Supervised Learning Recap



Recap:

So far, three learning algorithms:
TD learning, Q learning, and model-based RL

Limitation: they only work for small MDPs with discrete states and actions



Recap:

Real world problems often have continuous state or extremely large number of states
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ALL SYSTEMS GO

Cannot hope to enumerate all possible state-actions in reality...



Starting from today:

Making RL work for large-scale MDPs with the help from supervised learning
(e.g, Deep Learning)



Outline

Recap supervised learning

Tutorial on PyTorch and Gym



Multi-class classification

Input: & = {x,y},x €I d,y e{l,2,... K}

Goal: learn the distribution over labels P( - | x)
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x[2] ‘ % Softmax
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P(y=1il|x) =
x[d] /@ - 51

Py( - |x) = softmax (W!*ReLu(W!!x))
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Multi-class classification

Input: & = {x,y},x €I d,y e{l,2,... K}
Goal: learn the distribution over labels P( - | x)

Loss function:

Negative log-likelihood
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Maximize the likelihood of labels given features



Regression

nput: @ = {x,y},x € RLy € R,x ~ p,y ~ p(.|x)

Goal: learn the Bayes optimal E[y | x]
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y = aReLU (WIIReLU (Wi'k) )



Regression

nput: @ = {x,y},x e R%y €l

Goal: given x, learn the Bayes optimal

—[y | x]

Loss function:

Mean square error (MSE)
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Minimize the mean squared error



What we can hope from supervised learning?

We expect the learned regressor/classifier do well under the
same distribution where training data is sampled

e.d., for regression, under cerntain assumptions
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Dist where training
data is sampled



Generalization

Supervised learning exhibits generalization ability, as long as test
samples are sampled from the same training dist

e.g., Classifer trained on large-scale cat / dog images can
classifier unseen cat or dog images



Optimization

We focus on first-order optimization techigune: (stochatsic) gradient descent
N
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£(0) = ~ ; —In P,(y'| x')

GD: 0" =¢' — ﬂvgf(et)




Optimization

We focus on first-order optimization techiqgune: (stochatsic) gradient descent
N
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SGD: @'l = @' — i Vez,”(é’t)

Q: how to get this unbiased
estimate of the gradient?



Optimization
Often we use adaptive gradient methods such as Adagrad or Adam:

In high level, adaptively set learning rates for different
coordinates and time



Visualization of AdaGrad VS GD

Z(w) = w[1]? + 0.01w[2]?

AdaGrad can make good progress on
all axis

We often use Adam (Adagrad +
momentum) in practice
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