
Markov Decision Process

Announcements

TA office hours are posted

HW0 is due Wednesday

Programming assignment 1 will be out on Wednesday

Reading Materials: 
Reinforcement Learning: Theory & Algorithms

 https://rltheorybook.github.io/

This is an extremely advanced RL book, so we will pick specific
subsections for you to read

Please let us know if you find any typos or mistakes in the book

https://rltheorybook.github.io/

Outlines:

1. Definitions of Markov Decision Process

2. Value functions (V and Q functions)

3. Bellman equations

The Mathematical framework:

Infinite horizon Markov Decision Process

Agent decides action

Learning
Agent Environment

The Mathematical framework:

Infinite horizon Markov Decision Process

Agent decides action

Learning
Agent Environment

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′ ∼ P(⋅ |s, a)

: distribution over the next stateP(. |s, a)

The Mathematical framework:

Infinite horizon Markov Decision Process

Agent decides action

Infinity many Steps

Learning
Agent Environment

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′ ∼ P(⋅ |s, a)

: distribution over the next stateP(. |s, a)

The Mathematical framework:

Infinite horizon Markov Decision Process

Agent decides action

Infinity many Steps

Learning
Agent Environment

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′ ∼ P(⋅ |s, a)

: distribution over the next stateP(. |s, a)

The Mathematical framework:

Infinite horizon Markov Decision Process

Agent decides action

Infinity many Steps

Learning
Agent Environment

Send reward and next state from a
Markovian transition dynamics

r(s, a), s′ ∼ P(⋅ |s, a)

: distribution over the next stateP(. |s, a)

Example: 2-D simple car navigation

Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

a = [α, ϕ]⊤ ∈ ℝ2

Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

a = [α, ϕ]⊤ ∈ ℝ2

r(s, a) =
100 (x, y) ∈ 𝒳goal

−1 hit obstacles
0 else

Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

a = [α, ϕ]⊤ ∈ ℝ2

r(s, a) =
100 (x, y) ∈ 𝒳goal

−1 hit obstacles
0 else

s′ = f(s, a) + ϵ, where ϵ ∼ 𝒩(0,I)

Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

a = [α, ϕ]⊤ ∈ ℝ2

r(s, a) =
100 (x, y) ∈ 𝒳goal

−1 hit obstacles
0 else

s′ = f(s, a) + ϵ, where ϵ ∼ 𝒩(0,I)

f(s, a) =
x + τv cos θ
y + τv sin θ

θ + τv tan(ϕ)/d
v + τα

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Transition : physics + some noises′ ∼ P(⋅ |s, a)

Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′ ∼ P(⋅ |s, a)

Example: OpenAI Gym demonstrations

Example: OpenAI Gym demonstrations

Example: OpenAI Gym demonstrations

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

r(s, a) = {1 pole angle ∈ [−12o,12o],
0 else

Policy

𝒮 → 𝒜
A mapping from state to action (what action should I take if I’m in this state…)

a ∼ π(⋅ |s)

Policy

𝒮 → 𝒜
A mapping from state to action (what action should I take if I’m in this state…)

a ∼ π(⋅ |s) conditional
distribution over all

actions

Policy

𝒮 → 𝒜
A mapping from state to action (what action should I take if I’m in this state…)

a ∼ π(⋅ |s) conditional
distribution over all

actions

Deterministic vs stochastic?

Policy

𝒮 → 𝒜
A mapping from state to action (what action should I take if I’m in this state…)

a ∼ π(⋅ |s) conditional
distribution over all

actions

Deterministic vs stochastic?

Q: Assume S state and A actions, how many different deterministic policies we can have?

Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

r(s, a) = {1 pole angle ∈ [−12o,12o],
0 else

Policy 1: uniform random
π(0 |s) = π(1 |s) = 0.5,∀s

Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

r(s, a) = {1 pole angle ∈ [−12o,12o],
0 else

Policy 1: uniform random
π(0 |s) = π(1 |s) = 0.5,∀s

Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity,
pole angle, pole angular velocity]

r(s, a) = {1 pole angle ∈ [−12o,12o],
0 else

Policy 1: uniform random
π(0 |s) = π(1 |s) = 0.5,∀s

Policy 2: adaptive

π(s) = {0(left) if pole angle < 0
1(right) else

Outlines:

1. Definitions of Markov Decision Process

2. Value functions (V and Q functions)

3. Bellman equations

Performance of a policy π

Expected total reward of a policy :π

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … s0 = s, π]
: discount factor (value future reward less and less)γ ∈ [0,1)

Performance of a policy π

Expected total reward of a policy :π

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … s0 = s, π]
: discount factor (value future reward less and less)γ ∈ [0,1)

Q: think about the CartPole example, is there a way we can
estimate at a given s? Vπ(s)

Optimal policy

: the policy that maximizes expected future reward at all statesπ⋆

V⋆(s) ≥ Vπ(s), ∀s, ∀π

Optimal policy

: the policy that maximizes expected future reward at all statesπ⋆

V⋆(s) ≥ Vπ(s), ∀s, ∀π
Fact: is deterministic, only depends on state (i.e., Markovian);

always exists for any infinite horizon discounted MDP
π⋆

π⋆

Optimal policy

: the policy that maximizes expected future reward at all statesπ⋆

V⋆(s) ≥ Vπ(s), ∀s, ∀π
Fact: is deterministic, only depends on state (i.e., Markovian);

always exists for any infinite horizon discounted MDP
π⋆

π⋆

Q: what is the optimal policy when ?γ = 0

State-action Q function

Qπ(s, a) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a0 = a, π]

Outlines:

1. Definitions of Markov Decision Process

2. Value functions (V and Q functions)

3. Bellman equations

Can we quantify V / Q using one-step transition?

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a ∼ π]

Can we quantify V / Q using one-step transition?

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a ∼ π]

0.2

0.8
s

s′

s′ ′

s′ ′ ′

s′ ′ ′ ′

0.1

0.9

0.7

0.3

Can we quantify V / Q using one-step transition?

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a ∼ π]

0.2

0.8
s

s′

s′ ′

s′ ′ ′

s′ ′ ′ ′

0.1

0.9

0.7

0.3

Vπ(s′)

Vπ(s′ ′)

Vπ(s′ ′ ′)

Vπ(s′ ′ ′ ′)

Can we quantify V / Q using one-step transition?

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a ∼ π]

0.2

0.8
s

s′

s′ ′

s′ ′ ′

s′ ′ ′ ′

0.1

0.9

0.7

0.3

Vπ(s′)

Vπ(s′ ′)

Vπ(s′ ′ ′)

Vπ(s′ ′ ′ ′)

Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(.|s,a) [Vπ(s′)]]
Bellman equation for value function

Can we quantify V / Q using one-step transition?

Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(.|s,a) [Vπ(s′)]

Your homework: understand the one-step relationship between V and Q

Vπ(s) = 𝔼a∼π(⋅|s)Qπ(s, a)

Summary:

• Discounted infinite horizon MDP:
• State, action, policy, transition, reward (or cost), discount factor

• V function and Q function
• Key concept: Bellman equation

