Supervised Learning Recap

Recap:

So far, three learning algorithms:
TD learning, Q learning, and model-based RL

Limitation: they only work for small MDPs with discrete states and actions

Recap:

Real world problems often have continuous state or extremely large number of states

0000
vo.cee 4
’

L
&

O (T
L)
’

‘8
)

.c.

\tlt—]t;gntlt
bt][(pl

ALL SYSTEMS GO

Cannot hope to enumerate all possible state-actions in reality...

Starting from today:

Making RL work for large-scale MDPs with the help from supervised learning
(e.g, Deep Learning)

Outline

Recap supervised learning

Tutorial on PyTorch and Gym

Multi-class classification

Input: & = {x,y},x €I d,y e{l,2,... K}

Goal: learn the distribution over labels P(- | x)
x[l] > > S[l]
x[2] ‘ % Softmax

2 12 ’ n

exp(sli])

N %
P(y=1il|x) =
x[d] /@ - 51

Py(- |x) = softmax (W!*ReLu(W!!x))

1 exXp(sLj])

Multi-class classification

Input: & = {x,y},x €I d,y e{l,2,... K}
Goal: learn the distribution over labels P(- | x)

Loss function:

Negative log-likelihood

N

1 -
£0) =—) —InPy(y'| x)
N =1

A\

6 = arg min £ (0)
0

Maximize the likelihood of labels given features

Regression

nput: @ = {x,y},x € RLy € R,x ~ p,y ~ p(.|x)

Goal: learn the Bayes optimal E[y | x]

WSZISAIN

y = aReLU (WIIReLU (Wi'k))

Regression

nput: @ = {x,y},x e R%y €l

Goal: given x, learn the Bayes optimal

—[y | x]

Loss function:

Mean square error (MSE)

N

1
(0) =~ 2:, (f0) — y)

Va\

6 = arg min £ (60)
0

Minimize the mean squared error

What we can hope from supervised learning?

We expect the learned regressor/classifier do well under the
same distribution where training data is sampled

e.d., for regression, under cerntain assumptions

—x~p (fé(x) — "[y‘x])z — 0,as N - ©

/

Dist where training
data is sampled

Generalization

Supervised learning exhibits generalization ability, as long as test
samples are sampled from the same training dist

e.g., Classifer trained on large-scale cat / dog images can
classifier unseen cat or dog images

Optimization

We focus on first-order optimization techigune: (stochatsic) gradient descent
N

1 o
£(0) = ~ ; —In P,(y'| x')

GD: 0" =¢' — ﬂvgf(et)

Optimization

We focus on first-order optimization techiqgune: (stochatsic) gradient descent
N

1 o
£(0) = ~ ; —In P,(y'| x')

SGD: @'l = @' — i Vez,”(é’t)

Q: how to get this unbiased
estimate of the gradient?

Optimization
Often we use adaptive gradient methods such as Adagrad or Adam:

In high level, adaptively set learning rates for different
coordinates and time

Visualization of AdaGrad VS GD

Z(w) = w[1]? + 0.01w[2]?

AdaGrad can make good progress on
all axis

We often use Adam (Adagrad +
momentum) in practice

Outline

Recap supervised learning

Tutorial on PyTorch and Gym

