RL from Human Feedback
(RLHF)

Recap: prelim exam

The last question shows a proof of Q-learning converging to Q*
and provides a way to calcuate the convergence rate

Recap

We have covered a few RL algorithms, TD, DQN,
REINFORCE, PPO;

They all rely on a key and strong assumption: reward function/signal is given

Question today:

What to do when the reward function is unknown

Outline

1. LLM as a policy

2. Learning reward functions from preference data

3. KL-regularized RL

Motivation

Modern chatbots are pre-trained via next-token prediction on web data, followed by fine-tuning
using human preference via RL (post-training)

The post-training Pipeline: Supervised Fine-tuning (SFT)

Collect instruction-response data

Prompt x

SF'T: given prompts, train LLM to predict tokens in human responses

The post-training Pipeline: RLHF

1. Collect preference dataset ; 3. train policy via RL (e.g.,

2. Learn a reward PPO)
model 7 using the —
data from step 1 Prompt x
Generate
response
via LLM
r — AKL

@0]?6— {x T, T Z}

[ChatGPT blog post: https://openai.com/index/chatgpt/]

https://openai.com/index/chatgpt/%5D

What'’s the benefit of RLHF over SFT?

Evaluation is often easier than generation

Given a high quality reward, RLHF can often make model outperform humans:

Model size Algorithm Winrate (1)

SFT 45.2 (£2.49
DPO 68.4 (+2.
REINFORCE 70.7*
6.9B PPO 77.6%

RLOO (k = 2) 74.2%
RLOO (kK =4) 71.9*
REBEL 78.1 (£1.74)

* directly obtained from Ahmadian et al. (2024)
I directly obtained from Huang et al. (2024)

RL-based methods learn a model
better than humans (task: writing
short summaries of reddit posts)

The MDP formulation of text generation

Initial state s,: prompt x
Action: token y; action space: all possible tokens
State: prompt + generated tokens, e.g., 5, = (X, Yo, Vi» -+ -5 Vi 1)

Transition: concatenation, i.e., given s, and y,, 8.1 = (S5, V;,)

Terminate: either hits the maximum content length or hits the special EOS token

The LLM itself is a differentiable policy

I_ Distribution ovér

all tokens
779(| Sh)

Vi ~ T - ‘Sh)

Differentiable: can compute
Vn z(y|s;,) via backprop

4

State §;, = (S()a Yor Y1- ---)’h—l)

Outline

1. LLM as a policy

2. Learning reward functions from preference data

3. KL-regularized RL

Learning reward from human data

Reward design can be challenging in RL

Bradley-Terry Model

Assume there is a ground truth reward r*(x, 7) (i.e., high reward means response is good)

The BT model assumes that humans generate labels based on the following probablistic model:

1

P(z is prefered over 7’ given x) =

1l +exp|—|r*(x, 1) — r*(x, ')
A k A7) J

P(t preferred over t')

>

A(r,) = r*(x,7) — r*(x, 7')

Learning reward based on the Bradley-Terry assumption

Given a preference dataset 9 = {x, 7,7/,z}, where label z € {1, — 1} is generated via BT on r*

(1 indicates 7 is prefered over 7; -1 otherwise)

Q: can you write down the reward learning loss via MLE?

Q: let’s assume we have infinite data and perform MLE optimization, can we discover the exact r*?

Outline

1. LLM as a policy

2. Learning reward functions from preference data

3. KL-regularized RL

RL is very good at reward hacking

The boat racing example

https.//openai.com/index/faulty-reward-functions/

J(my)

To avoid reward hacking

We form the following KL regularized RL objective

[. controls the strength of KL-reg;

X~V _TNn(-‘x)f'(xa T) T ﬁKL (ﬂ() ‘X) ﬂref() |X))]

“stay close” to the SFT policy TTpof

Q: Why this can help avoid reward hacking?

How to optimize the KL-reg RL objective

A simple heuristic is to add KL to reward

o [, 1) = KL (n()

Trof(\X))]

Run PG (reinforce or PPO) w/
(7| x) r,..,(X, T) as the reward signal

7(x,7) — fln

~7~a(-|x)

IT.,.AT|X

ref (‘) Remark: it works, but it

) — ’ is not the exact gradient
el 6.7) (see Prelim Q5)

Summary

RLHF is a tool for post-training LLMs so that lIms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RM learning is based on the Bradley-Terry model

KL regularization is important to avoid hacking the learned RM

