
Regressing Relative Reward

 



J(π) = 𝔼x∼ν [𝔼τ∼π(⋅|x) ̂r(x, τ) − βKL (π( ⋅ |x) πref( ⋅ |x))]

Recap: KL-reg RL objective

̂π(τ |x) ∝ πref(τ |x) ⋅ exp ( ̂r(x, τ)
β )

Stay close to πref Optimize reward



Recap: DPO

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x) ))



Recap: DPO

arg max
θ ∑

x,τ,τ′ ,z
ln 1

1 + exp (−z ⋅ β (ln πθ(τ |x)
πref(τ |x) − ln πθ(τ′ |x)

πref(τ′ |x) ))
Use policies to model the reward 
difference (aka your LLM is your 

secret reward model)
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But DPO’s performance isn’t as strong as RM+PPO in practice..

Evaluation and Generation gap (aka evaluation is easier than generation..)

When a reward / verifier is easier to learn, RM + PPO can win…

1. DPO uses finite data + gradient descent to learn the generator directly

2. PPO uses the RM, and can take advantage of unseen prompts and new training data…



But DPO’s performance isn’t as strong as RM+PPO in practice..
PPO can also take advantage of the state-of-art RMs from the community…

https://huggingface.co/spaces/allenai/reward-bench



Today’s question

PPO can be very expensive, can we develop RL algorithm that is more 
efficient and may be more effective? 
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3. Connections to old algorithms we learned

1. Mirror descent — reward maximization subject to a KL reg to the old policy
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Want to max
π

𝔼x,τ∼π(⋅|x) [r(x, τ)]
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Mirror Descent

Mirror descent (MD) incrementally (iteratively) updates the policy:

Given  , we update to  as follows:πt πt+1

πt+1 = arg max
π

𝔼x,τ∼π(⋅|x) [r(x, τ) − βKL (π( ⋅ |x) |πt( ⋅ |x))]
KL to the previous policy (e.g., recall NPG 

and the logic behind PPO’s clipping)
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Mirror Descent

In theory, using the same idea we had from KL-reg RL,  has a closed-form: πt+1

πt+1 = arg max
π

𝔼x,τ∼π(⋅|x) [r(x, τ) − βKL (π( ⋅ |x) |πt( ⋅ |x))]
⇒ πt+1(τ |x) ∝ πt(τ |x)exp (r(x, τ)/β)

Q: can we easily implement ? πt+1
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Mirror Descent

Ignoring the implementation issue, mirror descent in theory has very good convergence rate

After T iterations, we can find a policy , s.t., ̂π

𝔼x,τ∼ ̂π(⋅|x)r(x, τ) − 𝔼x,τ∼π⋆(⋅|x)r(x, τ) ≤ O(1/T)

(Proof out of the scope, see CS6789)
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Reparameterization 

πt+1(τ |x) = πt(τ |x)exp (r(x, τ)/β)/Z(x)
Mirror descent indicates the following ideal update:

1. Take log on both sides and rearrange terms, we get

r(x, τ) = β (ln πt+1(τ |x)
πt(τ |x) + ln Z(x))

2. Instead of modeling reward, we model reward difference to cancel :Z(x)

r(x, τ) − r(x, τ′ ) = β (ln πt+1(τ |x)
πt(τ |x) − ln πt+1(τ′ |x)

πt(τ′ |x) )
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 should be the minimizer 
regardless of what the 

distribution is; 


πt+1

Relative rewardIn pratice, we often use

x, τ ∼ πt( ⋅ |x), τ′ ∼ πt( ⋅ |x)



REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

Given , we compute  via least square regression:πt πt+1



REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

πt+1 = arg min
π

𝔼x,(τ,τ′ )∼πt(⋅|x) β (ln π(τ |x)
πt(τ |x) − ln π(τ′ |x)

πt(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

Given , we compute  via least square regression:πt πt+1



REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

πt+1 = arg min
π

𝔼x,(τ,τ′ )∼πt(⋅|x) β (ln π(τ |x)
πt(τ |x) − ln π(τ′ |x)

πt(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

Given , we compute  via least square regression:πt πt+1

sample  from the latest policy 
, independently;

τ, τ′ 

πt( ⋅ |x)



REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

πt+1 = arg min
π

𝔼x,(τ,τ′ )∼πt(⋅|x) β (ln π(τ |x)
πt(τ |x) − ln π(τ′ |x)

πt(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

Relative reward

Given , we compute  via least square regression:πt πt+1

sample  from the latest policy 
, independently;

τ, τ′ 

πt( ⋅ |x)



REBEL algorithm

Put things together, we arrive at the following iterative algorithm:

πt+1 = arg min
π

𝔼x,(τ,τ′ )∼πt(⋅|x) β (ln π(τ |x)
πt(τ |x) − ln π(τ′ |x)

πt(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

Relative reward

Given , we compute  via least square regression:πt πt+1

sample  from the latest policy 
, independently;

τ, τ′ 

πt( ⋅ |x)
Regressor



Difference between REBEL and DPO

Discussion: what is the difference between DPO, REBEL, and PPO
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REBEL

Consider parameterized policy , recall that rebel solves least square regression every iteration:πθ

θt+1 = arg min
θ

𝔼x,(τ,τ′ )∼πθt(⋅|x) β (ln πθ(τ |x)
πθt

(τ |x) − ln πθ(τ′ |x)
πθt

(τ′ |x) ) − (r(x, τ) − r(x, τ′ ))
2

In practice, hard to solve it exactly 

What happens if we solve it approximately? What happens if we perform

1. one step of gradient descent

2. one step of Gauss-newton method



REBEL recovers variance-reduced policy gradient
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Approximately solve the least square regression problem via just one step of gradient descent

θt+1 = arg min
θ

𝔼x,(τ,τ′ )∼πθt(⋅|x) (β (ln πθ(τ |x)
πθt

(τ |x) − ln πθ(τ′ |x)
πθt

(τ′ |x) ) − (r(x, τ) − r(x, τ′ )))
2

:ℓ(θ)

θt+1 ⇐ θt − η∇θℓ(θt) Let’s try this out!
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REBEL recovers variance-reduced NPG
Approximately solve the least square regression problem via just one step of Gauss-newton

θt+1 = arg min
θ
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πθt
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GN approximate the non-linear part inside the square via first-order Taylor expansion at θt

ln πθ(τ |x)
πθt

(τ |x) − ln πθ(τ′ |x)
πθt

(τ′ |x) ≈ (∇ln πθt
(τ |x) − ∇ln πθt

(τ′ |x))
⊤
(θ − θt)

θt+1 = arg min
θ

𝔼x,(τ,τ′ )∼πθt(⋅|x) (β ((∇ln πθt
(τ |x) − ∇ln πθt

(τ′ |x))
⊤
(θ − θt)) − (r(x, τ) − r(x, τ′ )))

2
Plug the linear approximation back and solve for :θ

Claim: this recovers the NPG update procedure (try this out after class!)
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Using RL to optimize 7B size model on TL;DR

1. Online RL + RM is often much 
better than DPO

[REBEL: Reinforcement Learning via Regressing Relative Rewards, Neurips 2024]

2. REBEL is in par w/ PPO and 
RLOO (k=4), but much more 

computation and memory efficient



—REBEL

— DPO

Swimmer experiments in openAI Gym
Given the same amount of labeled preference data, rebel can continue learning using fresh online data


