
Supervised Learning Recap



Recap:

So far, three learning algorithms: 

TD learning, Q learning, and model-based RL 

Limitation: they only work for small MDPs with discrete states and actions



Recap:

Real world problems often have continuous state or extremely large number of states

Cannot hope to enumerate all possible state-actions in reality…



Starting from today:

Making RL work for large-scale MDPs with the help from supervised learning 
(e.g, Deep Learning) 



Outline

Recap supervised learning

Tutorial on PyTorch and Gym



Multi-class classification
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ {1,2,…, K}

Goal: learn the distribution over labels P( ⋅ |x)
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Softmax

P(y = i |x) =
exp(s[i])

∑K
j=1 exp(s[ j])

Pθ( ⋅ |x) = softmax (W[2]ReLu(W[1]x))



Multi-class classification
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ {1,2,…, K}

Loss function:

Negative log-likelihood

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

Maximize the likelihood of labels given features

̂θ = arg min
θ

ℓ(θ)

Goal: learn the distribution over labels P( ⋅ |x)



Regression
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ ℝ, x ∼ p, y ∼ p( . |x)

Goal: learn the Bayes optimal 𝔼[y |x]
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W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x))



Regression
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ ℝ

Loss function:

Mean square error (MSE)

ℓ(θ) =
1
N

N

∑
i=1

(fθ(x) − y)2

̂θ = arg min
θ

ℓ(θ)

Minimize the mean squared error

Goal: given , learn the Bayes optimal x 𝔼[y |x]



What we can hope from supervised learning?

We expect the learned regressor/classifier do well under the 
same distribution where training data is sampled

e.g., for regression, under cerntain assumptions

𝔼x∼p (f ̂θ(x) − 𝔼[y |x])2 → 0, as N → ∞

Dist where training 
data is sampled



Generalization

Supervised learning exhibits generalization ability, as long as test 
samples are sampled from the same training dist

e.g., Classifer trained on large-scale cat / dog images can 
classifier unseen cat or dog images



Optimization

We focus on first-order optimization techiqune: (stochatsic) gradient descent

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

θt+1 = θt − η∇θℓ(θt)GD:

θt
θt+1



Optimization

We focus on first-order optimization techiqune: (stochatsic) gradient descent

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

θt+1 = θt − η ∇̃θℓ(θt)SGD:

Q: how to get this unbiased 
estimate of the gradient? 



Optimization

Often we use adaptive gradient methods such as Adagrad or Adam:

In high level, adaptively set learning rates for different 
coordinates and time



Visualization of AdaGrad VS GD

ℓ(w) = w[1]2 + 0.01w[2]2

AdaGrad can make good progress on 
all axis

We often use Adam (Adagrad + 
momentum) in practice
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