Regressing Relative Reward

Recap: KL-reg RL objective

$$J(\pi) = \mathbb{E}_{x \sim \nu} \left[\mathbb{E}_{\tau \sim \pi(\cdot \mid x)} \hat{r}(x, \tau) - \beta \mathsf{KL} \left(\pi(\cdot \mid x) \middle| \pi_{ref}(\cdot \mid x) \right) \right]$$

 $\hat{\pi}(\tau \mid x) \propto \pi_{ref}(\tau \mid x)$ Stay close to π_{ref}

$$(x) \cdot \exp\left(\frac{\hat{r}(x,\tau)}{\beta}\right)$$

Optimize reward

Recap: DPO

Use policies to model the reward difference (aka your LLM is your secret reward model)

But DPO's performance isn't as strong as RM+PPO in practice.

- Evaluation and Generation gap (aka evaluation is easier than generation..)
 - When a reward / verifier is easier to learn, RM + PPO can win...
- 1. DPO uses finite data + gradient descent to learn the generator directly
- 2. PPO uses the RM, and can take advantage of unseen prompts and new training data...

But DPO's performance isn't as strong as RM+PPO in practice.

PPO can also take advantage of the state-of-art RMs from the community...

RewardBench: Evaluating Reward Models

Evaluating the capabilities, safety, and pitfalls of reward models

Code | Eval. Dataset | Prior Test Sets | Results | Paper | Total models: 165 | * Unverified models | 🔔 Dataset Contamination | Last restart (PST): 22:01 PDT, 28 Mar 2025

A Many of the top models were trained on unintentionally contaminated, AI-generated data, for more information, see this <u>gist</u>.

Y RewardBench Leaderboard

RewardBench - Detailed

Model Search (delimit with,)

	Model	Model Type	Score 🔺	Chat 🔺	Chat Hard 🔺	Safety 🔺	Reasoning 🔺
1	infly/INF-ORM-Llama3.1-70B	Seq. Classifier	95.1	96.6	91.0	93.6	99.1
2	ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1	Seq. Classifier	95.0	96.4	90.8	93.8	99.0
3	nicolinho/QRM-Gemma-2-27B	Seq. Classifier	94.4	96.6	90.1	92.7	98.3
4	Skywork/Skywork-Reward-Gemma-2-27B-v0.2	Seq. Classifier	94.3	96.1	89.9	93.0	98.1
5	nvidia/Llama-3.1-Nemotron-70B-Reward *	Custom Classifier	94.1	97.5	85.7	95.1	98.1

Prior	Test Sets Abou	ut Data	set Viewer		
	Seq. Classifiers	DPO	Custom Classifiers	Generative	
	Prior Sets				

https://huggingface.co/spaces/allenai/reward-bench

Today's question

PPO can be very expensive, can we develop RL algorithm that is more efficient and may be more effective?

Outline

- 1. Mirror descent reward maximization subject to a KL reg to the old policy
 - 2. Reparametrization trick and REBEL
 - 3. Connections to old algorithms we learned

Let us assume that we are given a reward function $r(x, \tau)$ (e.g., learned by ourselves or an open-source model)

 π

Want to max $\mathbb{E}_{x,\tau \sim \pi(\cdot|x)} \left[r(x,\tau) \right]$

Mirror descent (MD) incrementally (iteratively) updates the policy:

Given π_t , we update to π_{t+1} as follows:

$$\pi_{t+1} = \arg\max_{\pi} \mathbb{E}_{x,\tau \sim \pi(\cdot|x)} \left[r(x,\tau) - \beta \mathsf{KL} \left(\pi(\cdot|x) \mid \pi_t(\cdot|x) \right) \right]$$

KL to the previous policy (e.g., recall NPG and the logic behind PPO's clipping)

$$\pi_{t+1} = \arg\max_{\pi} \mathbb{E}_{x,\tau \sim \pi(\cdot|x)} \left[r(x,\tau) - \beta \mathsf{KL} \left(\pi(\cdot|x) \mid \pi_t(\cdot|x) \right) \right]$$

In theory, using the same idea we had from KL-reg RL, π_{t+1} has a closed-form:

- $\Rightarrow \pi_{t+1}(\tau | x) \propto \pi_t(\tau | x) \exp(r(x, \tau)/\beta)$
 - Q: can we easily implement π_{t+1} ?

Ignoring the implementation issue, mirror descent in theory has very good convergence rate

After T iterations, we can find a policy $\hat{\pi}$, s.t.,

$$\mathbb{E}_{x,\tau\sim\hat{\pi}(\cdot|x)}r(x,\tau) - \mathbb{E}_{x,\tau\sim\pi^{\star}(\cdot|x)}r(x,\tau) \le O(1/T)$$

(Proof out of the scope, see CS6789)

Outline

- 1. Mirror descent reward maximization subject to a KL reg to the old policy
 - 2. Reparametrization trick and REBEL
 - 3. Connections to old algorithms we learned

Reparameterization

Mirror descent indicates the following ideal update:

 $\pi_{t+1}(\tau \mid x) = \pi_t(\tau \mid x) \exp\left(r(x,\tau)/\beta\right)/Z(x)$

1. Take log on both sides and rearrange terms, we get

 $r(x,\tau) = \beta \left(\ln \frac{\pi_t}{\tau} \right)$

2. Instead of modeling reward, we model reward difference to cancel Z(x):

 $r(x,\tau) - r(x,\tau') = \beta \left(\ln 1 \right)$

$$\frac{\tau_{t+1}(\tau \mid x)}{\pi_t(\tau \mid x)} + \ln Z(x)$$

$$\frac{\pi_{t+1}(\tau \,|\, x)}{\pi_t(\tau \,|\, x)} - \ln \frac{\pi_{t+1}(\tau' \,|\, x)}{\pi_t(\tau' \,|\, x)} \right)$$

Reparameterization

We obtained the following relationship between *r* and $\pi_{t+1} \& \pi_t$:

 $\forall (x, \tau, \tau') : r(x, \tau) - r(x, \tau') =$

This indicates π_{t+1} is the minimizer of the following least square regression problem:

 $\pi_{t+1} \text{ should be the minimizer}$ regardless of what the distribution is; $\mathbb{E}_{x,\tau,\tau'} \left(\beta \left(\ln \frac{\pi_{t+1}(\tau \mid x)}{\pi_t(\tau \mid x)} - \right) \right) \right)$

In pratice, we often use

 $x, \tau \sim \pi_t(\cdot | x), \tau' \sim \pi_t(\cdot | x)$

$$= \beta \left(\ln \frac{\pi_{t+1}(\tau \,|\, x)}{\pi_t(\tau \,|\, x)} - \ln \frac{\pi_{t+1}(\tau' \,|\, x)}{\pi_t(\tau' \,|\, x)} \right)$$

$$-\ln\frac{\pi_{t+1}(\tau'|x)}{\pi_t(\tau'|x)}\right) - \left(r(x,\tau) - r(x,\tau')\right)^2$$

Relative reward

REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

Given π_t , we compute π_{t+1} via least square regression:

$$\frac{(\tau \mid x)}{(\tau \mid x)} - \ln \frac{\pi(\tau' \mid x)}{\pi_t(\tau' \mid x)} - (r(x, \tau) - r(x, \tau')) \right)^2$$

Regressor

Relative reward

Difference between REBEL and DPO

Discussion: what is the difference between DPO, REBEL, and PPO

Outline

- 1. Mirror descent reward maximization subject to a KL reg to the old policy
 - 2. Reparametrization trick and REBEL
 - 3. Connections to old algorithms we learned

Consider parameterized policy π_{θ} , recall that rebel solves least square regression every iteration:

$$\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{x,(\tau,\tau') \sim \pi_{\theta_t}(\cdot|x)} \left(\beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{\theta_t}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{\theta_t}(\tau' \mid x)} \right) - \left(r(x,\tau) - r(x,\tau') \right) \right)^2$$

In practice, hard to solve it exactly

What happens if we solve it approximately? What happens if we perform

REBEL

- 1. one step of gradient descent
- 2. one step of Gauss-newton method

REBEL recovers variance-reduced policy gradient

Approximately solve the least square regression problem via just one step of gradient descent

$$\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{x,(\tau,\tau') \sim \pi_{\theta_t}(\cdot|x)} \left(\beta \left(\ln \frac{\pi_{\theta}(\tau|x)}{\pi_{\theta_t}(\tau|x)} - \ln \frac{\pi_{\theta}(\tau'|x)}{\pi_{\theta_t}(\tau'|x)} \right) - \left(r(x,\tau) - r(x,\tau') \right) \right)^2$$

 $: \ell(\theta)$

 $\theta_{t+1} \Leftarrow \theta_t - \eta \nabla_{\theta} \ell(\theta_t)$ Let's try this out!

REBEL recovers variance-reduced NPG

Approximately solve the least square regression problem via just one step of Gauss-newton

$$\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{x,(\tau,\tau') \sim \pi_{\theta_t}(\cdot|x)} \left(\beta \left(\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{\theta_t}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{\theta_t}(\tau' \mid x)} \right) - \left(r(x,\tau) - r(x,\tau') \right) \right)^2$$

GN approximate the non-linear part inside the square via first-order Taylor expansion at θ_t

$$\ln \frac{\pi_{\theta}(\tau \mid x)}{\pi_{\theta_{t}}(\tau \mid x)} - \ln \frac{\pi_{\theta}(\tau' \mid x)}{\pi_{\theta_{t}}(\tau' \mid x)} \approx \left(\nabla \ln \pi_{\theta_{t}}(\tau \mid x) - \nabla \ln \pi_{\theta_{t}}(\tau' \mid x) \right)^{\mathsf{T}} (\theta - \theta_{t})$$

Plug the linear approximation back and solve for θ :

$$\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{x,(\tau,\tau') \sim \pi_{\theta_t}(\cdot|x)} \left(\beta \left(\left(\nabla \ln \pi_{\theta_t}(\tau \mid x) - \nabla \ln \pi_{\theta_t}(\tau' \mid x) \right)^{\mathsf{T}} (\theta - \theta_t) \right) - \left(r(x,\tau) - r(x,\tau') \right) \right)^2$$

Claim: this recovers the NPG update procedure (try this out after class!)

Using RL to optimize 7B size model on TL;DR

Algorithm	Winr	
SFT	45.2 (
DPO	68.4 (
REINFORCE	70	
PPO	77	
RLOO $(k = 2)$	74	
RLOO ($k = 4$)	<u>77</u>	
REBEL	78.1 (
	Algorithm SFT DPO REINFORCE PPO RLOO $(k = 2)$ RLOO $(k = 4)$ REBEL	

* directly obtained from Ahmadian et al. (2024) ‡ directly obtained from Huang et al. (2024)

[REBEL: Reinforcement Learning via Regressing Relative Rewards, Neurips 2024]

1. Online RL + RM is often much better than DPO

2. REBEL is in par w/ PPO and RLOO (k=4), but much more computation and memory efficient

Swimmer experiments in openAl Gym

Given the same amount of labeled preference data, rebel can continue learning using fresh online data

