
PyTorch + Gym Tutorial
 

Owen Oertell 
CS 4/5789: Introduction to Reinforcement Learning

Outline

- What is PyTorch?

- Installing PyTorch

- Tensors, Shapes, Using the CPU vs GPU 
- Gradients

- Defining and Training a NN

- Gym Environments

What is PyTorch?

θ* = arg min
f∈ℱ ∑

(x,y)∈𝒟

ℒ(f(x), y)

Gradient descent Dataset Loss function

Neural network

PyTorch handles everything!

What is Pytorch?

• PyTorch is a framework that…

• Lets you define neural networks

• Automatically computes gradients

• Handles datasets

• Manages GPUs

• … and more

Installing Pytorch
Go to the website: https://pytorch.org/get-started/locally/

Select your version, os, package manager, etc.

And install

https://pytorch.org/get-started/locally/

Installing Pytorch

• If you have an NVIDIA GPU, make sure that you install the right version, by checking your
version of NCCL with nvcc -V or nvidia-smi

• The astute observer would realize the there is no latest torch for cu12.1, so you’d need to
get an older version.

ojo2@computer:/path$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Feb__7_19:32:13_PST_2023
Cuda compilation tools, release 12.1, V12.1.66
Build cuda_12.1.r12.1/compiler.32415258_0

Tensors & Shapes

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes Unlike lists of lists,

tensors cannot be jagged!

* slide credit, Stachowicz, CS285

Tensors & Shapes
Tensors follow expected rules for operations (same for NumPy)

Tensors & Shapes

Note: torch also has reshape, but it modifies the underlying data structure, views don’t

* slide credit, Stachowicz, CS285

Tensors & Shapes
* slide credit, Stachowicz, CS285

Guess the shape!

Device Management

• When you have a GPU, there become 2 places tensors can live (for torch)

• CPU: We send to cpu with .to(“cpu”)/.cpu()

• GPU: We send to gpu with .to(“cuda”)/.cuda()

• NumPy arrays always live on the CPU

You can’t perform operations between tensors on different devices!

Gradients
The gradients for backpropagation are
organized in a graph of the operations.
You can see the edge in the graph by

printing tensors with require_grad=True

Gradients

You can disrupt the graph by
using .detach()

Training Pipeline

(1) Define NN

define layers

Define forward pass

Many other prebuilt types of layers. Check out https://pytorch.org/docs/stable/index.html

https://pytorch.org/docs/stable/index.html

(2) Define a Dataset
Subclass torch dataset class

Override length

 and getitem (required)

Define a collate
function (needed for

data loaders)

(3) Putting it together!

Data loader batches your dataset and makes it iterable

Define an optimizer (to do gradient descent)

Put your data to GPU! Important!

Remove stored gradients from the model
Forward pass

Compute loss
Compute gradients, but don’t do update yet!

Update with gradient descent

(4) Save the Model

Parameters

• To access the parameters of a model (which you will need to do in PA2), you
can iterate over them as follows

• This will give you both the weights and biases for each param group (tensor)

More Resources

• There are many resources on PyTorch:

• The docs (https://pytorch.org/docs/stable/index.html)

• Don’t just assume something does what you think because of the
function name, read the description!

• Tutorials (https://pytorch.org/tutorials/)

• For a good comprehensive tutorial (https://colab.research.google.com/
drive/12nQiv6aZHXNuCfAAuTjJenDWKQbIt2Mz)

https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials/
https://colab.research.google.com/drive/12nQiv6aZHXNuCfAAuTjJenDWKQbIt2Mz
https://colab.research.google.com/drive/12nQiv6aZHXNuCfAAuTjJenDWKQbIt2Mz
https://colab.research.google.com/drive/12nQiv6aZHXNuCfAAuTjJenDWKQbIt2Mz

Gym Environments

The Gym interface is a standardized package capable of representing general RL problems

Gym Environments

The Gym interface is a standardized package capable of representing general RL problems

Initialize gym environment

Reset to start state

Query the policy based on the state

Call env.step()

Reset if it is terminated (finished trajectory)

param not in our version

Gym Environments (step)

• State is maintained within the gym environment.

• Whenever you call step, 4 things are returned:

• New observation (state)

• Reward

• Done

• Info

This varies based on version and is specific to the one we use in PA2

Vectorized Environments

Gym Wrappers

Wrappers are very helpful ways to changing behavior of environments without
needing to change the underlying code

You can use them to view the output of the environments in PA2

Other PyTorch and Gym Resources

https://pytorch.org/blog/flexattention/

http://blog.ezyang.com/2024/11/ways-to-use-torch-compile/

https://www.gymlibrary.dev/

Advanced-ish Pytorch
(You most likely won’t need these for your projects)

torch.compile()

torch.compile() makes PyTorch code run faster by JIT-compiling PyTorch code into optimized kernels, while requiring
minimal code changes.

Similar to @jax.jit for those of you familiar with JAX

Like Jax, these functions are harder to debug (since they get mapped to CUDA kernels), so only compile if you’re certain
that it will work!

torch.vmap()

vmap, which stands for vectorized map, vectorizes the operations more effectively than the corresponding python native
version (similar to jax.vmap())

