Policy Evaluation

Announcements

P1 is delayed, will be released on Monday

HW0 due today

Recap: Definitions

 $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Value function $V^{\pi}(s) =$

Q function
$$Q^{\pi}(s, a) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a) \right]$$

 $\mathcal{M} = \{S, A, P, r, \gamma\}$

Policy $\pi: S \mapsto \Delta(A)$

$$= \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, \pi\right]$$

 $(a_h) | (s_0, a_0) = (s, a), a_h \sim \pi(\cdot | s_h) \text{ for } h \ge 1$

Recap: Bellman equation (consistency)

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s') \right], \forall s$$

Relationship between V and Q

Exercise: can you write V^{π} using Q^{π} , and then Q^{π} using V^{π}

Bellman Eq

Today: Policy Evaluation

Key Question:

Given MDP $\mathcal{M} = (S, A, r, P, \gamma)$ & a $\pi : S \mapsto A$, how good is π ?

i.e., how to compute $V^{\pi}(s), \forall s$?

Motivation for Policy Evaluation

We want to **evaluate** our strategy against some fixed opponent (AlphaGo constantly estimates the current probability of winning)

We want to **evaluate** our recommendation strategy before we release it to users

A more fundamental motivation...

Recall that we have A^S many policies. To select the optimal policy, we need to do evaluation

Outline:

1. Exact Policy Evaluation

2. Approximate Policy Evaluation via an Iterative Algorithm

Setup: we have MDP $\mathcal{M} = (S, A, P, \gamma, r)$, and **deterministic** π , we want to compute V^{π}

- We know that for V^{π} , we have **Bellman equation**:
 - $\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s \sim P(\cdot \mid s, \pi(s))} V^{\pi}(s')$
 - This gives us S many **linear** constraints

Let's form linear constraints. Denote V(s) as our estimate for $s \in S$

 $\forall s, V(s) = r(s, \pi(s))$

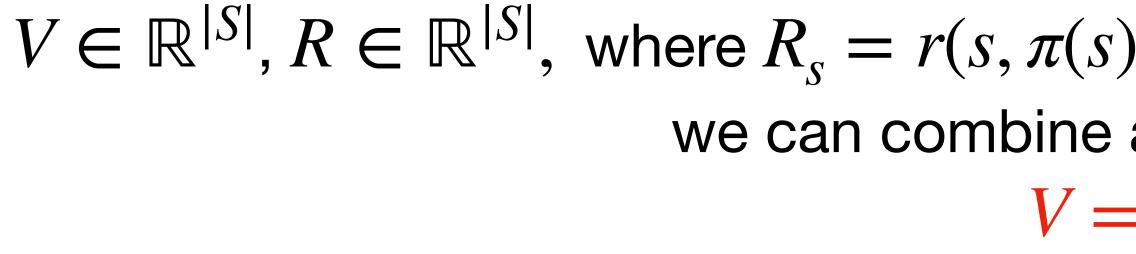
Denote $V \in \mathbb{R}^{|S|}, R \in \mathbb{R}^{|S|}$ $P \in \mathbb{R}^{|S| \times |S|}$, when

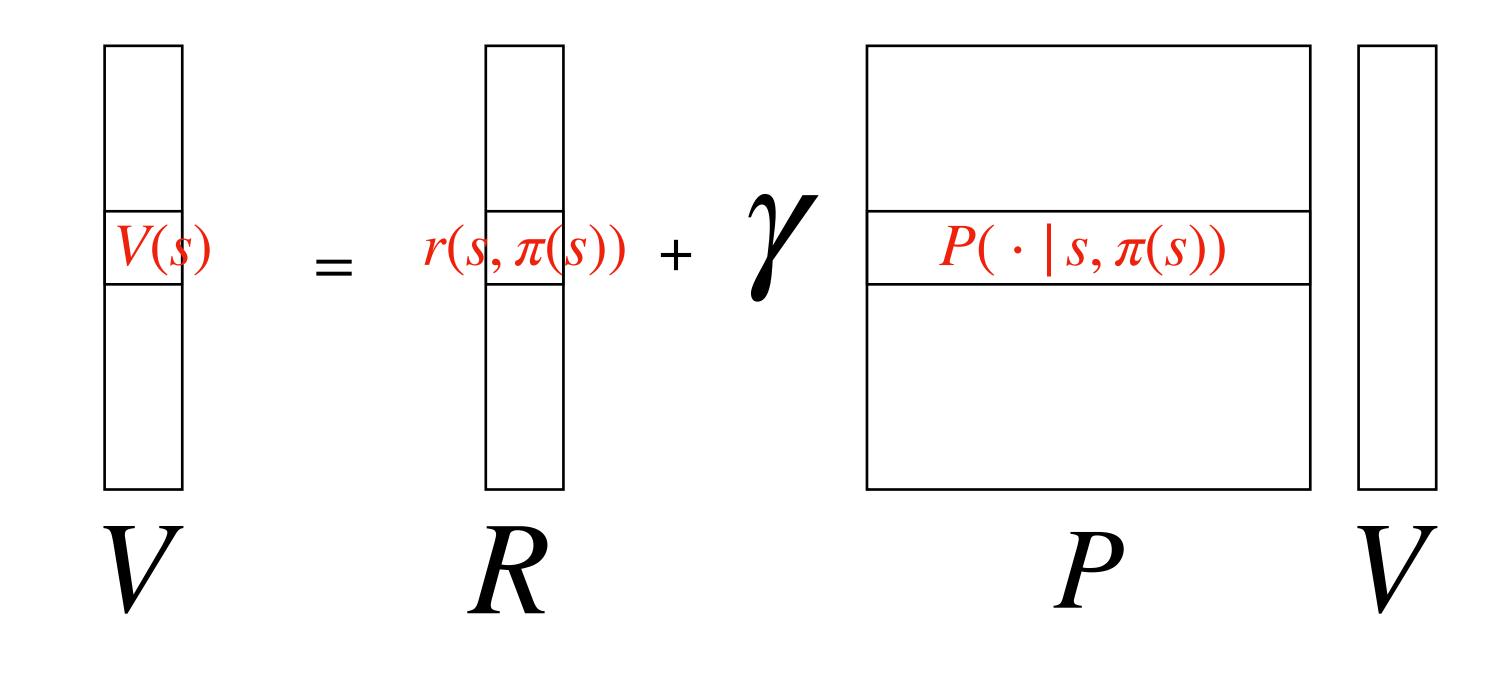
$$+ \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V(s')$$

$$|S|$$
, where $R_s = r(s, \pi(s))$, and
ere $P_{s,s'} = P(s' | s, \pi(s))$,

we can **combine all** *S* **many constraints together:**

 $V = R + \gamma P V$





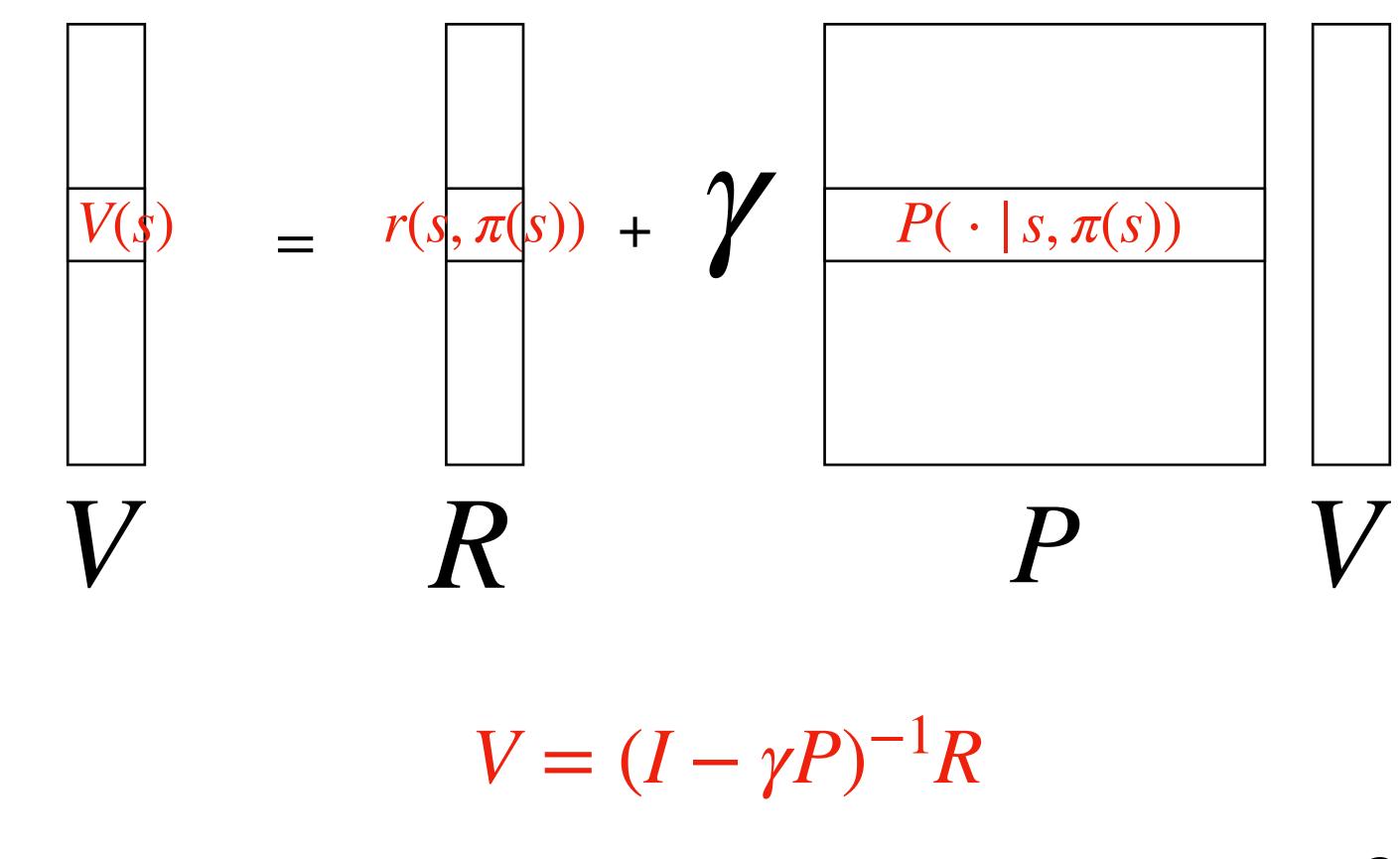
- $V \in \mathbb{R}^{|S|}, R \in \mathbb{R}^{|S|}$, where $R_s = r(s, \pi(s))$, and $P \in \mathbb{R}^{|S| \times |S|}$, where $P_{s',s} = P(s' \mid s, \pi(s))$, we can combine all constraints together:
 - $V = R + \gamma P V$

Since $V = r + \gamma PV$, we can obtain *V* as:

$V = (I - \gamma P)^{-1}R$

See the assigned AJKS section for proving $(I - \gamma P)$ is full rank (thus invertible)

Summary so far:



Downside: computation expensive: matrix inverse is $O(S^3)$

(An approximation solution could be enough, i.e., trade accuracy for computation)

Outline:

1. Exact Policy Evaluation

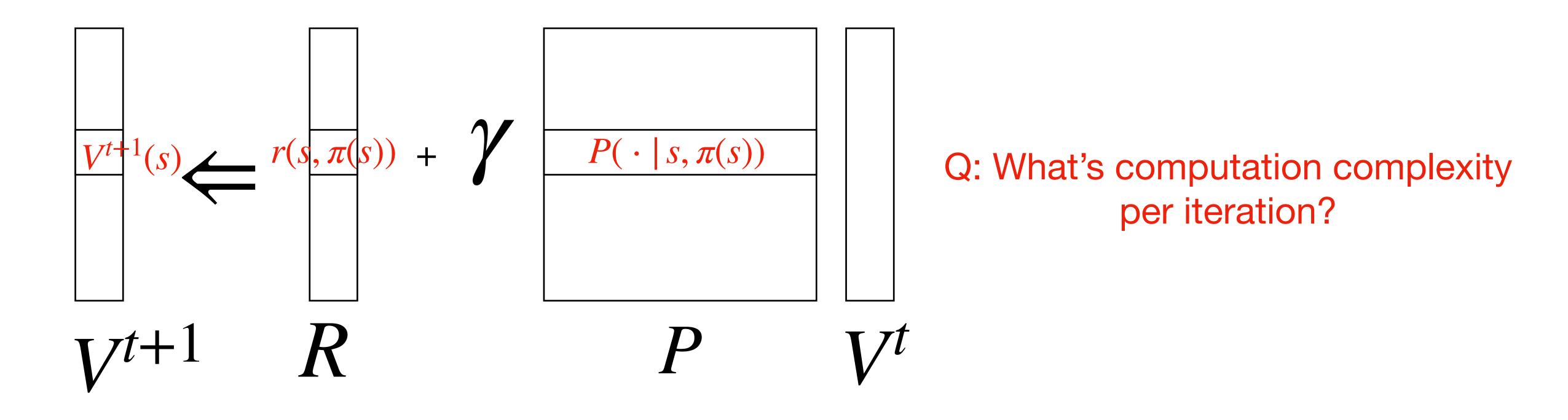
2. Approximate Policy Evaluation via an Iterative Algorithm

V^{π} is a fix-point solution

 $\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s \sim P(s, \pi(s))} V^{\pi}(s')$

 $V^{\pi} = R + \gamma P V^{\pi}$

Iterative Policy Evaluation:



Algorithm (Iterative PE): Start with some initialization $V^0 \in \mathbb{R}^{|S|}$, repeat for t = 0...: $V^{t+1} \leftarrow R + \gamma P V^t$

Convergence of Iterative PE

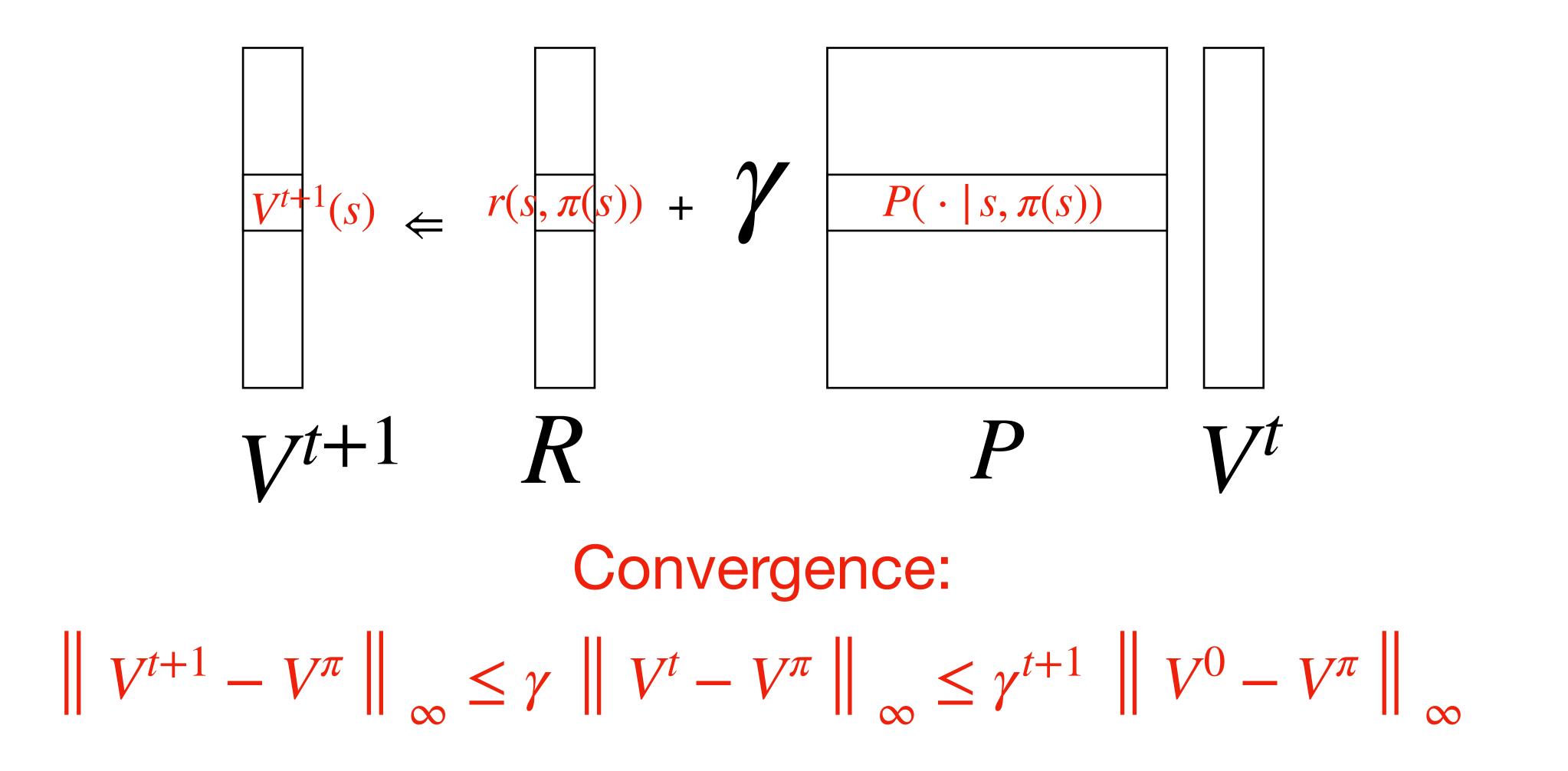
Recall
$$\gamma \in [0,1)$$
. A
 $\forall s, | V^t(s) - V^{\pi}(s)$

$$\begin{aligned} \forall s, \left| V^{t+1}(s) - V^{\pi}(s) \right| \\ &= \left| r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^{t}(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^{\pi}(s') \right) \right| \\ &= \gamma \left| \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^{t}(s') - \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^{\pi}(s') \right| \\ &\leq \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} \left| V^{t}(s') - V^{\pi}(s') \right| \leq \gamma \left\| V^{t} - V^{\pi} \right\|_{\infty} \Rightarrow \left\| V^{t+1} - V^{\pi} \right\|_{\infty} \leq \gamma \left\| V^{t} - V^{\pi} \right\|_{\infty} \end{aligned}$$

Theorem:

After t iterations, we have: $|S| \leq \gamma^t \| V^0 - V^\pi \|_{\infty}$

Summary so far:



Extension to stochastic policy and Q functions

Your homework:

How to modify the two algorithms so that it can handle stochastic policy and learn Q functions

Summary

Key Question today: Given MDP \mathcal{M} , and a policy π , How to compute $V^{\pi}(s), \forall s$?

1. The **exact** algorithm $V = (I - \gamma P)^{-1}R$ requires matrix inverse (computation complexity at least $O(S^3)$)

2. Iterative algorithm can quickly find an **approximate** solution (error shrinks in the rate of γ^{t})

(We will see many similar iterative algorithms later)