Use Offline data in RL

1. PA3 will be released today, due in three weeks

2. Almost done grading HW2 and Prelim exam

3. No office hour tmr

Annoucements

Failure mode of Policy Gradient

The mountainCar Example (i.e., the sparse reward problem)

We have reward zero everywhere except at the goal (flag)

The prob of a random policy hitting the goal is exponentially small $\approx 2^{-H}$ *H*–1 $\mathsf{PG} := R(\tau) \sum_{\theta} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \approx 0$ h=0

i.e., a random policy is a perfect locally optimal policy

Failure model of Policy Gradient

The Combination Lock Example (i.e., the sparse reward problem)

(1) We have reward zero everywhere except at the goal (the right end); (2) Every black node, one of the two actions will lead the agent to the dead state (red)

What is the probability of a random policy generating a trajectory that hits the goal?

Question Today:

Make RL (DQN and PG/PPO) more efficient by leveraging offline data

2. Using offline data in PG via Reset

Outline

1. Using offline data in the DQN framework

Detour: Offline RL, i.e., RL with only pre-collected dataset

offline reinforcement learning

Note here loop is not closed!

[Image from BAIR blog post: https://bair.berkeley.edu/blog/2020/12/07/offline/]

The hope: We can pre-train RL on large logged datasets

What could go wrong? [Pomerleau89,Daume09] • Distribution shift

Learned Policy

Detour: Offline RL, i.e., RL with only pre-collected dataset

The reality: Making offline RL work reliably is hard...

A typical learning curve of some popular offline deep RL baseline tested under a standard D4RL benchmark

Offline data + Online Interaction

The rescue:

Offline data + Online is widely used in practice

1. In robotics, we typically combine offline expert demonstration with online interaction [e.g., Rajeswaran et al 17, Nair et al., 20, Zhu et al., 19]

2. In games, we combine human demonstrations with online interaction, e.g., first version of AlphaGo [deepmind], playing Hanabi [Meta AI, Hu et al, 22]

Offline data distribution

$$\mathcal{D}_{off} = \{s, a, r, s'\}_{i=1}^{m}, \mathbf{V}$$

- Offline data is sampled from offline distributions ν
 - where $s, a \sim \nu, s' \sim P(\cdot | s, a)$

We assume offline distributions "cover" some high quality policy's traces

Algorithm: Hybrid (Deep) Q Learning (Hy-Q)

While true:

1. Run ϵ -greedy of Q_{θ_t} to collect a transition data $(s, a, r, s'), s' \sim P(s, a)$ 2. Add (s, a, r, s') to online buffer \mathcal{D}_{on} 3. W/ prob 0.5, sample batch \mathscr{B} from \mathscr{D}_{on} , and otherwise from \mathscr{D}_{off} 4. Q-update: $\theta_{t+1} \leftarrow \theta_t - \eta \sum_{s,a,r,s' \in \mathscr{B}} \left(Q_{\theta_t}(s,a) - r - \gamma \max_{a'} \tilde{Q}(s',a') \right) \nabla_{\theta_t} Q_{\theta_t}(s,a)$ 5. Set $s \leftarrow s'$, and update target network once a while

In high level, it iteratively runs DQN on combination of offline and online data

Initialize Q_{θ_0} , online replay buffer $\mathcal{D}_{on} = \mathcal{Q}_{on}$ initial state *s*, set target network $Q = Q_{\theta_0}$

How does such a simple algorithm work in practice?

Montezuma's Revenge

Comparison to Empirical Deep RL baseline

We construct offline dataset by mixing data from an expert policy (50%)and a low-quality policy (a random policy), w/ total 0.1 m samples

Comparison to Pure Offline RL & Imitation Learning baselines Hard Episode reward Offline RL (and imitation learning) baselines fail completely 10m 15m 0 5m Number of frames

Further reading:

Hybrid RL: Using Both Offline and Online Data Can Make RL Efficient

March 14, 2023

https://arxiv.org/pdf/2210.06718

Yuda Song* Yifei Zhou[†] Ayush Sekhari[‡] J. Andrew Bagnell[§] Akshay Krishnamurthy[¶] Wen Sun[¶]

2. Using offline data in PG via Reset

Outline

1. Using offline data in the DQN framework

The Combination Lock Example (i.e., the sparse reward problem)

Instead of always starting from the s_0 , what if we can start **everywhere**?

Offline data distribution

- We have some offline state distribution ν , where we have a dataset
 - $\mathcal{D}_{off} = \{s\}_{i=1}^{m}, \text{ where } s \sim \nu$
- We again assume offline distribution "cover" some high quality policy's traces

Taking advantage of offline data via reset

In high level, let's run PPO with ν (offline data) as the new initial state distribution

Initialize θ_0 for the policy

For $t = 0 \rightarrow T$:

Run π_{θ} to collect multiple trajectories where each traj's s_0 is randomly picked from \mathscr{D}_{off}

Construct the policy loss and the value loss using the trajectories

Update policy and value loss with gradient descents

Case study in post-training LLMs

Modeling text generation as an RL / MDP problem

Prompt = initial state s_0 e.g., Generate a sentence with key words arm, chest, fold:

LLM as a policy π : a sequence of tokens so far => the next token (i.e., action)

 $\hat{r}(S_5)$

e.g., reset to a partial traj

Reset: we can rollout a policy π at any given partial sentence

Reset is a game-changer in RL, both theory and practice (e.g., AlphaGo and MCTS)

Alg: Dataset Reset Policy Optimization (DR-PO)

Iteration *t* w/ the latest π_t :

Reset to offline data + black-box Policy Optimization oracle (e.g., PPO)

 $\pi_{t+1} \Leftarrow \text{policy-update}(\mathcal{D}_{on}, \pi_t)$

What's the key difference to standard PPO

PPO collects online data by always resetting to s_0

1. Sample s_0

Task: TL;DR Summarization

- 210K Prompts total
 - 117K Prompts with Human written summaries
 - 93K Prompts with *Human Preference Labels*

- Task Statement
- Given a reddit post, write a TL;DR (short summary). [Stiennon et.al, 17]
 - Dataset Composition

Performance again human

(Policy: 7B Pythia model + RoLA)

Algorithms		TL;DR Summarization						
	Win Rate (†)	RM Score (†)	$\begin{array}{c} \mathrm{KL}(\pi \pi_{ref}) \\ (\downarrow) \end{array}$	Rouge 1 (†)	Rouge 2 (†)	RougeL (†)		
SFT	$\overline{31.6\pm0.2\%}$	-0.51 ± 0.04	_	32.17 ± 1.01	12.27 ± 0.67	24.87 ± 1.22		
DPO	$52.6\pm0.4\%$	-	37.33 ± 2.01	30.03 ± 3.23	7.93 ± 1.02	22.05 ± 0.83		
PPO	$62.3\pm2.5\%$	1.17 ± 0.13	$\textbf{16.32} \pm \textbf{1.46}$	$\textbf{33.73} \pm \textbf{2.34}$	$\textbf{11.97} \pm \textbf{0.91}$	24.97 ± 1.03		
DR-PO	70.2 \pm 1.7 %	$\textbf{1.52} \pm \textbf{0.09}$	16.84 ± 0.83	33.68 ± 1.78	11.90 ± 0.06	$\textbf{25.12} \pm \textbf{0.76}$		

Message: DR-PO outperforms PPO at no extra cost of computation or memory

Would using offline data make DR-PO overfit?

Zero-shot transfer: evaluate trained models directly on CNN Daily mail news articles

IS	CNN/DM Summarization						
	Win Rate	Rouge 1	Rouge 2 (\uparrow)	RougeL			
J/DM)	10.5%	25.60	12.27	19.99			
	6.0% 8.5%	20.71 23.62	9.47 12.29	15.70 18.56			
	12.0%	29.53	15.36	22.88			

Further reading:

Dataset Reset Policy Optimization for RLHF

Jonathan D. Chang* Department of Computer Science **Cornell University** jdc396@cornell.edu

Owen Oertell Department of Computer Science Cornell University ojo2@cornell.edu

Kianté Brantley Department of Computer Science **Cornell University** kdb82@cornell.edu

Jason D. Lee Department of Electrical and Computer Engineering Princeton University jasonlee@princeton.edu

Wenhao Zhan* Department of Electrical and Computer Engineering Princeton University

wenhao.zhan@princeton.edu

Dipendra Misra Microsoft Research New York dimisra@microsoft.com

Wen Sun Department of Computer Science Cornell University ws455@cornell.edu

https://arxiv.org/abs/2404.08495

Summary

- Mixing offline data into a replay buffer (e.g., Hybird Q-learning) • Resetting to the offline data in policy optimization (e.g., DR-PO)

- 1. Offline data can boost RL performance
- 2. Two approaches for taking advantage of offline data: