
RL from Human Feedback  
(RLHF)



Recap: prelim exam

The last question shows a proof of Q-learning converging to  
and provides a way to calcuate the convergence rate

Q⋆



Recap

We have covered a few RL algorithms, TD, DQN, 
REINFORCE, PPO;

They all rely on a key and strong assumption: reward function/signal is given



Question today:

What to do when the reward function is unknown
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Motivation

Modern chatbots are pre-trained via next-token prediction on web data, followed by fine-tuning 
using human preference via RL (post-training)



Collect instruction-response data

Prompt x

× N

The post-training Pipeline: Supervised Fine-tuning (SFT)

Human

Human

SFT: given prompts, train LLM to predict tokens in human responses

… …



1. Collect preference dataset

Prompt x

πref

× N

𝒟off = {x, τ, τ′￼, z}

3. train policy via RL (e.g., 
PPO)

Prompt x

Generate 
response 
via LLM

̂r − λKL

2. Learn a reward 
model  using the 
data from step 1

̂r

The post-training Pipeline: RLHF

[ChatGPT blog post: https://openai.com/index/chatgpt/]

https://openai.com/index/chatgpt/%5D


What’s the benefit of RLHF over SFT?

Evaluation is often easier than generation

Given a high quality reward, RLHF can often make model outperform humans:

RL-based methods learn a model 
better than humans (task: writing 
short summaries of reddit posts)



The MDP formulation of text generation

Initial state : prompt s0 x

Action: token ; action space: all possible tokensy

State: prompt + generated tokens, e.g., sh = (x, y0, y1, …, yh−1)

Transition: concatenation, i.e., given  and , sh yh sh+1 = (sh, yh)

Terminate: either hits the maximum content length or hits the special EOS token 



The LLM itself is a differentiable policy

LLM (decoder only transformer w/ parameters )θ

State sh = (s0, y0, y1, …yh−1)

…
Distribution over 

all tokens 
πθ( ⋅ |sh)

yh ∼ πθ( ⋅ |sh)

Differentiable: can compute
 via backprop∇θln πθ(y |sh)
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Learning reward from human data

Reward design can be challenging in RL



Bradley-Terry Model

Assume there is a ground truth reward  (i.e., high reward means response is good)r⋆(x, τ)

The BT model assumes that humans generate labels based on the following probablistic model:

P(τ is prefered over τ′￼ given x) =
1

1 + exp − r⋆(x, τ) − r⋆(x, τ′￼)
Δ(τ,τ′￼)

Δ(τ, τ′￼) = r⋆(x, τ) − r⋆(x, τ′￼)

P(τ preferred over τ′￼)



Learning reward based on the Bradley-Terry assumption

Given a preference dataset  is generated via BT on 𝒟 = {x, τ, τ′￼, z},  where label z ∈ {1, − 1} r⋆

(1 indicates  is prefered over ; -1 otherwise)τ τ′￼

Q: can you write down the reward learning loss via MLE?

Q: let’s assume we have infinite data and perform MLE optimization, can we discover the exact ?r⋆
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RL is very good at reward hacking

The boat racing example

https://openai.com/index/faulty-reward-functions/



To avoid reward hacking

We form the following KL regularized RL objective

J(πθ) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π( ⋅ |x) πref( ⋅ |x))]
“stay close” to the SFT policy . πref

Q: Why this can help avoid reward hacking?

 controls the strength of KL-reg;β :



How to optimize the KL-reg RL objective

A simple heuristic is to add KL to reward

J(πθ) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π( ⋅ |x) πref( ⋅ |x))]

= 𝔼x∼ν 𝔼τ∼π(⋅|x) ( ̂r(x, τ) − β ln
π(τ |x)

πref(τ |x) )
:=rnew(x,τ)

Run PG (reinforce or PPO) w/ 
 as the reward signalrnew(x, τ)

Remark: it works, but it 
is not the exact gradient 

(see Prelim Q5) 



Summary

RLHF is a tool for post-training LLMs so that llms can understand and follow human instructions

Reward Model (RM) is learned from human feedback (i.e., pair-wise preference)

RM learning is based on the Bradley-Terry model

KL regularization is important to avoid hacking the learned RM


