ν 𝔼τ∼π(⋅|x) (̂r(x, τ) − β ln
π(τ |x)

πref(τ |x))
:=rnew(x,τ)

Run PG (reinforce or PPO) w/
 as the reward signalrnew(x, τ)

Remark: it works, but it
is not the exact gradient

(see Prelim Q5)

Summary

RLHF is a tool for post-training LLMs so that llms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RM learning is based on the Bradley-Terry model

KL regularization is important to avoid hacking the learned RM

