Controllable Generation
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One more RL algorithm: GRPO (Deepseek-R1)

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given r,, it updates policy to 7, ; as follows:

1. Sample a bunch of prompts, for each x, generate k i.i.d responses 71, 12, .7k

2. Form the following clipping-based objective
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Today’s question

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large
(e.g., > 70B ), we cannot afford to do full parameter optimization...

Q: can we train small evaluation model (e.g., 3B) to guide the generation of a
big large black-box model (e.g., 70B)?



Outline

1. KL regularized RL again, but in token space (i.e., 5}, a;) not traj space

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions
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Notation
Finite horizon MDP with deterministic transition, i.e., 5,1 = f(s;,, a;,)

Tof — @ black-box large model, don’t want to do full backpropagation on it...

We want to optimize KL-regularized RL objective:
H-1
max E___ Z r(s,, a,) — pKL (n( ) | 7 - |sh)>

d h=0

Let’s solve this via Dynamic Programming (backward in time)
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DP for solving the KL-regularized RL

H-1
max E___ [ Z r(s,, a,) — PKL <7£( AENIEE |Sh)>]

d h=0

¥
Base case: V*(s) = 0, for the fictious step H V(S)= wmax &*?5‘6\)

Induction step: given V*(s,, |), want to compute V*(s;

4«’}'le“) “
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DP for solving the KL-regularized RL

H-1
max [ETNH [ Z r(Sh’ ah) - ﬁKL <77:( : |Sh) | ﬂref( ) |Sh)>]

d h=0

Base case: V*(s) = 0, for the fictious step H

Induction step: given V*(s,,. |), want to compute V*(s),)

O (s> ay) = (s @) + [Esh+1~P(.|sh,ah)V*(Sh+1)

V*(s,) = ('ln;gm) E (.15 @* (510 @) — PKL (7[(. | i) | 7 - |sh)> => n*(alsy) x m(als,)exp (Q*(sh, a)/ﬁ)
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DP for solving the KL-regularized RL

H-1
max E,___ [ Z r(sy, a,) — PKL <7T( s [ 7,06 |Sh)>]

d h=0

Base case: V*(s) = 0, for the fictious step H

Induction step: given 1), want to compute V*(s;,)

* —
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n(-|s,)EA(A)
VX(sp) = PInE,, . (1) [exp(Q* (s @)/ P)]

(Exercise: show V*(s) — max Q*(s, a), when # — 0, assuming eref(a |s) > 0,Va)
a



DP for solving the KL-regularized RL
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DP for solving the KL-regularized RL

V*(Sh) = fIn [EahNﬂref(.|sh) [eXP(Q*(Sh’ ah)/ﬁ)]

Now let’s assume transition is deterministic, i.e., s, ; = f(s;, a;), and see if we can futher simplify V*

eXp(V*(Sh)/ﬂ) = [EahNﬂref('lsh) [exp(rh/ﬂ + V*(S],H_l)/ﬂ)] 5 Whel‘e S]’l+1 = f(Sh’ ah)
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DP for solving the KL-regularized RL

V*(Sh) = fIn [EahNﬂref(.|sh) [eXP(Q*(S}p ah)/ﬁ)]

Now let’s assume transition is deterministic, i.e., s, ; = f(s;, a;), and see if we can futher simplify V*

eXp(V*(Sh)/ﬂ) = [Eah'\’ﬂref('lsh) [exp(rh/ﬂ + V*(Sh+1)/ﬂ)] 5 Whel’e S]’l+1 = f(Sh’ ah)
o
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DP for solving the KL-regularized RL

V¥(sp) = BINE, s 1) [€XP(Q* (51 @) )]

Now let’s assume transition is deterministic, i.e., s, ; = f(s;, a;), and see if we can futher simplify V*

eXp(V*‘(‘s'h)/ﬂ) = Eoyor Clsy) lexp(r, /B + V*(s,.0)/P)|, where s, = f(s;. a;)

= [EahNﬂref('lsh) exp(r,/ Mexp(V*(s,. /) Recursion again <~
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DP for solving the KL-regularized RL

V*(Sh) = fIn [EahNﬂref(.|sh) [eXP(Q*(Sh’ ah)/ﬁ)]

Now let’s assume transition is deterministic, i.e., s, ; = f(s;, a;), and see if we can futher simplify V*
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DP for solving the KL-regularized RL

V*(Sh) = fIn [EahNﬂref(.|sh) [eXP(Q*(Sh’ ah)/ﬁ)]

Now let’s assume transition is deterministic, i.e., s, ; = f(s;, a;), and see if we can futher simplify V*

eXp(V*(Sh)/ﬂ) = [EahNﬂref('lsh) [exp(rh/ﬂ + V*(S],H_l)/ﬂ)] 5 Whel‘e S]’l+1 = f(Sh’ ah)

=E, . Gl exp(r,/ plexp(V* (s, )/ f) ) Recursion again
\
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A M
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T~ ﬂref( - | 5,,): Denotes generating a future trajectory using Trof from state s,



In summary, when transition is deterministic, we have
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H-1
Vh,s: exp(V*(s,)/p) = E,. |exp < Z rT/,B> | s,

=h

H-1
Vh,s,a: exp(Q* (s, a)/f) = E, |exp < > rT/,B> |5, a,



In summary, when transition is deterministic, we have T"Mf‘

Note the expecation is always wrt to the future generated from Tyof
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In summary, when transition is deterministic, we have

Q//N Also recall the optimal policy format: \v \

7

7*(ay | 3p) < [lay | spexp (O™ (sy, @)l )
As long as we can learn exp(Q* (s, a)/f3), then we can use it to guide Tyof

Q} Q: why this format of 7* is tractable and implementable?

*\W{(' \"“7 € p\\V\ exy (@ﬁs‘"“\/(, ) Ve € 2)




Outline

1. KL regularized RL again, but in token space (i.e., 5}, a;) not traj space

2. Train value/Q functions ,T/.“( Q,)‘?( @%‘ )

3. Controllable generation via guidance from Q/V functions
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Recall the format of O*/V*

H-1

Vh,s: exp(Q*(sy a,)!f) 7) | AP ( 2 ”Jﬁ) | 1>
T=h
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1. Data collection: generate N i.i.d trajectories from 7, .V~ Trof




Learn exp(Q*/f)

| N

1. Data collection: generate N i.i.d trajectories from 7,5 7°, ..., 7" ~ TTp
H-1
2. For each s, a;, € 7', compute reward-to-go y = 2 r,ont'
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Learn exp(Q*/f)

1. Data collection: generate N i.i.d trajectories from 7, .V~ Trof

H-1
2. Foreach s, q; € 7!, compute reward-to-go y = 2 r.on 7!

=t

3 Given the data {(s, @), y}, train g via least square regression:

.. g=min Y (g(s.a)-exp(y/p))’
e)?(% ) < & (s.a)yeD (s



Learn exp(Q*/f) (

| N

1. Data collection: generate N i.i.d trajectories from 7,5 7°, ..., 7" ~ 7}
H-1
2. For each s, a;, € 7', compute reward-to-go y = 2 r,ont'
=h

3 Given the data {(s, a), v}, train g via least square regression:
D X audh |

2 = min Z (g(s,a) exp(y/ﬂ) (:exf(}’{g)

& (s,a),yeD

Q: what’s the Bayes optimal of this regression problem?



Learn exp(V*/f)

g=min Y (g(s.a)—exp(y/p))°

s (5,a),yED

H-1
Bayes opt: [Eﬂref [exp( Z rlp)|s,=s,a,=al =exp(Q*(s,a)lp)
T=h



Learn exp(V*/f5)

g=min Y (g(s.a)—exp(y/p))°

s (5,a),yED

H-1
Bayes opt: [Eﬂref [exp( Z rlp)|s,=s,a,= a] = exp(Q*(s, @)/ )
=h

Under reasonable conditions, let’s asfume ¢ ~ Bayes opt

445\ ~ &P(ﬁf{”)
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1. KL regularized RL again, but in token space (i.e., 5}, a;) not traj space
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3. Controllable generation via guidance from Q/V functions



Controlling generation via Q* guidance

Least square regression learns

H-1

h’ ay) ~ exp(Q* (s, ap)/p) = E, | exp Z 1B | | sy ay,

[ - ——— ’Z’:h




Controlling generation via Q* guidance

During inference time, we can generate a trajectory use the following policy:
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Controlling generation via Q* guidance

During inference time, we can generate a trajectory use the following policy:

ﬂ(a | Sh) X ﬂref(a | Sh)g(sha a)
————

1. Note that we never do backpropagation on Tref
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Controlling generation via Q* guidance

During inference time, we can generate a trajectory use the following policy:

7i(a | Sh@zref(a | 5,)8(s, @)

1. Note that we never do backpropagation on Tref

2. 8(s,, a) ~ exp(Q*(s,, @)/ ) is an evaluation function, not a generator!

S
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Problem from GSMS8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a
300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already

consumed 1800 calories?
Incorrect Solution f@et’s break this down step by step!
1. The bag of chips has 5 irfgs, and each serving has 250 calories. To find the total calories in the bag,
multiply the number of servings by the calories per serving:
5 servings X 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many
more calories you can consume, subtract the calories you’'ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories + 250 calories/serving = 0.8 servings
4. Since there are 5 servings in the bag, you can eat:
0.8 servings x 300g/bag = 240g
So, you can eat up to 240g of the bag of chips.
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2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many
more calories you can consume, subtract the calories you’'ve already had from your daily target:

2000 - 1800 = 200 calories

3. Since each serving of chips has 250 calories, you can consume:

200 calories + 250 calories/serving = 0.8 servings

4. Since there are 5 servings in the bag, you can eat:

0.8 servings x 300g/bag = 240g
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Experiment results

Train a small model (1B) (s, a) to approximate exp(Q* (s, a)/f)

Define the new policy as 7,,,, « 7,,A{a|s) - §(s,a)

"’

Let’s compare the generation from 7, and x,,,,,
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Incorrect Solution from 7™: Let’s break this down step by step!
. 1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag,
multiply the number of servings by the calories per serving:
5 servings X 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many
more calories you can consume, subtract the calories you’'ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:

200 calories +— 250 calories/serving = 0.8 servings

S

4. Since there are 5 servings in the bag, you can eat: | | A
0.8 servings x 300g/bag = 240g

So, you can eat up to 240g of the bag of chips.
Here’s the answer: Almost the same

240 g

A4

Correct Solution from Qfi: A delicious problem!

Let’s break it down step by step:

1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.

2. The total calories in the bag are: 250 calories/serving X 5 servings = 1250 calories.

3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.

4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8
servings.

5. Since there are 5 servings in the bag, you can eat: 0.8 servings ><V 300g/5 servings = 0.8 X 60g = 48g.
So, you can eat up to | 48¢g | of the bag of chips.

Enjoy your snacking, but don’t overdo it!
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Corrected the
mistake

Incorrect Solution from 7™': Let’s break this down step by step!

. 1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag,
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4. Since there are 5 servings in the bag, you can eat: | | A
0.8 servings x 300g/bag = 240g

So, you can eat up to 240g of the bag of chips.
Here’s the answer: Almost the same

240 g

A4

Correct Solution from Qfi: A delicious problem!

Let’s break it down step by step:

1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.

2. The total calories in the bag are: 250 calories/serving X 5 servings = 1250 calories.

3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.

4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8
servings.

5. Since there are 5 servings in the bag, you can eat: 0.8 servings ><V 300g/5 servings = 0.8 X 60g = 48g.
So, you can eat up to | 48¢g | of the bag of chips.

Enjoy your snacking, but don’t overdo it!



Summary

1. DP on the KL-regularized RL objective

2. With the KL-reg, now the hard max is replaced by a soft-max operator In [E exp(..)
a

3. The V*/Q™ has very simple form when transition is deterministic

4. Simple regression to learn a approximator of exp(Q*/f3) directly, and use it to guide 7L, iN generation



