
Maximum Entropy IRL  
(continue)



Recap on the setting for inverse RL

Finite horizon MDP ℳ = {S, A, H, c, P, μ, π⋆}

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

μ

Key Assumption on cost:  
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)



Plan for Today:

1. MaxEnt IRL alg

2. Case study of AlphaGo



Maximum Entropy Inverse RL formulation

Matching expert’s feature with an entropy regularization

arg min
π

𝔼s,a∼dπϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a)
2

− λ𝔼s∼dπentropy(π( ⋅ |s))

’s expected featureπ ’s expected featureπ⋆ Encourage diversity in π

This isn’t an RL problem (e.g., not maximizing some reward), seems hard to optimize …π

Q: why matching experts feature is enough? (Reward the linear reward assumption..)



Maximum Entropy Inverse RL formulation

Re-write the  norm as an optimization problem..ℓ2

∥x∥2 = max
w:∥w∥2≤1

w⊤x

x

w



Maximum Entropy Inverse RL formulation

arg min
π

𝔼s,a∼dπϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a)
2

− λ𝔼s∼dπentropy(π( ⋅ |s))

Using this new form for normℓ2

arg min
π

max
w:∥w∥2≤1

𝔼s,a∼dπw⊤ϕ(s, a) − 𝔼s,a∼dπ⋆w⊤ϕ(s, a) − λ𝔼s∼dπentropy(π( ⋅ |s))

1. We can swap the order and write this as  (proof out of the scope) …max
w:∥w∥2≤1

min
π

. . .

2. Given , optimize  is like an RL with cost  and entropy reg…w π w⊤ϕ



Maximum Entropy Inverse RL Algorithm framework

Initialize w0 ∈ ℝd

For t = 0 → T − 1

πt = arg min
π

𝔼s,a∼dπ
μ [(wt)⊤ϕ(x, a) − λEnt(π( ⋅ |s))] (# compute the best policy given 

the current cost)

wt+1 = wt + η (𝔼s,a∼dπt
μ
ϕ(s, a) − 𝔼s,a∼dπ⋆

μ
ϕ(s, a))
(# gradient update on cost vector w)

An RL problem w/ cost  and 
entropy reg (e.g., in practice, run PPO w/ entroy 

regularization)

c(s, a) := (wt)⊤ϕ(s, a)

max
w:∥w∥2≤1

min
π

𝔼s,a∼dπw⊤ϕ(s, a) − 𝔼s,a∼dπ⋆w⊤ϕ(s, a) − λ𝔼s∼dπentropy(π( ⋅ |s))

Return  wT, πT

(# Learned cost function , and its optimal policy)ϕ⊤(wT)



Plan for Today:

1. MaxEnt IRL alg

2. Case study of AlphaGo





Setting: Two player Markov Games:

ℳ = {S, A, f, r, H, s0}

We have two players  and , they take turn to play:π1 π2

s0, a0 ∼ π1(s0), s1 = f(s0, a0), a1 ∼ π2(s1), s2 = f(s1, a1), …, sH

Sparse reward at the termination state:  if wins, -1 otherwiser(sH) = 1

Min-max formulation:

max
π1

min
π2

𝔼 [r(sH) |π1, π2]



Setting: Two player Markov Games:

It’s a zero-sum game, i.e., they cannot both win or both lose…

Player 2 tries to minimize the expected win rate of player 1, 
which is equivalent to maximizes its own win rate 



Setting: Two player Markov Games:

Min-max formulation:

max
π1

min
π2

𝔼 [r(sH) |π1, π2]

Go has known and deterministic dynamic, i.e.,  is known and simple, in 
theory we can do Dynamic Programming to solve the max-min formulation..

s′￼ = f(s, a)

But…

For Go, state space is huge…

Thus, we cannot enumerate, we must generalize via function approximation..



Setting: Function Approximation

1. Policy Network ≈ π⋆

π( ⋅ |s)

2. Value Network ≈ V⋆(s′￼)

V(s′￼)



1. Warm start our policy net via Imitation Learning

1. Randomly sampled an expert dataset containing 

30m  pairs from KGS Go Server…(s, a)

2. Form imitation learning loss function, e.g., Negative Log-likelihood 

min
π ∑

s,a

− ln π(a |s)

3. Optimize via Stochastic Gradient Descent: 

θt+1 = θt − η ∑
(s,a)∈B

∇θ(−ln πθt
(a |s))/ |B | Behavior Cloning!



How well can it predict expert moves on a hold out test dataset?

It achieves 57% accuracy on expert test dataset

How well does this BC policy perform?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

Win rate: 11%



2. Further Improving Policy via PG on Self-playing

1. We warm start our PG procedure using the BC policy…

2. We then iterate as follows:

For t = 0 → T − 1

πθ0
= πBC

Randomly select a previous policy πθτ
, τ < t

Play  against , get a trajectory πθt
πθτ

(s0, a0, s1, a′￼1, s2, a2, s3, a′￼3 . . . sH)

PG update: θt+1 = θt + η ∑
h:ah∼πθt

∇θln πθt
(ah |sh)r(sH)

(# fictitious play to avoid catastrophic forgetting..)



How does the performance improved after PG optimization?

Test it against the open-source Go program: Pachi (ranked 2 amateur dan on KGS)

RL policy has win rate 85%

Comment: this is where we are for LLM training:  

pre-training + SFT (e..g., BC on internet web data), followed by RLHF 

with REINFORCE, PPO, DPO, REBEL, etc

But to beat human champions on Go, this is clearly not enough yet…



3. Final stage of training: Learn a value function ̂V(s) ≈ V⋆

Denote the PG policy as , we will approximate  instead:̂π V ̂π

V ̂π(s) = 𝔼 [r(sH) |s0 = s, ̂π, ̂π]
i.e., the value of the game when both players play , starting at ̂π s

We use simple least square regression here:

min
β ∑

s,z

(Vβ(s) − z)2

Where  is a random state in one game play, and  is the outcome of the play..s z
(We only keep one sample per game play, i.e., we are really sampling  i.i.d)s ∼ d ̂π



Final stage of training: Learn a value function V(s) ≈ V⋆

Self-play 30m games, and get 30m  pairs(s, z)

βt+1 = βt − η ∑
(s,z)∈B

(Vβ(s) − z)∇βVβ(s)

Optimize least square via SGD again:



Summary so far

We have learned a policy  (BC+PG) and ̂π ̂V ≈ V ̂π

To make the program even more powerful, we combine them with a Search Tree



Combine with Tree Search (a naive version)
Imagine that we are at state  right now, let’s simulate all possible moves into the 

future
s

̂V(s′￼) ̂V(s′￼′￼)

vL = min{ ̂V(s′￼), ̂V(s′￼′￼)} vR = min{ ̂V(s̃′￼), ̂V(s̃′￼′￼)}

s′￼ s′￼′￼ s̃′￼ s̃′￼′￼

vroot = max{vL, vR}

: win rate of red 
player starting at 
̂V(s′￼)

s′￼

AlphaGo uses Monte-Carlo Tree Search (MCTS)



Summary of the AlphaGo Program

1. Behavior cloning on 30m expert data samples

2. Classic Policy gradient on self-play games 

3. Train a value network  to predict PG policy’s outcomêV

4. Build search tree and use  to significantly reduce the search tree deptĥV
Comment: might need step 4 in generative models if we really want them to 

dicover new things (dicover new drugs, prove open math problems, etc)


