
Regressing Relative Reward

J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π(⋅ |x) πref(⋅ |x))]

Recap: KL-reg RL objective

̂π(τ |x) ∝ πref(τ |x) ⋅ exp (̂r(x, τ)
β)

Stay close to πref Optimize reward

Recap: DPO

arg max
θ ∑

x,τ,τ′ ,z

ln
1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x)))
Use policies to model the reward
difference (aka your LLM is your

secret reward model)

But DPO’s performance isn’t as strong as RM+PPO in practice..

Evaluation and Generation gap (aka evaluation is easier than generation..)

When a reward / verifier is easier to learn, RM + PPO can win…

1. DPO uses finite data + gradient descent to learn the generator directly

2. PPO uses the RM, and can take advantage of unseen prompts and new training data…

But DPO’s performance isn’t as strong as RM+PPO in practice..
PPO can also take advantage of the state-of-art RMs from the community…

https://huggingface.co/spaces/allenai/reward-bench

Today’s question

PPO can be very expensive, can we develop RL algorithm that is more
efficient and may be more effective?

Outline

2. Reparametrization trick and REBEL

3. Connections to old algorithms we learned

1. Mirror descent — reward maximization subject to a KL reg to the old policy

Mirror Descent

Let us assume that we are given a reward function

(e.g., learned by ourselves or an open-source model)

r(x, τ)

Want to max
π

𝔼x,τ∼π(⋅|x) [r(x, τ)]

Mirror Descent

Mirror descent (MD) incrementally (iteratively) updates the policy:

Given , we update to as follows:πt πt+1

πt+1 = arg max
π

𝔼x,τ∼π(⋅|x) [r(x, τ) − βKL (π(⋅ |x) |πt(⋅ |x))]
KL to the previous policy (e.g., recall NPG

and the logic behind PPO’s clipping)

Mirror Descent

In theory, using the same idea we had from KL-reg RL, has a closed-form: πt+1

πt+1 = arg max
π

𝔼x,τ∼π(⋅|x) [r(x, τ) − βKL (π(⋅ |x) |πt(⋅ |x))]
⇒ πt+1(τ |x) ∝ πt(τ |x)exp (r(x, τ)/β)

Q: can we easily implement ? πt+1

Mirror Descent

Ignoring the implementation issue, mirror descent in theory has very good convergence rate

After T iterations, we can find a policy , s.t., ̂π

𝔼x,τ∼ ̂π(⋅|x)r(x, τ) − 𝔼x,τ∼π⋆(⋅|x)r(x, τ) ≤ O(1/T)

(Proof out of the scope, see CS6789)

Outline

2. Reparametrization trick and REBEL

3. Connections to old algorithms we learned

1. Mirror descent — reward maximization subject to a KL reg to the old policy

Reparameterization

πt+1(τ |x) = πt(τ |x)exp (r(x, τ)/β)/Z(x)
Mirror descent indicates the following ideal update:

1. Take log on both sides and rearrange terms, we get

r(x, τ) = β (ln
πt+1(τ |x)
πt(τ |x)

+ ln Z(x))
2. Instead of modeling reward, we model reward difference to cancel :Z(x)

r(x, τ) − r(x, τ′) = β (ln
πt+1(τ |x)
πt(τ |x)

− ln
πt+1(τ′ |x)
πt(τ′ |x))

Reparameterization

We obtained the following relationship between and :r πt+1 & πt

∀(x, τ, τ′) : r(x, τ) − r(x, τ′) = β (ln
πt+1(τ |x)
πt(τ |x)

− ln
πt+1(τ′ |x)
πt(τ′ |x))

This indicates is the minimizer of the following least square regression problem:πt+1

𝔼x,τ,τ′
β (ln

πt+1(τ |x)
πt(τ |x)

− ln
πt+1(τ′ |x)
πt(τ′ |x)) − (r(x, τ) − r(x, τ′))

2

 should be the minimizer
regardless of what the

distribution is;

πt+1

Relative rewardIn pratice, we often use

x, τ ∼ πt(⋅ |x), τ′ ∼ πt(⋅ |x)

REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

πt+1 = arg min
π

𝔼x,(τ,τ′)∼πt(⋅|x) β (ln
π(τ |x)
πt(τ |x)

− ln
π(τ′ |x)
πt(τ′ |x)) − (r(x, τ) − r(x, τ′))

2

Relative reward

Given , we compute via least square regression:πt πt+1

sample from the latest policy
, independently;

τ, τ′

πt(⋅ |x)

Regressor

Difference between REBEL and DPO

Discussion: what is the difference between DPO, REBEL, and PPO

Outline

2. Reparametrization trick and REBEL

3. Connections to old algorithms we learned

1. Mirror descent — reward maximization subject to a KL reg to the old policy

REBEL

Consider parameterized policy , recall that rebel solves least square regression every iteration:πθ

θt+1 = arg min
θ

𝔼x,(τ,τ′)∼πθt(⋅|x) β (ln
πθ(τ |x)
πθt

(τ |x)
− ln

πθ(τ′ |x)
πθt

(τ′ |x)) − (r(x, τ) − r(x, τ′))
2

In practice, hard to solve it exactly

What happens if we solve it approximately? What happens if we perform

1. one step of gradient descent

2. one step of Gauss-newton method

REBEL recovers variance-reduced policy gradient

Approximately solve the least square regression problem via just one step of gradient descent

θt+1 = arg min
θ

𝔼x,(τ,τ′)∼πθt(⋅|x) (β (ln
πθ(τ |x)
πθt

(τ |x)
− ln

πθ(τ′ |x)
πθt

(τ′ |x)) − (r(x, τ) − r(x, τ′)))
2

:ℓ(θ)

θt+1 ⇐ θt − η∇θℓ(θt) Let’s try this out!

REBEL recovers variance-reduced NPG

Approximately solve the least square regression problem via just one step of Gauss-newton

θt+1 = arg min
θ

𝔼x,(τ,τ′)∼πθt(⋅|x) (β (ln
πθ(τ |x)
πθt

(τ |x)
− ln

πθ(τ′ |x)
πθt

(τ′ |x)) − (r(x, τ) − r(x, τ′)))
2

GN approximate the non-linear part inside the square via first-order Taylor expansion at θt

ln
πθ(τ |x)
πθt

(τ |x)
− ln

πθ(τ′ |x)
πθt

(τ′ |x)
≈ (∇ln πθt

(τ |x) − ∇ln πθt
(τ′ |x))

⊤
(θ − θt)

θt+1 = arg min
θ

𝔼x,(τ,τ′)∼πθt(⋅|x) (β ((∇ln πθt
(τ |x) − ∇ln πθt

(τ′ |x))
⊤
(θ − θt)) − (r(x, τ) − r(x, τ′)))

2
Plug the linear approximation back and solve for :θ

Claim: this recovers the NPG update procedure (try this out after class!)

Using RL to optimize 7B size model on TL;DR

1. Online RL + RM is often much
better than DPO

[REBEL: Reinforcement Learning via Regressing Relative Rewards, Neurips 2024]

2. REBEL is in par w/ PPO and
RLOO (k=4), but much more

computation and memory efficient

—REBEL

— DPO

Swimmer experiments in openAI Gym

Given the same amount of labeled preference data, rebel can continue learning using fresh online data

