Value Iteration

Recap: Optimal Policy π^*

For infinite horizon discounted MDP, there always exists a deterministic policy

$$\pi^*: S \mapsto A$$
, s.t., $V^{\pi^*}(s) \geq V^{\pi}(s)$, $\forall s, \pi$

[Puterman 94 chapter 6, also see theorem 1.7 in the RL monograph—no need to understand the proof]

i.e., π^* dominates any other policy π , everywhere!

We often denote V^{\star} , Q^{\star} in short for $V^{\pi^{\star}}$, $Q^{\pi^{\star}}$

 $V^*(s)$: the maximum possible value we could possibly achieve

Question for Today and Wed:

Given an MDP $\mathcal{M}=(S,A,P,r,\gamma)$, How to find Q^{\star} and π^{\star} (approximately)

Motivation for Finding the Optimal Policy

Find the strategy w/ the highest prob of winning

(i.e., a policy that maps the board position to the next move)

Find the strategy (i.e., a mapping from robot & ball configuration to torques) that picks the ball and moves it to a goal position ASAP

Outline:

1: Bellman optimality

2: An Iterative Algorithm: Value Iteration

Example of Optimal Policy π^*

Consider the following deterministic MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

Example of Optimal Policy π^*

Consider the following deterministic MDP w/ 3 states & 2 actions

If we were told $V^*(s_1) \& V^*(s_2)$, how to compute $V^*(s_0)$

Bellman Optimality

Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right], \forall s$$

$$V^{\star}(s) = \left[r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi^{\star}(s))} V^{\star}(s') \right]$$
 (By BE of π^{\star})
$$\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

If we took this $\underset{a}{\operatorname{arg}}$ max at s, then follow π^* , we would have higher value

Contradicts to the fact that $V^*(s)$ is the maximum value at s one could possibly achieve

Bellman Optimality

Bellman Optimality

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

Recall that
$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s')$$

This implies that $\arg\max Q^*(s,a)$ is an optimal policy

An optimal policy should pick this action at s

Outline:

1: Bellman optimality

2: An Iterative Algorithm: Value Iteration

Define the Bellman optimality for Q^*

We now know:

$$V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$$

What's the Q version?

$$Q^{\star}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^{\star}(s', a')$$

To estimate Q^* , we will use the fix-point iterative approach again

Define the Bellman operator

Given a function $Q: S \times A \mapsto \mathbb{R}$,

$$\mathcal{I}Q: S \times A \mapsto \mathbb{R},$$

$$(\mathcal{T}Q)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a' \in A} Q(s',a'), \forall s, a \in S \times A$$

We can express $Q \in \mathbb{R}^{|S||A|}$, so $\mathcal{I}Q \in \mathbb{R}^{|S||A|}$

i.e., think about \mathcal{T} as a (non-linear) mapping that maps from $\mathbb{R}^{|S||A|}$ to $\mathbb{R}^{|S||A|}$

High Level idea for Algorithm Design

Fix-point iteration again!

Recall Bellman Optimality for Q^* :

$$Q^{\star}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^{\star}(s', a')$$

We have $Q^* = \mathcal{T}Q^*$,

i.e., Q^{\star} is a fix-point solution of $Q=\mathcal{T}Q$

Value Iteration Algorithm:

1. Initialization: Q^0

2. Iterate until convergence: $Q^{t+1} \leftarrow \mathcal{I}Q^t$

We hope $Q^t \to Q^*$, as $t \to \infty$

Exercise

$$Q^{t+1}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^t(s', a')$$

$$Q^0(s,a) = 0, \forall s, a$$

1. Compute
$$Q^1(s,a), Q^2(s,a), \forall s, a$$

2. Compute
$$\|Q^i - Q^*\|_{\infty} \text{ for } i \in \{0,1,2\}$$

3. Find a confusion on how $\|Q^i - Q^*\|_{\infty}$ behaves as i increases

Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q', we have:

$$\|\mathcal{T}Q - \mathcal{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

Proof:

$$\begin{split} |\left(\mathcal{T}Q\right)(s,a) - \left(\mathcal{T}Q'\right)(s,a)| &= \left| r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a'} Q(s',a') - \left(r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a'} Q'(s',a') \right) \right| \\ &\leq \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left| \left(\max_{a'} Q(s',a') - \max_{a'} Q'(s',a') \right) \right| &\leq \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} \left| \left(Q(s',a') - Q'(s',a') \right) \right| \\ &\leq \gamma \max_{s'} \max_{a'} \left| \left(Q(s',a') - Q'(s',a') \right) \right| &= \gamma \|Q - Q'\|_{\infty} \end{split}$$

Convergence of Value Iteration:

Lemma [Convergence]: Given Q^0 , we have: $\|Q^t - Q^*\|_{\infty} \le \gamma^t \|Q^0 - Q^*\|_{\infty}$

$$\|Q^{t+1} - Q^{\star}\|_{\infty} = \|\mathcal{T}Q^t - \mathcal{T}Q^{\star}\|_{\infty} \le \gamma \|Q^t - Q^{\star}\|_{\infty}$$
$$\dots \le \gamma^{t+1} \|\widehat{Q}^0 - Q^{\star}\|_{\infty}$$

Summary so far:

VI (a fix point iteration alg): $Q^{t+1} \leftarrow \mathcal{T}Q^t$

VI convergence (via contraction) i.e.,
$$\|Q^t - Q^*\|_{\infty} \le \gamma^t \|Q^0 - Q^*\|_{\infty}$$

What about the policy? Ultimately, we do want $\pi^{\star}...$

