
Controllable Generation

 



J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x)r(x, τ) − βKL (π( ⋅ |x) πref( ⋅ |x))]

Recap: KL-reg RL objective (traj-wise)

̂π(τ |x) ∝ πref(τ |x) ⋅ exp ( r(x, τ)
β )

Stay close to πref Optimize reward
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arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x) ))
DPO: 

θt+1 = arg min
θ

𝔼x,(τ,τ′ )∼πθt(⋅|x) β (ln πθ(τ |x)
πθt

(τ |x) − ln πθ(τ′ |x)
πθt

(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

REBEL:
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One more RL algorithm: GRPO
Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given , it updates policy to  as follows:πt πt+1

1. Sample a bunch of prompts, for each , generate k i.i.d responses x τ1, τ2, …τk

2. Form the following clipping-based objective

max
π ∑

{x,τ1,τ2,…,τk}

k

∑
i=1

min { π(τi |x)
πt(τi |x) A(x, τi), clip ( π(τi |x)

πt(τi |x) ,1 − ϵ,1 + ϵ) A(x, τi)}
where:

A(x, τi) = r(τi) − r̄
std (r(τ1), r(τ2), …, r(τk))

Normalize advantage use 
group responses , 

per prompt;
τ1, …, τk

(Deepseek-R1)
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(e.g., > 70B ), we cannot afford to do full parameter optimization…



Today’s question

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large 
(e.g., > 70B ), we cannot afford to do full parameter optimization…

Q: can we train small evaluation model (e.g., 3B) to guide the generation of a 
big large black-box model (e.g., 70B)?



Outline

1. KL regularized RL again, but in token space (i.e., ) not traj spacesh, ah

2. Train value/Q functions 

3. Controllable generation via guidance from Q/V functions
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Notation

Finite horizon MDP with deterministic transition, i.e., sh+1 = f(sh, ah)

  — a black-box large model, don’t want to do full backpropagation on it…πref

We want to optimize KL-regularized RL objective:

max
π

𝔼τ∼π [
H−1

∑
h=0

r(sh, ah) − βKL (π( ⋅ |sh) |πref( ⋅ |sh))]
Let’s solve this via Dynamic Programming (backward in time)
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(Exercise: show , assuming )V⋆(s) → max

a
Q⋆(s, a),  when β → 0 πref(a |s) > 0,∀a
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V⋆(sh) = β ln 𝔼ah∼πref(⋅|sh) [exp(Q⋆(sh, ah)/β)]

Now let’s assume transition is deterministic, i.e., , and see if we can futher simplify V*sh+1 = f(sh, ah)

exp(V⋆(sh)/β) = 𝔼ah∼πref(⋅|sh) [exp(rh/β + V⋆(sh+1)/β)],  where sh+1 = f(sh, ah)

= 𝔼ah∼πref(⋅|sh) exp(rh/β)exp(V⋆(sh+1)/β) Recursion again
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: Denotes generating a future trajectory using  from state  τ ∼ πref( ⋅ |sh) πref sh
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In summary, when transition is deterministic, we have

∀h, s : exp(V⋆(sh)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh

∀h, s, a : exp(Q⋆(sh, ah)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh, ah

Note the expecation is always wrt to the future generated from πref
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In summary, when transition is deterministic, we have

Also recall the optimal policy format: 

π⋆(ah |sh) ∝ πref(ah |sh)exp (Q⋆(sh, ah)/β)
As long as we can learn , then we can use it to guide exp(Q⋆(s, a)/β) πref

Q: why this format of  is tractable and implementable?π⋆
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2. Train value/Q functions 

3. Controllable generation via guidance from Q/V functions



∀h, s : exp(Q⋆(sh, ah)/β) = 𝔼πref
exp (

H−1

∑
τ=h

rτ /β) |sh, ah

Recall the format of Q⋆/V⋆
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1. Data collection: generate N i.i.d trajectories from , πref τ1, …, τN ∼ πref

2. For each , compute reward-to-go  on sh, ah ∈ τi y =
H−1

∑
τ=h

rτ τi

3 Given the data , train  via least square regression: {(s, a), y} g

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Q: what’s the Bayes optimal of this regression problem?
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̂g = min
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(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Bayes opt: 𝔼πref [exp(
H−1

∑
τ=h

rτ /β) |sh = s, ah = a] = exp(Q⋆(s, a)/β)



Learn exp(V⋆/β)

̂g = min
g ∑

(s,a),y∈𝒟
(g(s, a) − exp(y/β))2

Bayes opt: 𝔼πref [exp(
H−1

∑
τ=h

rτ /β) |sh = s, ah = a] = exp(Q⋆(s, a)/β)

Under reasonable conditions, let’s assume ̂g ≈ Bayes opt
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Controlling generation via  guidanceQ⋆

Least square regression learns 

̂g(sh, ah) ≈ exp(Q⋆(sh, ah)/β) = 𝔼πref [exp (
H−1

∑
τ=h

rτ /β) |sh, ah]
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Controlling generation via  guidanceQ⋆

During inference time, we can generate a trajectory use the following policy:

π(a |sh) ∝ πref(a |sh) ̂g(sh, a)

1. Note that we never do backpropagation on πref

2.  is an evaluation function, not a generator!̂g(sh, a) ≈ exp(Q⋆(sh, a)/β)
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Experiment results
Guide black-box models to do math reasoning

Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise
For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer 

(aka chain-of-thought (CoT) reasoning)

 made a 
mistake 

πref



Experiment results

Train a small model (1B)  to approximate ̂g(s, a) exp(Q⋆(s, a)/β)

Define the new policy as πnew ∝ πref(a |s) ⋅ ̂g(s, a)

Let’s compare the generation from   and πref πnew



Almost the same



Corrected the 
mistake Almost the same



Summary

1. DP on the KL-regularized RL objective

2. With the KL-reg, now the hard  is replaced by a soft-max operator max
a

ln 𝔼 exp( . . )

3. The  has very simple form when transition is deterministicV⋆/Q⋆

4. Simple regression to learn a approximator of  directly, and use it to guide  in generationexp(Q⋆/β) πref


