Use Offline data in RL

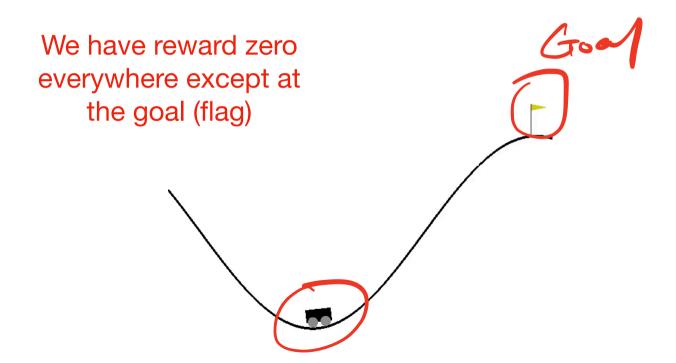
Annoucements

1. PA3 will be released today, due in three weeks

2. Almost done grading HW2 and Prelim exam

3. No office hour tmr

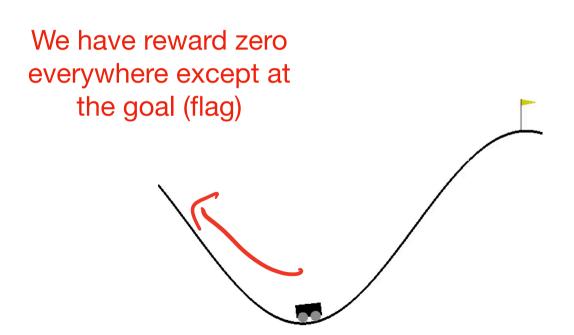
The mountainCar Example (i.e., the sparse reward problem)



The mountainCar Example (i.e., the sparse reward problem)

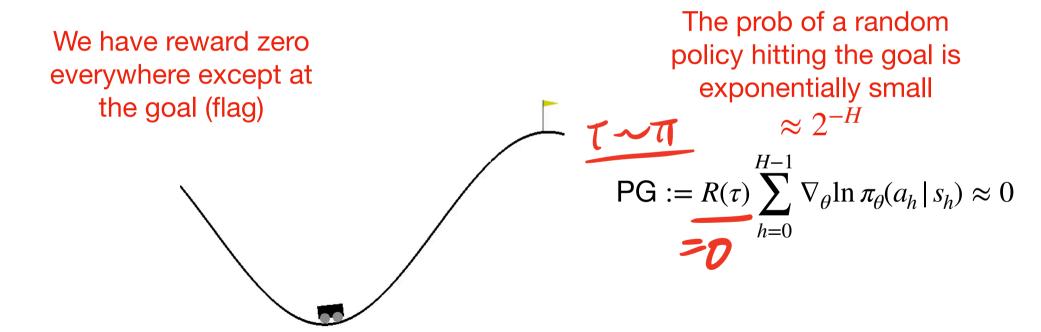
We have reward zero everywhere except at the goal (flag)

The mountainCar Example (i.e., the sparse reward problem)

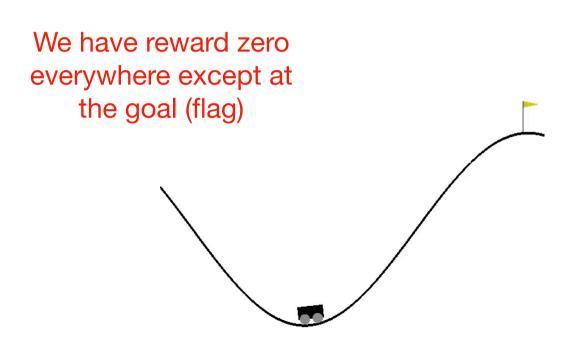


The prob of a random policy hitting the goal is exponentially small $\approx 2^{-H}$

The mountainCar Example (i.e., the sparse reward problem)



The mountainCar Example (i.e., the sparse reward problem)



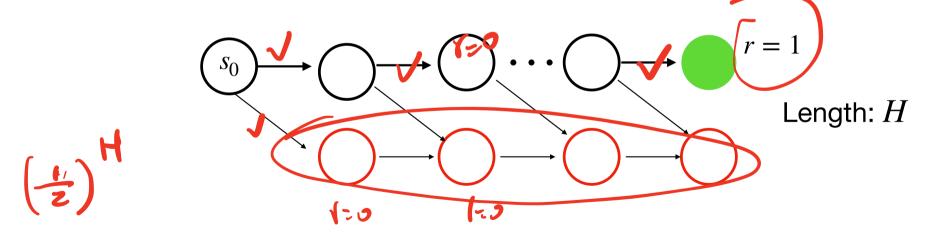
The prob of a random policy hitting the goal is exponentially small $\approx 2^{-H}$

$$PG := R(\tau) \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \approx 0$$

i.e., a random policy is a perfect locally optimal policy

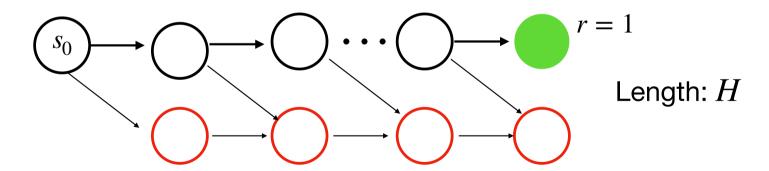
The Combination Lock Example (i.e., the sparse reward problem)

(1) We have reward zero everywhere except at the goal (the right end);(2) Every black node, one of the two actions will lead the agent to the dead state (red)



The Combination Lock Example (i.e., the sparse reward problem)

(1) We have reward zero everywhere except at the goal (the right end);(2) Every black node, one of the two actions will lead the agent to the dead state (red)



What is the probability of a random policy generating a trajectory that hits the goal?

Question Today:

Make RL (DQN and PG/PPO) more efficient by leveraging offline data

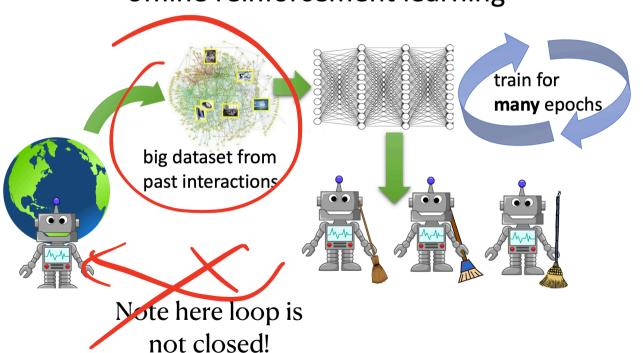
Outline

1. Using offline data in the DQN framework

2. Using offline data in PG via Reset

Detour: Offline RL, i.e., RL with only pre-collected dataset

offline reinforcement learning



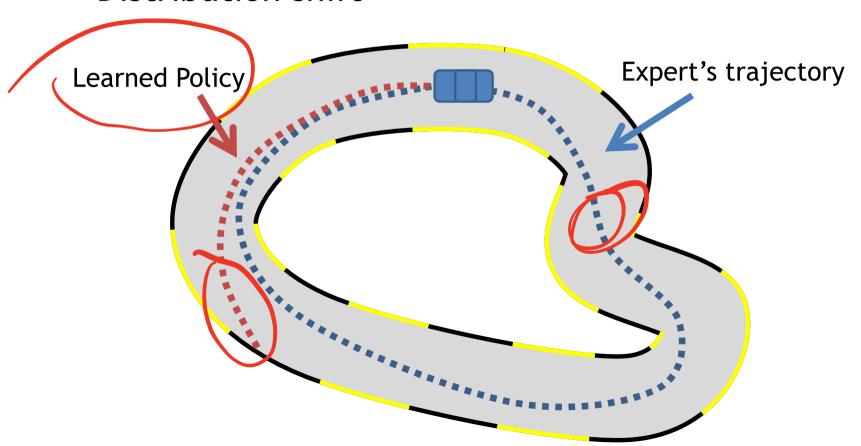
The hope:

We can pre-train RL on large logged datasets

What could go wrong?

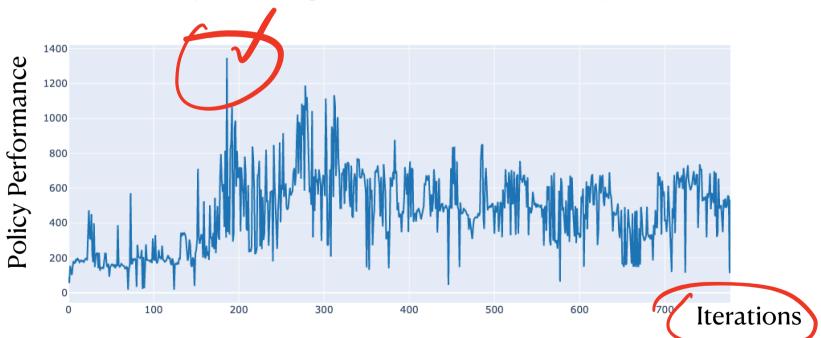
[Pomerleau89, Daume09]

• Distribution shift



Detour: Offline RL, i.e., RL with only pre-collected dataset

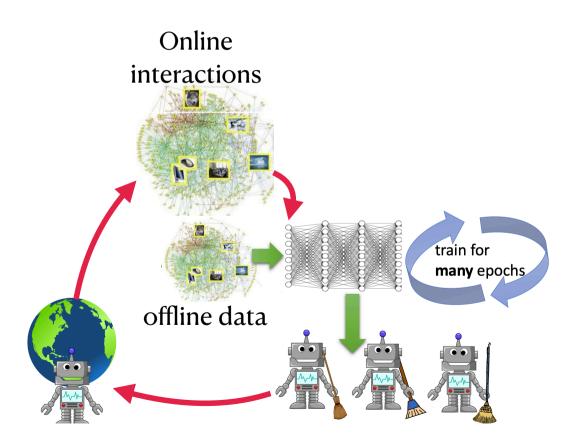
The reality: Making offline RL work reliably is hard...



A typical learning curve of some popular offline deep RL baseline tested under a standard D4RL benchmark

The rescue:

Offline data + Online Interaction



Offline data + Online is widely used in practice

1. In robotics, we typically combine offline expert demonstration with online interaction [e.g., Rajeswaran et al 17, Nair et al., 20, Zhu et al., 19]

Offline data + Online is widely used in practice

- 1. In robotics, we typically combine offline expert demonstration with online interaction [e.g., Rajeswaran et al 17, Nair et al., 20, Zhu et al., 19]
 - 2. In games, we combine human demonstrations with online interaction, e.g., first version of AlphaGo [deepmind], playing Hanabi [Meta AI, Hu et al, 22]

Offline data distribution

Offline data is sampled from offline distributions ν

$$\mathcal{D}_{off} = \{s, a, r, s'\}_{i=1}^{m}, \text{ where } \underline{s, a} \sim \nu, \underline{s'} \sim P(\cdot \mid s, a)$$

Offline data is sampled from offline distributions ν

$$\mathcal{D}_{off} = \{s, a, r, s'\}_{i=1}^{m}, \text{ where } s, a \sim \nu, s' \sim P(\cdot \mid s, a)$$

We assume offline distributions "cover" some high quality policy's traces

In high level, it iteratively runs DQN on combination of offline and online data

Initialize Q_{θ_0} , online replay buffer $\mathcal{D}_{on} = \mathcal{D}$, initial state s, set target network $Q = Q_{\theta_0}$. While true:

- 1. Run ϵ -greedy of Q_{θ_t} to collect a transition data $(s, a, r, s'), s' \sim P(s, a)$
- 2. Add (s, a, r, s') to online buffer \mathcal{D}_{on}

In high level, it iteratively runs DQN on combination of offline and online data

Initialize Q_{θ_0} , online replay buffer $\mathcal{D}_{on} = \mathcal{O}$, initial state s, set target network $\widetilde{Q} = Q_{\theta_0}$ While true:

- 1. Run ϵ -greedy of Q_{θ_t} to collect a transition data $(s,a,r,s'),s' \sim P(s,a)$
- 2. Add (s, a, r, s') to online buffer \mathcal{D}_{on}
- 3. W/ prob 0.5, sample batch \mathscr{B} from $\mathscr{D}_{\mathit{on}}$, and otherwise from $\mathscr{D}_{\mathit{off}}$

In high level, it iteratively runs DQN on combination of offline and online data

Initialize Q_{θ_0} , online replay buffer $\mathcal{D}_{on}=\mathcal{O}$, initial state s, set target network $\widetilde{Q}=Q_{\theta_0}$ While true:

- 1. Run ϵ -greedy of Q_{θ_t} to collect a transition data $(s,a,r,s'),s'\sim P(s,a)$
- 2. Add (s, a, r, s') to online buffer \mathcal{D}_{on}

3. W/ prob o.5, sample batch
$$\mathscr{B}$$
 from \mathscr{D}_{on} , and otherwise from \mathscr{D}_{off}
4. Q-update: $\theta_{t+1} \Leftarrow \theta_t - \eta$ $\sum_{s,a,r,s' \in \mathscr{B}} \left(Q_{\theta_t}(s,a) - r - \gamma \max_{a'} \tilde{Q}(s',a') \right) \nabla_{\theta_t} Q_{\theta_t}(s,a)$

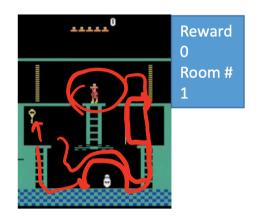
In high level, it iteratively runs DQN on combination of offline and online data

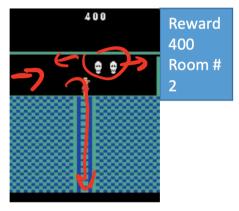
Initialize Q_{θ_0} , online replay buffer $\mathcal{D}_{on}=\mathcal{D}$, initial state s, set target network $\widetilde{Q}=Q_{\theta_0}$ While true:

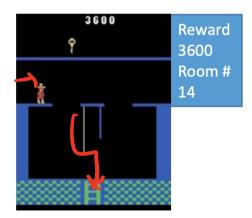
- 1. Run ϵ -greedy of Q_{θ_t} to collect a transition data $(s,a,r,s'),s'\sim P(s,a)$
- 2. Add (s, a, r, s') to online buffer \mathcal{D}_{on}
- 3. W/ prob 0.5, sample batch ${\mathscr B}$ from ${\mathscr D}_{on}$, and otherwise from ${\mathscr D}_{off}$
- 4. Q-update: $\theta_{t+1} \leftarrow \theta_t \eta \sum_{s,a,r,s' \in \mathcal{B}} \left(Q_{\theta_t}(s,a) r \gamma \max_{a'} \tilde{Q}(s',a') \right) \nabla_{\theta_t} Q_{\theta_t}(s,a)$
- 5. Set $s \Leftarrow s'$, and update target network once a while

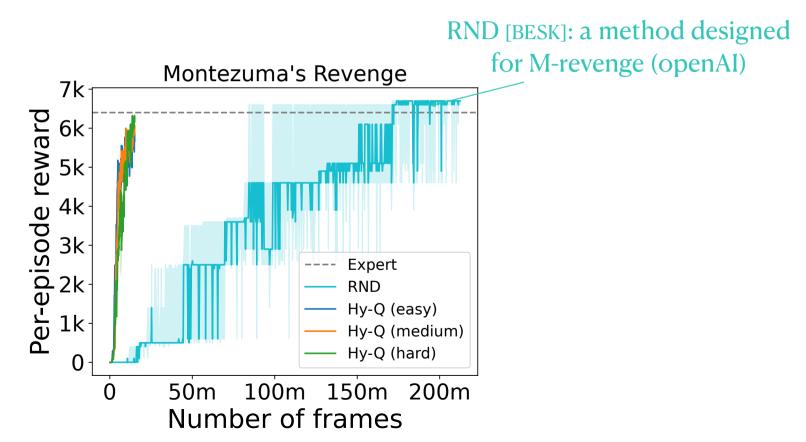
How does such a simple algorithm work in practice?

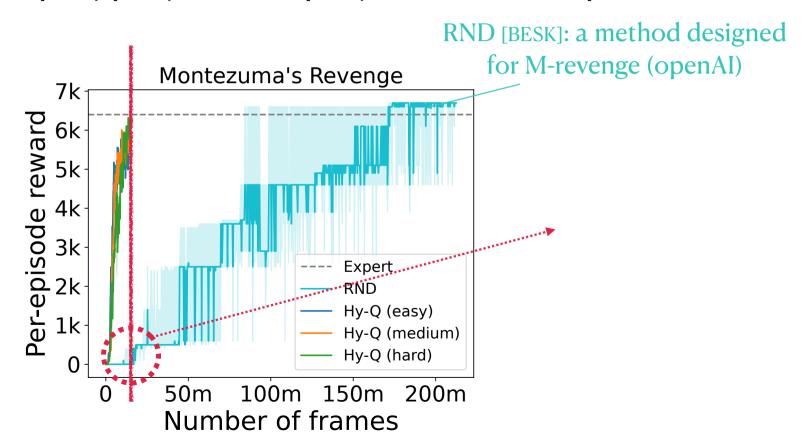
Montezuma's Revenge

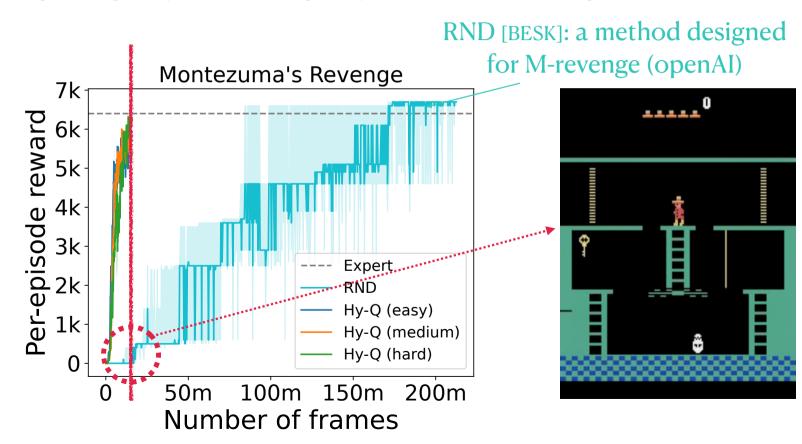


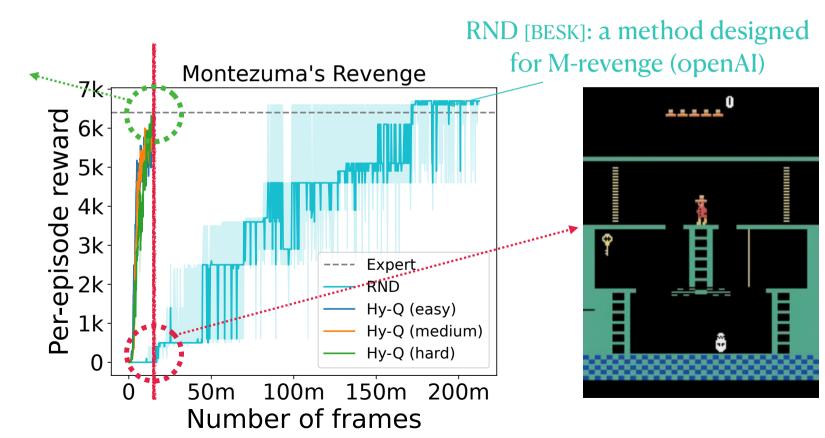


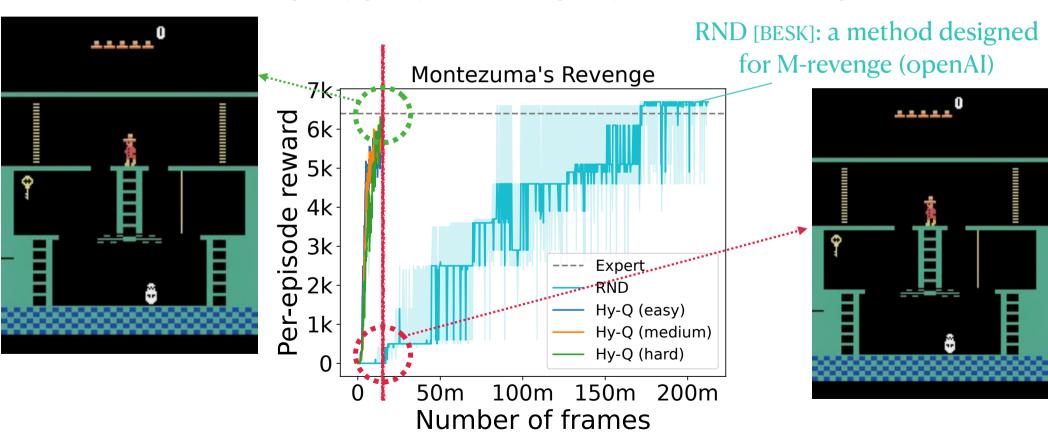




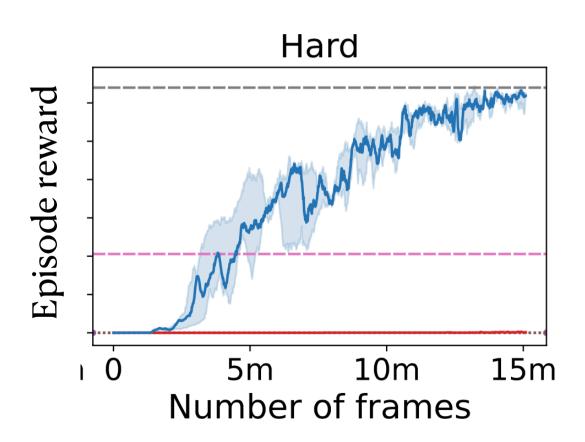




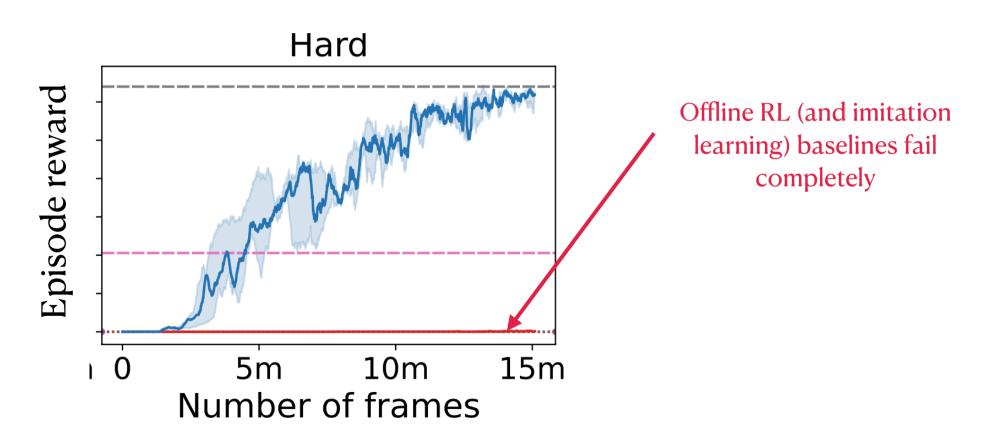




Comparison to Pure Offline RL & Imitation Learning baselines



Comparison to Pure Offline RL & Imitation Learning baselines



Further reading:

Hybrid RL: Using Both Offline and Online Data Can Make RL Efficient

Yuda Song* Yifei Zhou[†] Ayush Sekhari[‡] J. Andrew Bagnell[§] Akshay Krishnamurthy[¶] Wen Sun[∥]

March 14, 2023

https://arxiv.org/pdf/2210.06718

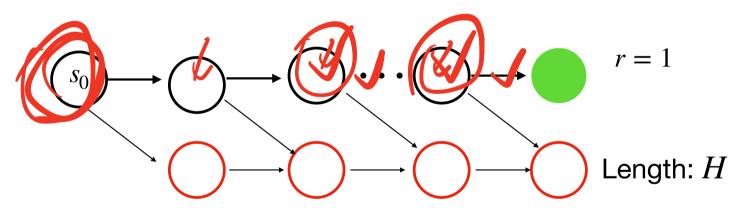
Outline

1. Using offline data in the DQN framework

2. Using offline data in PG via Reset

The Combination Lock Example (i.e., the sparse reward problem)

Instead of always starting from the s_0 , what if we can start **everywhere**?



Offline data distribution

We have some offline state distribution ν , where we have a dataset

$$\mathcal{D}_{off} = \{s\}_{i=1}^m, \text{ where } s \sim \nu$$

Offline data distribution

We have some offline state distribution ν , where we have a dataset

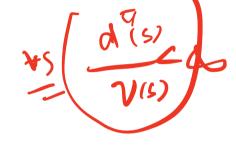
$$\mathcal{D}_{off} = \{s\}_{i=1}^m$$
, where $s \sim \nu$

We again assume offline distribution "cover" some high quality policy's traces

Taking advantage of offline data via reset

In high level, let's run PPO with ν (offline data) as the new initial state distribution

For $t = 0 \rightarrow T$:



Run π_{θ} to collect multiple trajectories where **each trajectories** s_0 is randomly picked from \mathscr{D}_{off}

Taking advantage of offline data via reset

In high level, let's run PPO with ν (offline data) as the new initial state distribution

Initialize θ_0 for the policy

For
$$t = 0 \rightarrow T$$
:

Run π_{θ} to collect multiple trajectories where **each traj's** s_0 **is randomly picked from** $\mathscr{D}_{o\!f\!f}$

Construct the policy loss and the value loss using the trajectories

Taking advantage of offline data via reset

In high level, let's run PPO with ν (offline data) as the new initial state distribution

Initialize θ_0 for the policy

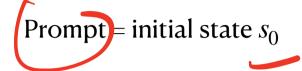
For
$$t = 0 \rightarrow T$$
:

Run π_{θ} to collect multiple trajectories where **each traj's** s_0 **is randomly picked from** $\mathscr{D}_{o\!f\!f}$

Construct the policy loss and the value loss using the trajectories

Update policy and value loss with gradient descents

Case study in post-training LLMs

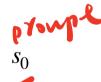


Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:

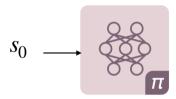
50

Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:

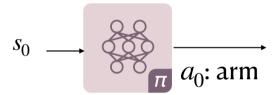
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



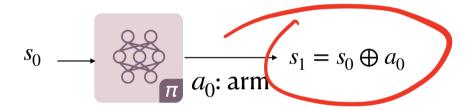
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



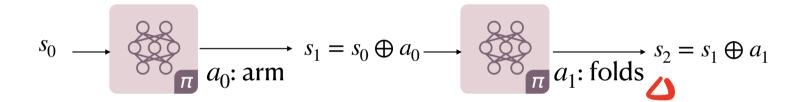
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



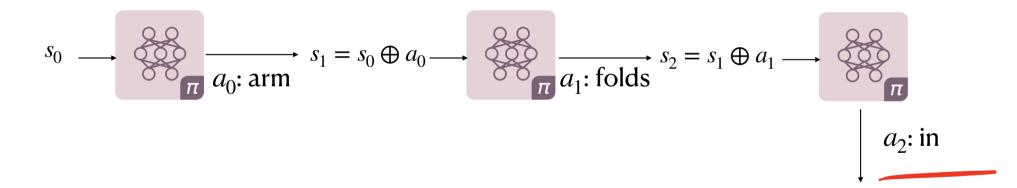
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



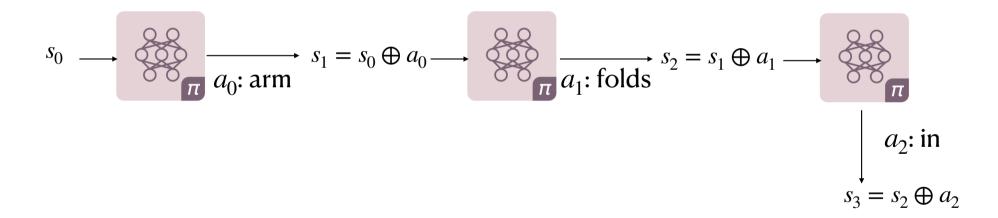
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



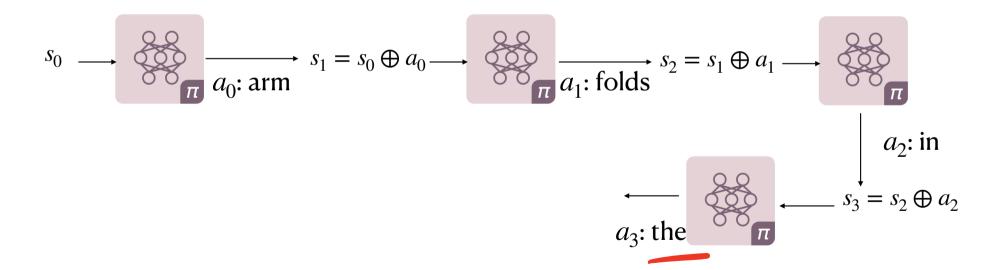
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



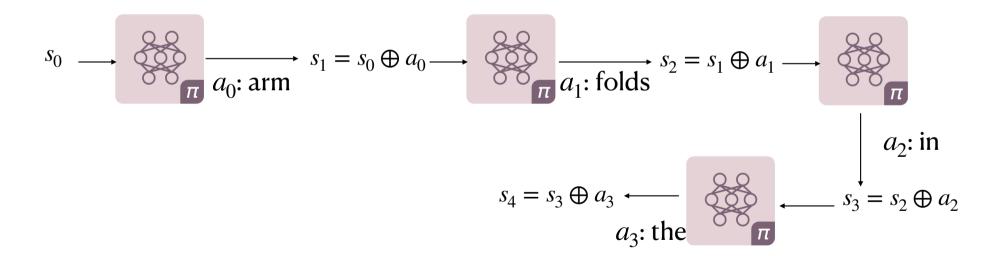
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



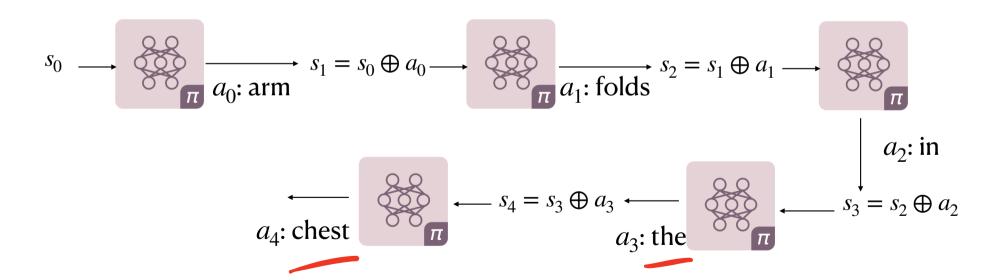
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



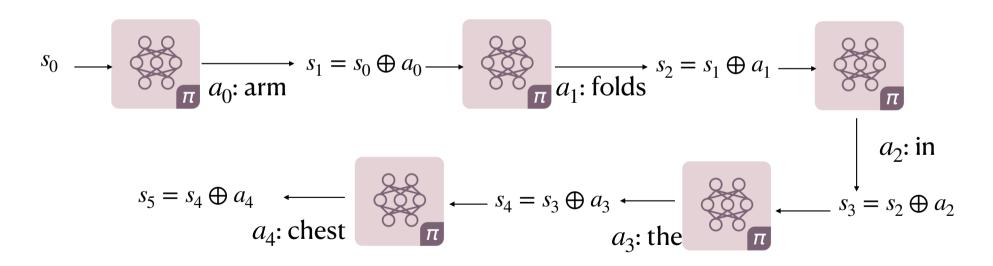
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



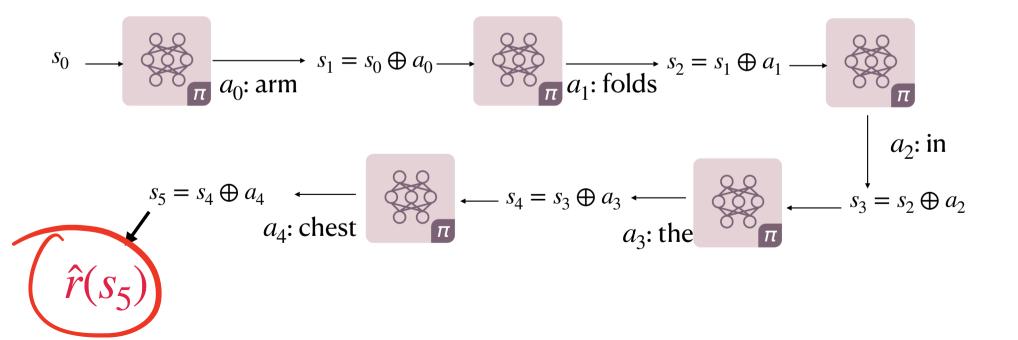
Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:



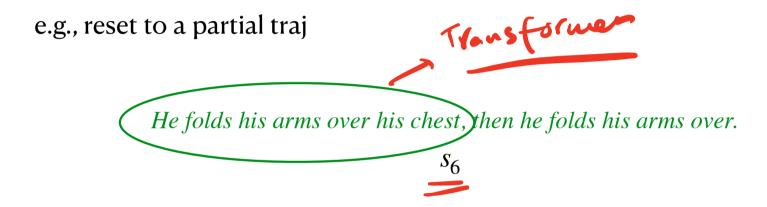
Reset: we can rollout a policy π at any given partial sentence

Reset: we can rollout a policy π at any given partial sentence

e.g., reset to a partial traj

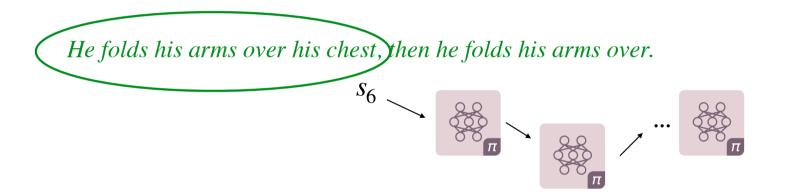
He folds his arms over his chest, then he folds his arms over.

Reset: we can rollout a policy π at any given partial sentence



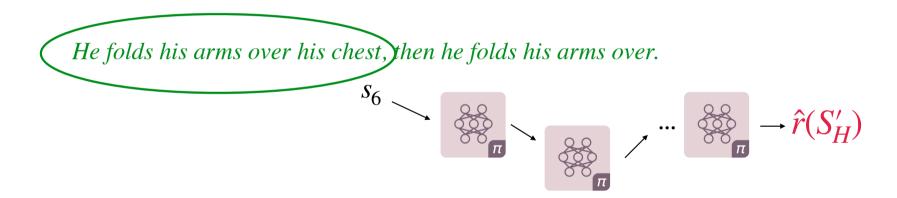
Reset: we can rollout a policy π at any given partial sentence

e.g., reset to a partial traj

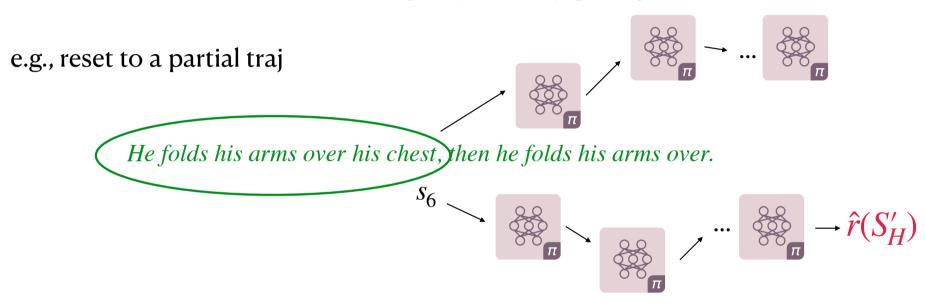


Reset: we can rollout a policy π at any given partial sentence

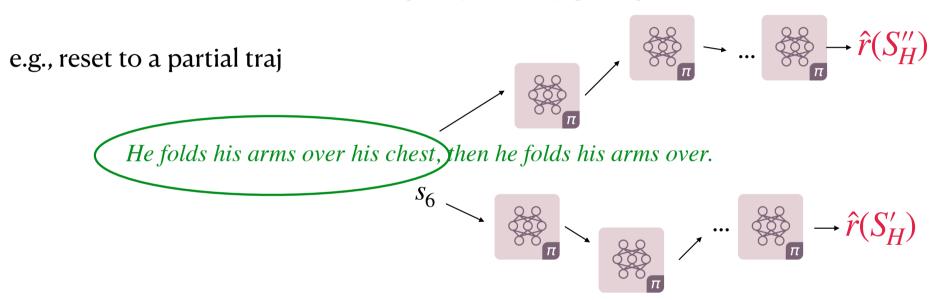
e.g., reset to a partial traj



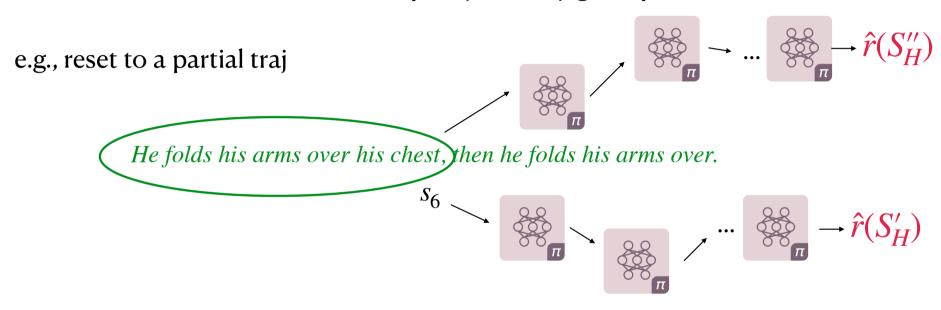
Reset: we can rollout a policy π at any given partial sentence



Reset: we can rollout a policy π at any given partial sentence



Reset: we can rollout a policy π at any given partial sentence



Reset is a game-changer in RL, both theory and practice (e.g., AlphaGo and MCTS)

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

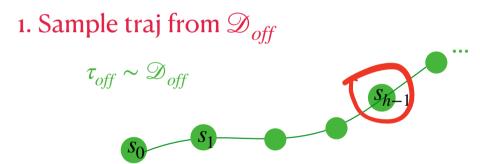
Iteration t w/ the latest π_t :

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

Iteration *t* w/ the latest π_t :

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

Iteration *t* w/ the latest π_t :



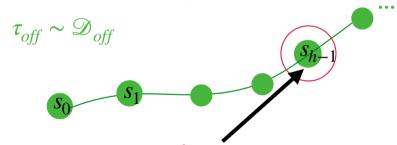
Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

Iteration *t* w/ the latest π_t :

2. Reset to a random step and rollout π_t

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

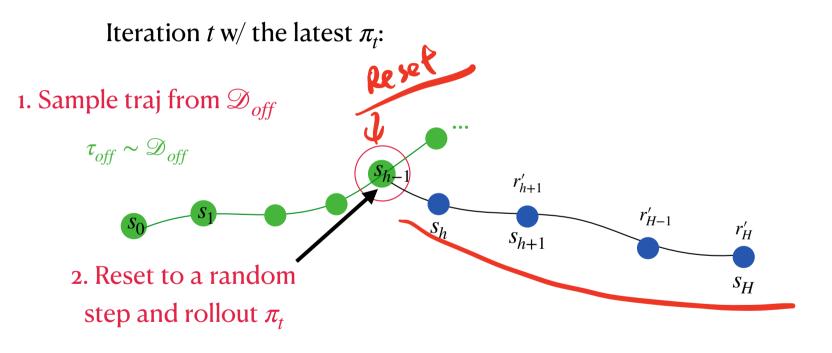
Iteration *t* w/ the latest π_t :



2. Reset to a random step and rollout π_t

Alg: Dataset Reset Policy Optimization (DR-PO)

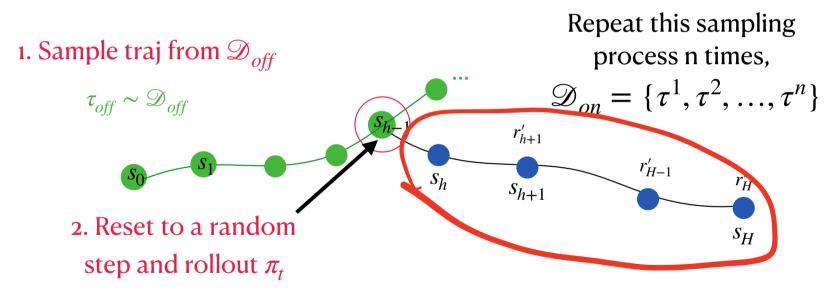
Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)



Alg: Dataset Reset Policy Optimization (DR-PO)

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

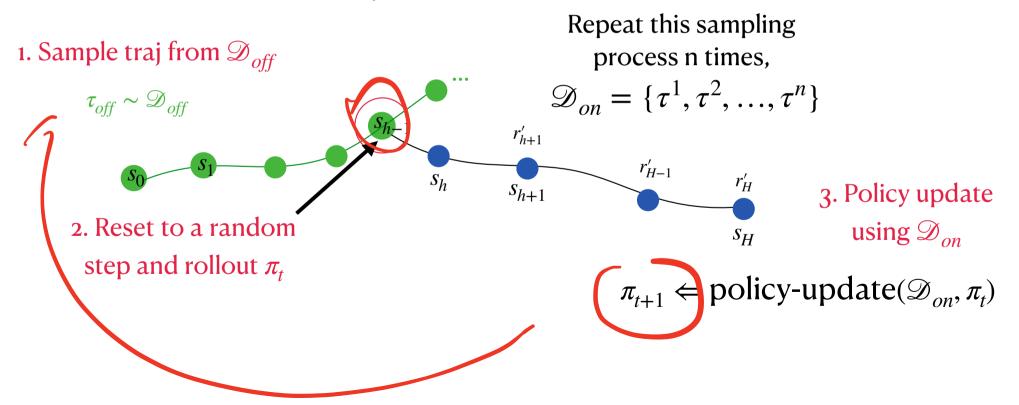
Iteration *t* w/ the latest π_t :



Alg: Dataset Reset Policy Optimization (DR-PO)

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

Iteration t w/ the latest π_t :



PPO collects online data by always resetting to s_0

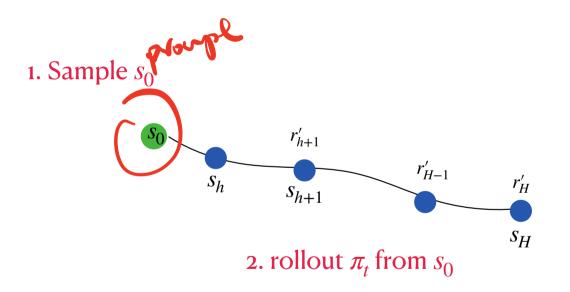
1. Sample s_0

PPO collects online data by always resetting to s_0

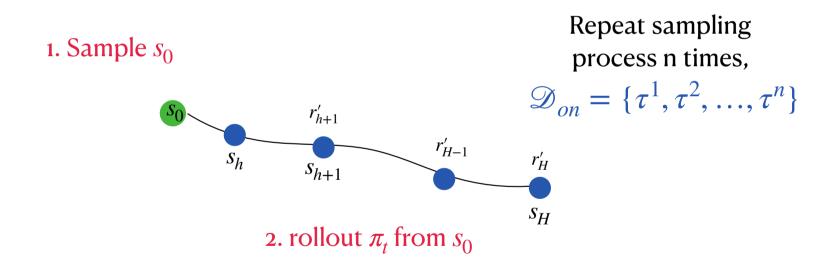
1. Sample s_0

2. rollout π_t from s_0

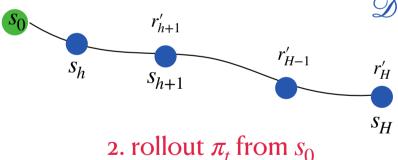
PPO collects online data by always resetting to s_0



PPO collects online data by always resetting to s_0



PPO collects online data by always resetting to s_0



Repeat sampling process n times,

$$\mathcal{D}_{on} = \{\tau^1, \tau^2, ..., \tau^n\}$$

3. Policy update using \mathcal{D}_{on}

$$\pi_{t+1} \Leftarrow \text{policy-update}(\mathcal{D}_{on}, \pi_t)$$

Task: TL;DR Summarization

Task Statement

Given a reddit post, write a TL;DR (short summary).

[Stiennon et.al, 17]

Task: TL;DR Summarization

Task Statement

Given a reddit post, write a TL;DR (short summary).

[Stiennon et.al, 17]

Dataset Composition

- 210K Prompts total
 - 117K Prompts with Human written summaries
 - 93K Prompts with *Human Preference Labels*

Performance again human

(Policy: 7B Pythia model RoLA)

Algorithms	TL;DR Summarization						
	Win Rate (†)	RM Score (†)	$\begin{array}{c} \mathrm{KL}(\pi \pi_{ref}) \\ (\downarrow) \end{array}$	Rouge 1 (†)	Rouge 2 (†)	RougeL (†)	
SFT	$\overline{31.6 \pm 0.2\%}$	-0.51 ± 0.04	-	32.17 ± 1.01	12.27 ± 0.67	24.87 ± 1.22	
DPO	$52.6 \pm 0.4\%$	-	37.33 ± 2.01	30.03 ± 3.23	7.93 ± 1.02	22.05 ± 0.83	
PPO	$62.3 \pm 2.5\%$	1.17 ± 0.13	$\textbf{16.32} \pm \textbf{1.46}$	$\textbf{33.73} \pm \textbf{2.34}$	$\textbf{11.97} \pm \textbf{0.91}$	24.97 ± 1.03	
DR-PO	$\textbf{70.2} \pm \textbf{1.7\%}$	$\textbf{1.52} \pm \textbf{0.09}$	16.84 ± 0.83	33.68 ± 1.78	11.90 ± 0.06	$\textbf{25.12} \pm \textbf{0.76}$	

Performance again human

(Policy: 7B Pythia model + RoLA)

Algorithms			TL;DR Sum	marization		
	Win Rate (†)	RM Score (†)	$\mathrm{KL}(\pi \pi_{ref}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Rouge 1 (†)	Rouge 2 (†)	RougeL (†)
SFT DPO PPO	$ \begin{array}{c} \hline 31.6 \pm 0.2\% \\ 52.6 \pm 0.4\% \\ 62.3 \pm 2.5\% \end{array} $	-0.51 ± 0.04 - 1.17 ± 0.13	37.33 ± 2.01 16.32 ± 1.46	32.17 ± 1.01 30.03 ± 3.23 33.73 ± 2.34	12.27 ± 0.67 7.93 ± 1.02 11.97 ± 0.91	24.87 ± 1.22 22.05 ± 0.83 24.97 ± 1.03
DR-PO	$70.2 \pm 1.7\%$	1.52 ± 0.09	16.84 ± 0.83	33.68 ± 1.78	11.90 ± 0.06	25.12 ± 0.76

Message: DR-PO outperforms PPO at no extra cost of computation or memory

Zero-shot transfer: evaluate trained models directly on CNN Daily mail news articles

Zero-shot transfer: evaluate trained models directly on CNN Daily mail news articles

Algorithms	CNN/DM Summarization				
	Win Rate (†)	Rouge 1 (†)	Rouge 2 (†)	RougeL (†)	
SFT (CNN/DM)	10.5%	25.60	12.27	19.99	
DPO PPO	6.0% 8.5%	20.71 23.62	9.47 12.29	15.70 18.56	
DR-PO	12.0%	29.53	15.36	22.88	

Zero-shot transfer: evaluate trained models directly on CNN Daily mail news articles

Algorithms	CNN/DM Summarization					
	Win Rate (†)	Rouge 1 (†)	Rouge 2 (†)	RougeL (†)		
SFT (CNN/DM)	10.5%	25.60	12.27	19.99		
DPO	6.0%	20.71	9.47	15.70		
PPO	8.5%	23.62	12.29	18.56		
DR-PO	12.0%	29.53	15.36	22.88		

Message 1: DR-PO > PPO

Zero-shot transfer: evaluate trained models directly on CNN Daily mail news articles

Message 2: DR-PO's
zero-shot > supervised
learning model trained
on CNN DM

Algorithms	CNN/DM Summarization				
	Win Rate	Rouge 1	Rouge 2	RougeL	
	(†)	(†)	(†)	(†)	
SFT (CNN/DM)	10.5%	25.60	12.27	19.99	
DPO	6.0%	20.71	9.47	15.70	
PPO	8.5%	23.62	12.29	18.56	
DR-PO	12.0%	29.53	15.36	22.88	

Message 1: DR-PO > PPO

Further reading:

Dataset Reset Policy Optimization for RLHF

Jonathan D. Chang*

Department of Computer Science Cornell University jdc396@cornell.edu

Owen Oertell

Department of Computer Science

Cornell University

ojo2@cornell.edu

Department of Computer Science Cornell University

Wenhao Zhan*

Department of Electrical and Computer Engineering **Princeton University** wenhao.zhan@princeton.edu

Kianté Brantley

kdb82@cornell.edu

Dipendra Misra

Microsoft Research New York dimisra@microsoft.com

Jason D. Lee

Department of Electrical and Computer Engineering **Princeton University** jasonlee@princeton.edu

Wen Sun

Department of Computer Science **Cornell University** ws455@cornell.edu

https://arxiv.org/abs/2404.08405

Summary

1. Offline data can boost RL performance

Summary

- 1. Offline data can boost RL performance
- 2. Two approaches for taking advantage of offline data:

Summary

- 1. Offline data can boost RL performance
- 2. Two approaches for taking advantage of offline data:
- Mixing offline data into a replay buffer (e.g., Hybird Q-learning)
- Resetting to the offline data in policy optimization (e.g., DR-PO)