
Controllable Generation

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x)r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]

Recap: KL-reg RL objective (traj-wise)

̂π(τ |x) ∝ πref(τ |x) ⋅ exp (r(x, τ)
β)

Stay close to πref Optimize reward

Recap: DPO and REBEL

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x)))
DPO:

Recap: DPO and REBEL

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x)))
DPO:

θt+1 = arg min
θ

𝔼x,(τ,τ′)∼πθt(⋅|x) β (ln πθ(τ |x)
πθt

(τ |x) − ln πθ(τ′ |x)
πθt

(τ′ |x)) − (r(x, τ) − r(x, τ′))
2

REBEL:

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

(Deepseek-R1)

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

(Deepseek-R1)

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

2. Form the following clipping-based objective

(Deepseek-R1)

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

2. Form the following clipping-based objective

max
π ∑

{x,τ1,τ2,…,τk}

k

∑
i=1

min { π(τi |x)
πt(τi |x) A(x, τi), clip (π(τi |x)

πt(τi |x) ,1 − ϵ,1 + ϵ) A(x, τi)}

(Deepseek-R1)

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

2. Form the following clipping-based objective

max
π ∑

{x,τ1,τ2,…,τk}

k

∑
i=1

min { π(τi |x)
πt(τi |x) A(x, τi), clip (π(τi |x)

πt(τi |x) ,1 − ϵ,1 + ϵ) A(x, τi)}
where:

A(x, τi) = r(τi) − r̄
std (r(τ1), r(τ2), …, r(τk))

(Deepseek-R1)

One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

2. Form the following clipping-based objective

max
π ∑

{x,τ1,τ2,…,τk}

k

∑
i=1

min { π(τi |x)
πt(τi |x) A(x, τi), clip (π(τi |x)

πt(τi |x) ,1 − ϵ,1 + ϵ) A(x, τi)}
where:

A(x, τi) = r(τi) − r̄
std (r(τ1), r(τ2), …, r(τk))

Normalize advantage use
group responses ,

per prompt;
τ1, …, τk

(Deepseek-R1)

Today’s question

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large
(e.g., > 70B), we cannot afford to do full parameter optimization…

Today’s question

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large
(e.g., > 70B), we cannot afford to do full parameter optimization…

Q: can we train small evaluation model (e.g., 3B) to guide the generation of a
big large black-box model (e.g., 70B)?

Outline

1. KL regularized RL again, but in token space (i.e.,) not traj spacesh, ah

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions

Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

 — a black-box large model, don’t want to do full backpropagation on it…πref

Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

 — a black-box large model, don’t want to do full backpropagation on it…πref

We want to optimize KL-regularized RL objective:

Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

 — a black-box large model, don’t want to do full backpropagation on it…πref

We want to optimize KL-regularized RL objective:

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]

Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

 — a black-box large model, don’t want to do full backpropagation on it…πref

We want to optimize KL-regularized RL objective:

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Let’s solve this via Dynamic Programming (backward in time)

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

Q⋆(sh, ah) = r(sh, ah) + 𝔼sh+1∼P(⋅|sh,ah)V
⋆(sh+1)

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

Q⋆(sh, ah) = r(sh, ah) + 𝔼sh+1∼P(⋅|sh,ah)V
⋆(sh+1)

V⋆(sh) = max
π(⋅|sh)∈Δ(A)

𝔼a∼π(⋅|sh)Q
⋆(sh, a) − βKL (π(⋅ |sh) |πref(⋅ |sh))

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

Q⋆(sh, ah) = r(sh, ah) + 𝔼sh+1∼P(⋅|sh,ah)V
⋆(sh+1)

V⋆(sh) = max
π(⋅|sh)∈Δ(A)

𝔼a∼π(⋅|sh)Q
⋆(sh, a) − βKL (π(⋅ |sh) |πref(⋅ |sh)) => π⋆(a |sh) ∝ πref(a |sh)exp (Q⋆(sh, a)/β)

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

Q⋆(sh, ah) = r(sh, ah) + 𝔼sh+1∼P(⋅|sh,ah)V
⋆(sh+1)

V⋆(sh) = max
π(⋅|sh)∈Δ(A)

𝔼a∼π(⋅|sh)Q
⋆(sh, a) − βKL (π(⋅ |sh) |πref(⋅ |sh)) => π⋆(a |sh) ∝ πref(a |sh)exp (Q⋆(sh, a)/β)

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

DP for solving the KL-regularized RL

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π(⋅ |sh) |πref(⋅ |sh))]
Base case: , for the fictious step V⋆(sH) = 0 H

Induction step: given , want to compute V⋆(sh+1) V⋆(sh)

Q⋆(sh, ah) = r(sh, ah) + 𝔼sh+1∼P(⋅|sh,ah)V
⋆(sh+1)

V⋆(sh) = max
π(⋅|sh)∈Δ(A)

𝔼a∼π(⋅|sh)Q
⋆(sh, a) − βKL (π(⋅ |sh) |πref(⋅ |sh)) => π⋆(a |sh) ∝ πref(a |sh)exp (Q⋆(sh, a)/β)

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]
(Exercise: show , assuming)V⋆(s) → max

a
Q⋆(s, a), when β → 0 πref(a |s) > 0,∀a

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β)

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β) Recursion again

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β) Recursion again

= 𝔼ah∼πref(⋅|sh) exp(rh/β)𝔼ah+1∼πref(⋅|sh+1) exp(rh+1/β)exp(V⋆(sh+2))

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β) Recursion again

= 𝔼ah∼πref(⋅|sh) exp(rh/β)𝔼ah+1∼πref(⋅|sh+1) exp(rh+1/β)exp(V⋆(sh+2))

= 𝔼τ∼πref(⋅|sh) exp (
H−1

∑
τ=h

rτ /β)

DP for solving the KL-regularized RL

V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)], where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β) Recursion again

= 𝔼ah∼πref(⋅|sh) exp(rh/β)𝔼ah+1∼πref(⋅|sh+1) exp(rh+1/β)exp(V⋆(sh+2))

= 𝔼τ∼πref(⋅|sh) exp (
H−1

∑
τ=h

rτ /β)
: Denotes generating a future trajectory using from state τ ∼ πref(⋅ |sh) πref sh

In summary, when transition is deterministic, we have

∀h, s : exp(V⋆(sh)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh

∀h, s, a : exp(Q⋆(sh, ah)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh, ah

In summary, when transition is deterministic, we have

∀h, s : exp(V⋆(sh)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh

∀h, s, a : exp(Q⋆(sh, ah)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh, ah

Note the expecation is always wrt to the future generated from πref

In summary, when transition is deterministic, we have

Also recall the optimal policy format:

π⋆(ah |sh) ∝ πref(ah |sh)exp (Q⋆(sh, ah)/β)

In summary, when transition is deterministic, we have

Also recall the optimal policy format:

π⋆(ah |sh) ∝ πref(ah |sh)exp (Q⋆(sh, ah)/β)
As long as we can learn , then we can use it to guide exp(Q⋆(s, a)/β) πref

In summary, when transition is deterministic, we have

Also recall the optimal policy format:

π⋆(ah |sh) ∝ πref(ah |sh)exp (Q⋆(sh, ah)/β)
As long as we can learn , then we can use it to guide exp(Q⋆(s, a)/β) πref

Q: why this format of is tractable and implementable?π⋆

Outline

1. KL regularized RL again, but in token space (i.e.,) not traj spacesh, ah

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions

∀h, s : exp(Q⋆(sh, ah)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh, ah

Recall the format of Q⋆/V⋆

Learn exp(Q⋆/β)

1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

Learn exp(Q⋆/β)

1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

2. For each , compute reward-to-go on sh, ah ∈ τi y =
H−1

∑
τ=h

rτ τi

Learn exp(Q⋆/β)

1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

2. For each , compute reward-to-go on sh, ah ∈ τi y =
H−1

∑
τ=h

rτ τi

3 Given the data , train via least square regression: {(s, a), y} g

Learn exp(Q⋆/β)

1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

2. For each , compute reward-to-go on sh, ah ∈ τi y =
H−1

∑
τ=h

rτ τi

3 Given the data , train via least square regression: {(s, a), y} g

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Learn exp(Q⋆/β)

1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

2. For each , compute reward-to-go on sh, ah ∈ τi y =
H−1

∑
τ=h

rτ τi

3 Given the data , train via least square regression: {(s, a), y} g

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Q: what’s the Bayes optimal of this regression problem?

Learn exp(V⋆/β)

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Bayes opt: 𝔼πref [exp(
H−1

∑
τ=h

rτ /β) |sh = s, ah = a] = exp(Q⋆(s, a)/β)

Learn exp(V⋆/β)

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Bayes opt: 𝔼πref [exp(
H−1

∑
τ=h

rτ /β) |sh = s, ah = a] = exp(Q⋆(s, a)/β)

Under reasonable conditions, let’s assume ̂g ≈ Bayes opt

Outline

1. KL regularized RL again, but in token space (i.e.,) not traj spacesh, ah

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions

Controlling generation via guidanceQ⋆

Least square regression learns

̂g(sh, ah) ≈ exp(Q⋆(sh, ah)/β) = 𝔼πref [exp (
H−1

∑
τ=h

rτ /β) |sh, ah]

Controlling generation via guidanceQ⋆

During inference time, we can generate a trajectory use the following policy:

π(a |sh) ∝ πref(a |sh) ̂g(sh, a)

Controlling generation via guidanceQ⋆

During inference time, we can generate a trajectory use the following policy:

π(a |sh) ∝ πref(a |sh) ̂g(sh, a)

1. Note that we never do backpropagation on πref

Controlling generation via guidanceQ⋆

During inference time, we can generate a trajectory use the following policy:

π(a |sh) ∝ πref(a |sh) ̂g(sh, a)

1. Note that we never do backpropagation on πref

2. is an evaluation function, not a generator!̂g(sh, a) ≈ exp(Q⋆(sh, a)/β)

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

 made a
mistake

πref

Experiment results

Train a small model (1B) to approximate ̂g(s, a) exp(Q⋆(s, a)/β)

Define the new policy as πnew ∝ πref(a |s) ⋅ ̂g(s, a)

Let’s compare the generation from and πref πnew

Almost the same

Corrected the
mistake Almost the same

Summary

1. DP on the KL-regularized RL objective

2. With the KL-reg, now the hard is replaced by a soft-max operator max
a

ln 𝔼 exp(. .)

3. The has very simple form when transition is deterministicV⋆/Q⋆

4. Simple regression to learn a approximator of directly, and use it to guide in generationexp(Q⋆/β) πref

