Controllable Generation



Recap: KL-reg RL objective (traj-wise)

J(mr) =E,_, [—TNﬂ(,lx)r(x, 7) — KL (71'( ) | 7 \x))]

. r(x, 7)
(7| x) X Ty (T | X) - exp ( )

/o N\

Stay close to 7,..¢ Optimize reward



Recap: DPO and REBEL

DPO:
|
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REBEL.:
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One more RL algorithm: GRPO (Deepseek-R1)

Basically some combination PPO clipping with RLoo (Reinforce w/ leave-one-out)

Given x,, it updates policy to 7, , as follows:

1. Sample a bunch of prompts, for each x, generate k i.i.d responses Tl, Tz, Tk

2. Form the following clipping-based objective

X) i (7' | x) B l,
mjx 2 2 min { T A(x, 7", clip ( T 1 —e,1+ 6) A(x, 7" }

{x,c.2%,... 75 i=1

where:

() — 7 Normalize advantage use
: Tt.)—r
Ax, 7" = : group responses 7', ..., 7,

std (r(rl), r(t?), ..., r(fk)) oer prompt:




Today’s question

So far, DPO, PPO, REBEL, and GRPO all optimize the entire LLM; when LLM is large
(e.g., > 70B ), we cannot afford to do full parameter optimization...

Q: can we train small evaluation model (e.g., 3B) to guide the generation of a
big large black-box model (e.g., 70B)?



Outline

1. KL regularized RL again, but in token space (i.e., §;, ;) not traj space

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions



Notation

Finite horizon MDP with deterministic transition, i.e., s, | = f(s,,, a;)

Tor — @ black-box large model, don’t want to do full backpropagation on it...

We want to optimize KL-regularized RL objective:

H-1

max E___ Z r(s;,, a,) — PRL (72'( | sp) [ 72, - \S;))

h=0

Let’s solve this via Dynamic Programming (backward in time)



DP for solving the KL-regularized RL

H-1
max E___ [ 2 r(s,, a,) — PKL (ﬂ( *sp) 7, - |Sh))]

h=0

Base case: V*(sy) = 0, for the fictious step H

Induction step: given V*(s,_ ;), want to compute V*(s,)

* —_ —
Q (Sh’ ah) — r(Sh’ ah) T sh+1~P(-|sh,ah)V*(Sh+1)

V*(s,) = ﬂ(olggm) = im0 @ (S @) — KL <7r( ) | 7 \sh)) -> *(als,) o 7,op(a | 5,)exp (Q*(sh, a)/ﬁ)

VX(sp) = BInE,, ., (15 |exP(Q* (5 @)/ )]

(Exercise: show V*(s) — max Q*(s,a), when # — 0, assuming z,,{a|s) > 0,V a)
a



DP for solving the KL-regularized RL

VX(sp) = BInE,, ., (15 |exP(Q*(5)» @)/ )]

Now let’s assume transition is deterministic, i.e., ;.| = (s}, a;,), and see if we can futher simplify V*

exp(V*(s,)/P) = By 15 |EXPI B+ VE(501)/B)|, Where s, = f(sy, a;)

Recursion again

S exp(r,/f 1' V*(s,.1)/ _

_ahN ref("Sh) eXp(rh/ﬁ) _ah+lNﬂref(°‘Sh+l) eXp(rh_l'l/ﬁ)eXp(V*(Sh'l'z))
H—-1

=TT+ |1) CAP Z I /P

=h

T~ ﬂref( - | 5;,): Denotes generating a future trajectory using n,.rfrom state s,



In summary, when transition is deterministic, we have

Vi eV omEE, )

Vh, S, d . eXp(Q*(Sh, ah)/ﬁ) ‘

Note the expecation is always wrt to the future generated from Trof



In summary, when transition is deterministic, we have

Also recall the optimal policy format:
w*(ay, | sy) « 7, Aay|s,)exp (Q*(sh, a,)/ ,6)

As long as we can learn exp(Q*(s, a)/ ), then we can use it to guide Tyof

Q: why this format of 7 is tractable and implementable?



Outline

1. KL regularized RL again, but in token space (i.e., §;, ;) not traj space

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions



Recall the format of Q*/V*

H-1
‘E, )| exp 2 rp s, a,

T=h

Vh,s: exp(Q*(s;, a,)!f)




Learn exp(Q*/p)

1 N

1. Data collection: generate N i.1.d trajectories from 7, T°, ..., T ~ Ty
H-1
2. For each s,, a, € t', compute reward-to-go y = Z r.ont'
T=h

3 Given the data {(s, a), v}, train g via least square regression:

§ = min Z (g(s, Cl) o eXp(y/ﬁ))z
g

(s,a),yED

Q: what’s the Bayes optimal of this regression problem?



Learn exp(V*/f)

g=min D (g65.0)- exp(y/f))”

(s,a),yED

H-1
Bayes opt: £, lexp( Z rip)|s, =s,a,= a] = exp(Q*(s, a)/f)
=h

Under reasonable conditions, let’s assume § ~ Bayes opt



Outline

1. KL regularized RL again, but in token space (i.e., §;, ;) not traj space

2. Train value/Q functions

3. Controllable generation via guidance from Q/V functions



Controlling generation via O™ guidance

L east square regression learns

H-1
8(s;, a,) ~ exp(Q*(s,, a,)/p) = = [exp ( 2 r,[/ﬁ) | 57, ah]

=h



Controlling generation via O™ guidance
During inference time, we can generate a trajectory use the following policy:

ﬂ(a ‘ Sh) X ﬂref(a ‘ Sh)g(sha Cl)

1. Note that we never do backpropagation on Trof

2. 8(s,,a) =~ exp(Q*(s,, a)/P) is an evaluation function, not a generator!



Experiment results

Guide black-box models to do math reasoning
Reward: 0/1 — 1 means model’s final answer is correct solution, 0 otherwise

For reasoning tasks, we often prompt model to think step-by-step before outputing a final answer
(aka chain-of-thought (CoT) reasoning)

Problem from GSMS8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a
300g bag has 5 servings, how many grams can you eat if your daily calorie target is 2000 and you have already
consumed 1800 calories?

Incorrect Solution from 7*: Let s break this down step by step!
1. The bag of chips has 5 servings, and each serving has 260 calories. To find the total calories in the bag,
multiply the number of servings by the calories per serving:
5 servings X 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many
more calories you can consume, subtract the calories you’ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories =+ 250 calories/serving = 0.8 servings
n-ref made a 4. Since there are 5 servings in the bag, you can eat:
. — 0.8 servings x 300g/bag = 240g
mistake So, you can eat up to 240g of the bag of chips.
Here’s the answer:

240 g




Experiment results

Train a small model (1B) (s, a) to approximate exp(Q*(s, a)/ )

Define the new policy as 7,,,, X 7,,/a |$) - 2(s,a)

Let’s compare the generation from 7, and 7, ,,,



Corrected the
mistake

'Incorrect Solution from 7°': Let’s break this down step by step' o |
1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag,

| multiply the number of servings by the calories per serving:
f 5 servings X 250 calories/serving = 1250 calories :
' 2. You have already consumed 1800 calories, and your dally calorie target is 2000. To find out how ma,ny

. more calories you can consume, subtract the calories you’ve already had from your daily target: '
_j- 2000 - 1800 = 200 calories

. 3. Since each serving of chips has 250 calories, you can consume:

| 200 calories +~ 250 calories/serving = 0.8 servings

4. Since there are 5 servings in the bag, you can eat:

94 0.8 servings x 300g/bag = 240g

So, you can eat up to 240g of the bag of chips.
Here’s the answer: Almost the same

240 g

| Let’s break it down step by step:

'1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.

12. The total calories in the bag are: 250 calories/serving x 5 servings = 1250 calories.

3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day. _‘
,4 Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8 ;
|servings.

D. Slnce tere are 5 servmgs in the bag, you can eat O 8 servmgs X 300g/ 5 servmgs — O 8 X 60g — 48g
So, you can eat up to | 48¢g | of the bag of chips.

Enjoy your snacking, but don’t overdo it!



Summary

1. DP on the KL-regularized RL objective

2. With the KL-reg, now the hard max is replaced by a soft-max operator In [E exp(. . )
a

3. The V*/Q™ has very simple form when transition is deterministic

4. Simple regression to learn a approximator of exp(Q*/ [) directly, and use it to guide Jr,,efin generation



