# **Controllable Generation**

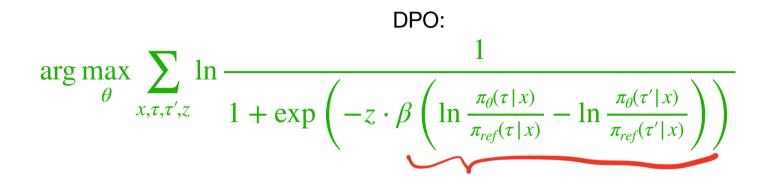
# Recap: KL-reg RL objective (traj-wise)

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[ \mathbb{E}_{\tau \sim \pi(\cdot \mid x)} r(x, \tau) - \beta \mathsf{KL} \left( \pi(\cdot \mid x) \middle| \pi_{ref}(\cdot \mid x) \right) \right]$$

$$\hat{\pi}(\tau \mid x) \propto \pi_{ref}(\tau \mid x) \cdot \exp\left(\frac{r(x, \tau)}{\beta}\right)$$

$$\int Stay close to \pi_{ref} \qquad \text{Optimize reward}$$

#### **Recap: DPO and REBEL**



# **Recap: DPO and REBEL**

$$\arg \max_{\theta} \sum_{x,\tau,\tau',z} \ln \frac{1}{1 + \exp\left(-z \cdot \beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{ref}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{ref}(\tau' \mid x)}\right)\right)}$$

**REBEL:** 

$$\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{x,(\tau,\tau') \sim \pi_{\theta_t}(\cdot|x)} \left( \beta \left( \ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{\theta_t}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{\theta_t}(\tau' \mid x)} \right) - \left( r(x,\tau) - r(x,\tau') \right) \right)^2$$

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given  $\pi_t$ , t updates policy to  $\pi_{t+1}$  as follows:

 $\tau' \sim \overline{n}_{*}(\cdot|\mathbf{x})$ 

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given  $\pi_t$ , it updates policy to  $\pi_{t+1}$  as follows:

1. Sample a bunch of prompts, for each *x*, generate k i.i.d responses  $\tau^1, \tau^2, \dots \tau^k$ 

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given  $\pi_t$ , it updates policy to  $\pi_{t+1}$  as follows:

1. Sample a bunch of prompts, for each *x*, generate k i.i.d responses  $\tau^1, \tau^2, \dots \tau^k$ 

2. Form the following clipping-based objective

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given  $\pi_t$ , it updates policy to  $\pi_{t+1}$  as follows:

1. Sample a bunch of prompts, for each *x*, generate k i.i.d responses  $\tau^1, \tau^2, \dots \tau^k$ 

2. Form the following clipping-based objective

$$\max_{\pi} \sum_{\{x,\tau^1,\tau^2,\ldots,\tau^k\}} \sum_{i=1}^k \min\left\{\frac{\pi(\tau^i \mid x)}{\pi_t(\tau^i \mid x)} A(x,\tau^i), \operatorname{clip}\left(\frac{\pi(\tau^i \mid x)}{\pi_t(\tau^i \mid x)}, 1-\epsilon, 1+\epsilon\right) A(x,\tau^i)\right\}$$

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given  $\pi_t$ , it updates policy to  $\pi_{t+1}$  as follows:

1. Sample a bunch of prompts, for each *x*, generate k i.i.d responses  $\tau^1, \tau^2, \dots \tau^k$ 

2. Form the following clipping-based objective

$$\max_{\pi} \sum_{\{x,\tau^{1},\tau^{2},...,\tau^{k}\}} \sum_{i=1}^{k} \min \left\{ \frac{\pi(\tau^{i}|x)}{\pi_{t}(\tau^{i}|x)} A(x,\tau^{i}), \operatorname{clip}\left(\frac{\pi(\tau^{i}|x)}{\pi_{t}(\tau^{i}|x)}, 1-\epsilon, 1+\epsilon\right) A(x,\tau^{i}) \right\}$$
where:
$$A(x,\tau^{i}) = \frac{(r(\tau_{i})) - \bar{r}}{\operatorname{std}\left(r(\tau^{1}), r(\tau^{2}), ..., r(\tau^{k})\right)}$$

$$\overline{\gamma} = \frac{\sum_{i=1}^{k} \sum_{i=1}^{k} \Gamma(\kappa, \tau_{i})}{\operatorname{std}\left(r(\tau^{1}), r(\tau^{2}), ..., r(\tau^{k})\right)}$$

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

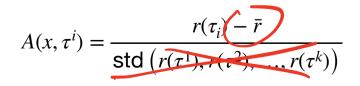
Given  $\pi_t$ , it updates policy to  $\pi_{t+1}$  as follows:

1. Sample a bunch of prompts, for each x, generate k i.i.d responses  $\tau^1, \tau^2, \dots \tau^k$ 

2. Form the following clipping-based objective

$$\max_{\pi} \sum_{\{x,\tau^1,\tau^2,\dots,\tau^k\}} \sum_{i=1}^k \min\left\{\frac{\pi(\tau^i \mid x)}{\pi_t(\tau^i \mid x)} A(x,\tau^i), \operatorname{clip}\left(\frac{\pi(\tau^i \mid x)}{\pi_t(\tau^i \mid x)}, 1-\epsilon, 1+\epsilon\right) A(x,\tau^i)\right\}$$

where:



Normalize advantage use group responses  $\tau^1, \ldots, \tau^k$ , per prompt;

# **Today's question**

So far, DPO, PPO, BEBEL, and GRPO all optimize the entire LLM; when LLM is large (e.g., 170B), we cannot afford to do full parameter optimization...

## **Today's question**

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large (e.g., > 70B), we cannot afford to do full parameter optimization...

Q: can we train small evaluation model (e.g., 3B) to **guide the generation** of a big large black-box model (e.g., 70B)?

# Outline

1. KL regularized RL again, but in token space (i.e.,  $s_h$ ,  $a_h$ ) not traj space

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions

Finite horizon MDP with deterministic transition, i.e.,  $s_{h+1} = f(s_h, a_h)$ 

Finite horizon MDP with deterministic transition, i.e.,  $s_{h+1} = f(s_h, a_h)$ 

 $\pi_{ref}$  – a black-box large model, don't want to do full backpropagation on it...

Finite horizon MDP with deterministic transition, i.e.,  $s_{h+1} = f(s_h, a_h)$ 

 $\pi_{ref}$  – a black-box large model, don't want to do full backpropagation on it...

We want to optimize KL-regularized RL objective:

Finite horizon MDP with deterministic transition, i.e.,  $s_{h+1} = f(s_h, a_h)$ 

 $\pi_{ref}$  – a black-box large model, don't want to do full backpropagation on it...

We want to optimize KL-regularized RL objective:

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

Finite horizon MDP with deterministic transition, i.e.,  $s_{h+1} = f(s_h, a_h)$ 

 $\pi_{ref}$  – a black-box large model, don't want to do full backpropagation on it...

We want to optimize KL-regularized RL objective:

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

Let's solve this via Dynamic Programming (backward in time)

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

**Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

**Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H

**Induction step**: given  $V^{\star}(s_{h+1})$ , want to compute  $V^{\star}(s_h)$ 

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

**Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H **Induction step**: given  $V^{\star}(s_{h+1})$ , want to compute  $V^{\star}(s_h)$  $Q^{\star}(s_h, a_h) = r(s_h, a_h) + \mathbb{E}_{s_{h+1} \sim P(\cdot|s_h, a_h)} V^{\star}(s_{h+1}) \longrightarrow V(s_h)$ 

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

V(s) = max Q(sa) **Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H **Induction step**: given  $V^{\star}(s_{h+1})$ , want to compute  $V^{\star}(s_{h})$  $Q^{\star}(s_{h}, a_{h}) = r(s_{h}, a_{h}) + \mathbb{E}_{s_{h+1} \sim P(\cdot|s_{h}, a_{h})} V^{\star}(s_{h+1})$   $V^{\star}(s_{h}) = \max_{\pi(\cdot|s_{h}) \in \Delta(A)} \mathbb{E}_{a \sim \pi(\cdot|s_{h})} Q^{\star}(s_{h}, a) - \beta \mathsf{KL}\left(\pi(\cdot|s_{h}) \mid \pi_{ref}(\cdot|s_{h})\right)$   $C^{\star}(s_{h}) = \sum_{\pi(\cdot|s_{h}) \in \Delta(A)} \mathbb{E}_{a \sim \pi(\cdot|s_{h})} Q^{\star}(s_{h}, a) - \beta \mathsf{KL}\left(\pi(\cdot|s_{h}) \mid \pi_{ref}(\cdot|s_{h})\right)$ 

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

**Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H

**Induction step**: given  $V^{\star}(s_{h+1})$ , want to compute  $V^{\star}(s_h)$ 

$$Q^{\star}(s_{h}, a_{h}) = r(s_{h}, a_{h}) + \mathbb{E}_{s_{h+1} \sim P(\cdot | s_{h}, a_{h})} V^{\star}(s_{h+1})$$

$$V^{\star}(s_h) = \max_{\pi(\cdot|s_h) \in \Delta(A)} \mathbb{E}_{a \sim \pi(\cdot|s_h)} Q^{\star}(s_h, a) - \beta \mathsf{KL}\left(\pi(\cdot|s_h) \mid \pi_{ref}(\cdot|s_h)\right) \Longrightarrow \pi^{\star}(a \mid s_h) \propto \pi_{ref}(a \mid s_h) \exp\left(Q^{\star}(s_h, a) / \beta\right)$$

$$PF \text{ for solving the KL-regularized RL } \left( e^{x}p(-x) + e^{x}p(x) \right)$$

$$\max_{\pi} \mathbb{E}_{r \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot | s_h) | \pi_{ref}(\cdot | s_h) \right) \right]$$

$$Base case: V^{\star}(s_H) = 0, \text{ for the fictious step } H$$

$$Induction step: \text{ given } V^{\star}(s_{h+1}), \text{ want to compute } V^{\star}(s_h) = \beta \cdot \left[ \sum_{h=0}^{H-1} e^{x}(s_h, a_h) + \mathbb{E}_{s_{h+1} \sim P(\cdot | s_h, a_h)} V^{\star}(s_{h+1}) \right]$$

$$V^{\star}(s_h) = \max_{\pi(\cdot | s_h) \in \Delta(A)} \mathbb{E}_{a \sim \pi(\cdot | s_h)} Q^{\star}(s_h, a) - \beta \mathsf{KL} \left( \pi(\cdot | s_h) | \pi_{ref}(\cdot | s_h) \right) = \pi^{\star}(a | s_h) \propto \pi_{ref}(a | s_h) \exp \left( Q^{\star}(s_h, a) / \beta \right)$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) - \beta \mathsf{KL} \left( \pi(\cdot \mid s_h) \mid \pi_{ref}(\cdot \mid s_h) \right) \right]$$

**Base case**:  $V^{\star}(s_H) = 0$ , for the fictious step H

Induction step: given  $V^{\star}(s_{h+1})$ , want to compute  $V^{\star}(s_{h})$   $Q^{\star}(s_{h}, a_{h}) = r(s_{h}, a_{h}) + \mathbb{E}_{s_{h+1} \sim P(\cdot|s_{h}, a_{h})} V^{\star}(s_{h+1})$   $V^{\star}(s_{h}) = \max_{\pi(\cdot|s_{h}) \in \Delta(A)} \mathbb{E}_{a \sim \pi(\cdot|s_{h})} Q^{\star}(s_{h}, a) - \beta \mathsf{KL} \left( \pi(\cdot|s_{h}) | \pi_{ref}(\cdot|s_{h}) \right) => \pi^{\star}(a | s_{h}) \propto \pi_{ref}(a | s_{h}) \exp \left( Q^{\star}(s_{h}, a) / \beta \right)$  $V^{\star}(s_{h}) = \beta \ln \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[ \exp(Q^{\star}(s_{h}, a_{h}) / \beta) \right]$ 

(Exercise: show  $V^{\star}(s) \to \max_{a} Q^{\star}(s, a)$ , when  $\beta \to 0$ , assuming  $\pi_{ref}(a \mid s) > 0, \forall a$ )

 $V^{\star}(s_{h}) = \beta \ln \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot | s_{h})} \left[ \exp(Q^{\star}(s_{h}, a_{h})/\beta) \right]$ Now let's assume transition is deterministic, i.e.,  $s_{h+1} = f(s_{h}, a_{h})$ , and see if we can further simplify V\*  $Q^{\star}(S_{h}, a_{h}) = \int_{V} + \sqrt{(S_{h+1})}$  where  $S_{hel} = f(S_{h}, a_{h})$ 

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[\exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta)\right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$
$$\exp\left(\frac{f}{\beta} + \frac{\sqrt{\beta}}{\beta}\right) = \exp\left(\frac{f}{\beta}\right) \cdot \exp\left(\frac{\sqrt{\beta}}{\beta}\right)$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[ \exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta) \right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$
$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta)$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[\exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta)\right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$

$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta) \text{ Recursion again}$$

$$\sum_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta) \exp\left(\frac{r_{h}}{\beta}\right) \exp\left(\frac{r_{h}}{\beta}\right)$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[\exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta)\right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$
$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta) \text{ Recursion again}$$
$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \mathbb{E}_{a_{h+1} \sim \pi_{ref}(\cdot|s_{h+1})} \exp(r_{h+1}/\beta) \exp(V^{\star}(s_{h+2}))$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[\exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta)\right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$
$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta) \quad \text{Recursion again}$$
$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \mathbb{E}_{a_{h+1} \sim \pi_{ref}(\cdot|s_{h+1})} \exp(r_{h+1}/\beta) \exp(V^{\star}(s_{h+2}))$$
$$= \mathbb{E}_{\tau \sim \pi_{ref}(\cdot|s_{h})} \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right)$$

$$V^{\star}(s_h) = \beta \ln \mathbb{E}_{a_h \sim \pi_{ref}(\cdot | s_h)} \left[ \exp(Q^{\star}(s_h, a_h) / \beta) \right]$$

Now let's assume transition is deterministic, i.e.,  $s_{h+1} = f(s_h, a_h)$ , and see if we can further simplify V\*

$$\exp(V^{\star}(s_{h})/\beta) = \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \left[\exp(r_{h}/\beta + V^{\star}(s_{h+1})/\beta)\right], \text{ where } s_{h+1} = f(s_{h}, a_{h})$$

$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \exp(V^{\star}(s_{h+1})/\beta) \text{ Recursion again}$$

$$= \mathbb{E}_{a_{h} \sim \pi_{ref}(\cdot|s_{h})} \exp(r_{h}/\beta) \mathbb{E}_{a_{h+1} \sim \pi_{ref}(\cdot|s_{h+1})} \exp(r_{h+1}/\beta) \exp(V^{\star}(s_{h+2})) \quad \text{ contract}$$

$$= \mathbb{E}_{\tau \sim \pi_{ref}(\cdot|s_{h})} \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) \quad \text{ Solution}$$

 $\tau \sim \pi_{ref}(\cdot | s_h)$ : Denotes generating a future trajectory using  $\pi_{ref}$  from state  $s_h$ 

## In summary, when transition is deterministic, we have

$$\forall h, s: \exp(V^{\star}(s_h)/\beta) = \mathbb{E}_{\pi_{ref}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h \right]$$
$$\forall h, s, a: \exp(Q^{\star}(s_h, a_h)/\beta) = \mathbb{E}_{\pi_{ref}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h, a_h \right]$$

n summary, when transition is deterministic, we have  

$$\forall h, s: \exp(V^{\star}(s_h)/\beta) = \mathbb{E}_{\pi_{ref}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h \right]$$

$$\forall h, s, a: \exp(Q^{\star}(s_h, a_h)/\beta) = \mathbb{E}_{\pi_{ref}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h, a_h \right]$$

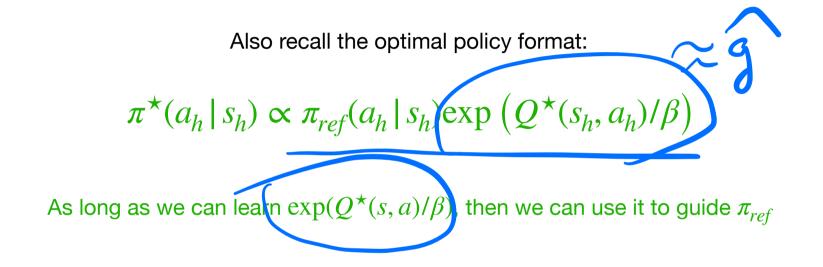
Note the expecation is always wrt to the future generated from  $\pi_{ref}$ 

## In summary, when transition is deterministic, we have

Also recall the optimal policy format:

$$\pi^{\star}(a_h | s_h) \propto \pi_{ref}(a_h | s_h) \exp\left(Q^{\star}(s_h, a_h)/\beta\right)$$

#### In summary, when transition is deterministic, we have





# In summary, when transition is deterministic, we have Also recall the optimal policy format:

$$\pi^{\star}(a_h | s_h) \propto \pi_{ref}(a_h | s_h) \exp\left(Q^{\star}(s_h, a_h)/\beta\right)$$

As long as we can learn  $\exp(Q^*(s, a)/\beta)$ , then we can use it to guide  $\pi_{ref}$ 

### Outline

1. KL regularized RL again, but in token space (i.e.,  $s_h$ ,  $a_h$ ) not traj space

2. Train value/Q functions

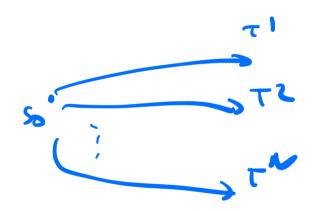
3. Controllable generation via guidance from Q/V functions

# Recall the format of $Q^*/V^*$ (Sume $f(s_0, a_0)$ )

$$\forall h, s: \exp(Q^{\star}(s_h, a_h)/\beta) = \mathbb{E}_{\pi_{ref}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h, a_h \right]$$

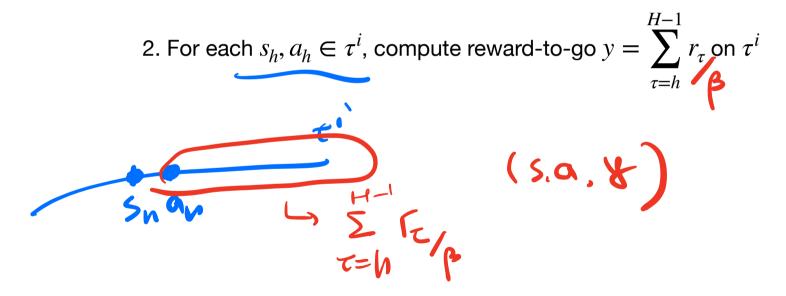


1. Data collection: generate N i.i.d trajectories from  $\pi_{ref}$ ,  $\tau^1$ , ...,  $\tau^N \sim \pi_{ref}$ 



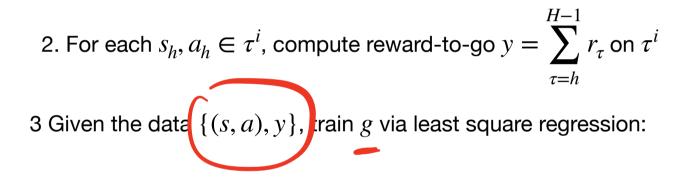
# Learn $\exp(Q^{\star}/\beta)$

1. Data collection: generate N i.i.d trajectories from  $\pi_{ref}$ ,  $\tau^1$ , ...,  $\tau^N \sim \pi_{ref}$ 



# Learn $\exp(Q^*/\beta)$

1. Data collection: generate N i.i.d trajectories from  $\pi_{ref}$ ,  $\tau^1$ , ...,  $\tau^N \sim \pi_{ref}$ 



# Learn $\exp(Q^{\star}/\beta)$

1. Data collection: generate N i.i.d trajectories from  $\pi_{ref}$ ,  $\tau^1$ , ...,  $\tau^N \sim \pi_{ref}$ 

2. For each 
$$s_h, a_h \in \tau^i$$
, compute reward-to-go  $y = \sum_{\tau=h}^{H-1} r_{\tau}$  on  $\tau^i$ 

3 Given the data  $\{(s, a), y\}$ , train g via least square regression:

$$e_{g}(\overset{\circ}{\beta}) \overset{\circ}{=} \min_{g} \sum_{(s,a),y \in \mathscr{D}} \left( \underbrace{g(s,a)}_{\leftarrow} - \underbrace{\exp(y/\beta)}_{\leftarrow} \right)^{2}$$

Learn  $\exp(Q^*/\beta)$ 1. Data collection: generate N i.i.d trajectories from  $\pi_{ref}$ ,  $\tau^1, \ldots, \tau^N \sim \pi_{ref}$ H-12. For each  $s_h, a_h \in \tau^i$ , compute reward-to-go  $y = \sum r_{\tau}$  on  $\tau^i$  $\tau = h$ 3 Given the data  $\{(s, a), y\}$ , train g via least square regression:  $\hat{g} = \min_{g} \sum_{(s,a), y \in \mathcal{D}} \left( g(s,a) - \exp(y/\beta) \right)$ 

Q: what's the Bayes optimal of this regression problem?

# Learn $\exp(V^{\star}/\beta)$

$$\hat{g} = \min_{g} \sum_{(s,a),y \in \mathscr{D}} \left( g(s,a) - \exp(y/\beta) \right)^{2}$$
  
Bayes opt:  $\mathbb{E}_{\pi_{ref}} \left[ \exp(\sum_{\tau=h}^{H-1} r_{\tau}/\beta) \,|\, s_{h} = s, a_{h} = a \right] = \exp(Q^{\star}(s,a)/\beta)$ 

# Learn $\exp(V^{\star}/\beta)$

$$\hat{g} = \min_{g} \sum_{(s,a),y \in \mathscr{D}} \left( g(s,a) - \exp(y/\beta) \right)^{2}$$
Bayes opt:  $\mathbb{E}_{\pi_{hef}} \left[ \exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_{h} = s, a_{h} = a \right] = \exp(Q^{\star}(s,a)/\beta)$ 
Under reasonable conditions, let's assume  $\hat{g} \approx$  Bayes opt

# **Outline**

1. KL regularized RL again, but in token space (i.e.,  $s_h$ ,  $a_h$ ) not traj space

2. Train value/Q functions



3. Controllable generation via guidance from Q/V functions

Least square regression learns

$$\widehat{g}(s_h, a_h) \approx \exp(Q^*(s_h, a_h)/\beta) = \mathbb{E}_{\pi_{ref}}\left[\exp\left(\sum_{\tau=h}^{H-1} r_{\tau}/\beta\right) | s_h, a_h\right]$$

During inference time, we can generate a trajectory use the following policy:

 $\pi(a | s_h) \propto \pi_{ref}(a | s_h) \hat{g}(s_h, a)$   $\approx \pi_{ref}(a | s_h) \hat{g}(s_h, a)$   $\approx \pi_{ref}(a | s_h) \hat{g}(s_h, a)$ 

During inference time, we can generate a trajectory use the following policy:

 $\pi(a \mid s_h) \propto \pi_{ref}(a \mid s_h) \hat{g}(s_h, a)$ 

1. Note that we never do backpropagation on  $\pi_{ref}$ 

During inference time, we can generate a trajectory use the following policy:

$$\pi(a \mid s_h) \propto \pi_{ref}(a \mid s_h) \hat{g}(s_h, a)$$

X

1. Note that we never do backpropagation on  $\pi_{ref}$ 

2.  $\hat{g}(s_h, a) \approx \exp(Q^*(s_h, a)/\beta)$  is an evaluation function, not a generator!

Guide black-box models to do math reasoning Reward: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

For reasoning tasks, we often prompt model to think **step-by-step before outputing a final answer** (aka chain-of-thought (CoT) reasoning)

#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

# For reasoning tasks, we often prompt model to think **step-by-step before outputing a final answer** (aka chain-of-thought (CoT) reasoning)

**Problem from GSM8K:** According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

# For reasoning tasks, we often prompt model to think **step-by-step before outputing a final answer** (aka chain-of-thought (CoT) reasoning)

**Problem from GSM8K:** According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

**Incorrect Solution from**  $\pi^{\text{ref}}$ : Let's break this down step by step!

1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of servings by the calories per serving:

 $5 \text{ servings} \times 250 \text{ calories/serving} = 1250 \text{ calories}$ 

2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can consume, subtract the calories you've already had from your daily target:

2000 - 1800 = 200 calories

3. Since each serving of chips has 250 calories, you can consume:

200 calories  $\div$  250 calories/serving = 0.8 servings

4. Since there are 5 servings in the bag, you can eat:

 $0.8 \text{ servings} \times 300 \text{g/bag} = 240 \text{g}$ 

So, you can eat up to 240g of the bag of chips. Here's the answer:



#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

# For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

**Problem from GSM8K:** According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

**Incorrect Solution from**  $\pi^{ref}$ : Let's break this down step by step!

1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of servings by the calories per serving:

 $5 \text{ servings} \times 250 \text{ calories/serving} = 1250 \text{ calories}$ 

2 You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can consume, subtract the calories you've already had from your daily target:

2000 - 1800 = 200 calories

3-Since each serving of chips has 250 calories, you can consume:

200 calories  $\div$  250 calories/serving = 0.8 servings

 $\checkmark$  Since there are 5 servings in the bag, you can eat:

 $0.8 \text{ servings} imes 300 extrm{g}/ extrm{bag} = 240 extrm{g}$ 

So, you can eat up to 240g of the bag of chips. Here's the answer:



#### Guide black-box models to do math reasoning

**Reward**: 0/1 - 1 means model's final answer is correct solution, 0 otherwise

# For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer

(aka chain-of-thought (CoT) reasoning)

**Problem from GSM8K:** According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

**Incorrect Solution from**  $\pi^{\text{ref}}$ : Let's break this down step by step!

1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of servings by the calories per serving:

 $5 \text{ servings} \times 250 \text{ calories/serving} = 1250 \text{ calories}$ 

2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can consume, subtract the calories you've already had from your daily target:

2000 - 1800 = 200 calories

3. Since each serving of chips has 250 calories, you can consume:

200 calories  $\div$  250 calories/serving = 0.8 servings

4. Since there are 5 servings in the bag, you can eat:

 $0.8 \; {
m servings} \, imes \, 300 {
m g/bag} = 240 {
m g}$ 

So, you can eat up to 240g of the bag of chips. Here's the answer:

 $\pi_{ref}$  made a mistake

Train a small model (1B)  $\hat{g}(s, a)$  to approximate  $\exp(Q^{\star}(s, a)/\beta)$ 

Define the new policy as  $\pi_{new} \propto \pi_{ref}(a \mid s) \cdot \hat{g}(s, a)$ 

Let's compare the generation from  $\pi_{ref}$  and  $\pi_{new}$ 

| Tit                                                    | <b>Incorrect Solution from</b> $\pi^{ref}$ : Let's break this down step by step!                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
|                                                        | 1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of servings by the calories per serving:                                                                                                                                                                                                                                                                                                                          |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | $5 \text{ servings} \times 250 \text{ calories/serving} = 1250 \text{ calories}$                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |
|                                                        | 2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |
|                                                        | more calories you can consume, subtract the calories you've already had from your daily target:                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | 2000 - 1800 = 200 calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |
|                                                        | 3. Since each serving of chips has 250 calories, you can consume:                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |  |  |
|                                                        | 200 calories $\div$ 250 calories/serving = 0.8 servings                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |
| 4. Since there are 5 servings in the bag, you can eat: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | $0.8 \text{ servings} \times 300 \text{g/bag} = 240 \text{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |
|                                                        | So, you can eat up to 240g of the bag of chips.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | Here's the answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Almost the same |  |  |
|                                                        | 240 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
| - North                                                | <b>Correct Solution from</b> $Q$ <sup>#</sup> : A delicious problem!                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |
|                                                        | <ul> <li>Let's break it down step by step:</li> <li>1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.</li> <li>2. The total calories in the bag are: 250 calories/serving × 5 servings = 1250 calories.</li> <li>3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.</li> <li>4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0. servings.</li> </ul> |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | 5. Since there are 5 servings in the bag, you can eat: $0.8 \text{ servings} \times 300 \text{g}/5 \text{ servings} = 0.8 \times 60 \text{g} = $ So, you can eat up to $48 \text{g}$ of the bag of chips.                                                                                                                                                                                                                                                                                           |                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |
|                                                        | Enjoy your snacking, but don't overdo it!                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |

|                 | <b>Incorrect Solution from</b> $\pi^{\text{ref}}$ : Let's break this down step by step!                                |                            |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                 | 1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag,          |                            |  |
| Tref            | multiply the number of servings by the calories per serving:                                                           |                            |  |
|                 | $5 \; { m servings}  	imes  250 \; { m calories/serving} = 1250 \; { m calories}$                                      |                            |  |
|                 | 2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many                |                            |  |
|                 | more calories you can consume, subtract the calories you've already had from your daily target:                        |                            |  |
|                 | $2000 - 1800 = 200 	ext{ calories}$                                                                                    |                            |  |
|                 | 3. Since each serving of chips has 250 calories, you can consume:                                                      |                            |  |
|                 | $200 	ext{ calories} \div 250 	ext{ calories/serving} = 0.8 	ext{ servings}$                                           |                            |  |
| <b>.</b>        | 4. Since there are 5 servings in the bag, you can eat:                                                                 |                            |  |
| Corrected the 📕 | $0.8 \; { m servings} 	imes 300 { m g/bag} = 240 { m g}$                                                               |                            |  |
| mistake         | So, you can eat up to 240g of the bag of chips.                                                                        | Almost the same            |  |
|                 | Here's the answer:                                                                                                     | Almost the same            |  |
|                 | 240 g                                                                                                                  |                            |  |
|                 |                                                                                                                        |                            |  |
|                 | <b>Correct Solution from</b> $Q\sharp$ : A delicious problem!                                                          |                            |  |
|                 | Let's break it down step by step:                                                                                      |                            |  |
|                 | 1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.                                 |                            |  |
|                 | 2. The total calories in the bag are: 250 calories/serving $\times$ 5 servings = 125                                   | 0 calories.                |  |
|                 | 3. You have already consumed 1800 calories, so you have $2000 - 1800 = 200$                                            | calories left for the day. |  |
|                 | 4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = $0.8$          |                            |  |
|                 | servings.                                                                                                              | , , <u> </u>               |  |
| 4               | 5. Since there are 5 servings in the bag, you can eat: 0.8 servings $\times$ 300g/5 servings = 0.8 $\times$ 60g = 48g. |                            |  |
|                 | So, you can eat up to $48g$ of the bag of chips.                                                                       |                            |  |
|                 | Enjoy your snacking, but don't overdo it!                                                                              |                            |  |

# Summary

1. DP on the KL-regularized RL objective

2. With the KL-reg, now the hard max is replaced by a soft-max operator  $\ln \mathbb{E} \exp(\ldots)$ 

3. The  $V^{\star}/Q^{\star}$  has very simple form when transition is deterministic

4. Simple regression to learn a approximator of  $\exp(Q^*/\beta)$  directly, and use it to guide  $\pi_{ref}$  in generation