
Markov Decision Process

 



Announcements

TA office hours are posted

HW0 is due Wednesday

Programming assignment 1 will be out on Wednesday



Reading Materials: 
Reinforcement Learning: Theory & Algorithms

 https://rltheorybook.github.io/

This is an extremely advanced RL book, so we will pick specific 
subsections for you to read

Please let us know if you find any typos or mistakes in the book

https://rltheorybook.github.io/


Outlines:

1. Definitions of Markov Decision Process

2. Value functions (V and Q functions)

3. Bellman equations
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Example: 2-D simple car navigation

s = [x, y, θ, v]⊤ ∈ ℝ4

a = [α, ϕ]⊤ ∈ ℝ2

r(s, a) =
100 (x, y) ∈ 𝒳goal

−1  hit obstacles
0 else

s′ = f(s, a) + ϵ,  where ϵ ∼ 𝒩(0,I)

f(s, a) =
x + τv cos θ
y + τv sin θ

θ + τv tan(ϕ)/d
v + τα



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Transition : physics + some noises′ ∼ P( ⋅ |s, a)



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′ ∼ P( ⋅ |s, a)
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Policy

𝒮 → 𝒜
A mapping from state to action (what action should I take if I’m in this state…)

a ∼ π( ⋅ |s) conditional 
distribution over all 

actions

Deterministic vs stochastic?

Q: Assume S state and A actions, how many different deterministic policies we can have? 
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Example: OpenAI Gym demonstrations

Push rightPush left
a = 0 a = 1

State = [cart pos, cart velocity, 
pole angle, pole angular velocity]

r(s, a) = {1  pole angle ∈ [−12o,12o],
0 else

Policy 1: uniform random 
π(0 |s) = π(1 |s) = 0.5,∀s

Policy 2: adaptive


π(s) = {0(left)  if pole angle < 0
1(right) else
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Performance of a policy π

Expected total reward of a policy :π

Vπ(s) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … s0 = s, π]
: discount factor (value future reward less and less)γ ∈ [0,1)

Q: think about the CartPole example, is there a way we can 
estimate  at a given s? Vπ(s)
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: the policy that maximizes expected future reward at all statesπ⋆

V⋆(s) ≥ Vπ(s), ∀s, ∀π
Fact:  is deterministic, only depends on state (i.e., Markovian);


always exists for any infinite horizon discounted MDP
π⋆

π⋆

Q: what is the optimal policy when  ?γ = 0



State-action Q function

Qπ(s, a) = 𝔼 [r0 + γr1 + γ2r2 + … + γhrh + … |s0 = s, a0 = a, π]
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Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(.|s,a) [Vπ(s′ )]]
Bellman equation for value function



Can we quantify V / Q using one-step transition?

Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(.|s,a) [Vπ(s′ )]

Your homework:  understand the one-step relationship between V and Q

Vπ(s) = 𝔼a∼π(⋅|s)Qπ(s, a)



Summary:

• Discounted infinite horizon MDP: 
• State, action, policy, transition, reward (or cost), discount factor

• V function and Q function 
• Key concept: Bellman equation


