
Supervised Learning Recap

Recap:

So far, three learning algorithms:

TD learning, Q learning, and model-based RL

Limitation: they only work for small MDPs with discrete states and actions

Recap:

Real world problems often have continuous state or extremely large number of states

Cannot hope to enumerate all possible state-actions in reality…

Starting from today:

Making RL work for large-scale MDPs with the help from supervised learning
(e.g, Deep Learning)

Outline

Recap supervised learning

Tutorial on PyTorch and Gym

Multi-class classification
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ {1,2,…, K}

Goal: learn the distribution over labels P(⋅ |x)

x[1]

x[2]

…

x[d]
W[1] W[2]

s[1]

s[2]

s[3]

Softmax

P(y = i |x) =
exp(s[i])

∑K
j=1 exp(s[j])

Pθ(⋅ |x) = softmax (W[2]ReLu(W[1]x))

Multi-class classification
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ {1,2,…, K}

Loss function:

Negative log-likelihood

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

Maximize the likelihood of labels given features

̂θ = arg min
θ

ℓ(θ)

Goal: learn the distribution over labels P(⋅ |x)

Regression
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ ℝ, x ∼ p, y ∼ p(. |x)

Goal: learn the Bayes optimal 𝔼[y |x]

x[1]

x[2]

…

x[d]

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x))

Regression
Input: 𝒟 = {x, y}, x ∈ ℝd, y ∈ ℝ

Loss function:

Mean square error (MSE)

ℓ(θ) =
1
N

N

∑
i=1

(fθ(x) − y)2

̂θ = arg min
θ

ℓ(θ)

Minimize the mean squared error

Goal: given , learn the Bayes optimal x 𝔼[y |x]

What we can hope from supervised learning?

We expect the learned regressor/classifier do well under the
same distribution where training data is sampled

e.g., for regression, under cerntain assumptions

𝔼x∼p (f ̂θ(x) − 𝔼[y |x])2 → 0, as N → ∞

Dist where training
data is sampled

Generalization

Supervised learning exhibits generalization ability, as long as test
samples are sampled from the same training dist

e.g., Classifer trained on large-scale cat / dog images can
classifier unseen cat or dog images

Optimization

We focus on first-order optimization techiqune: (stochatsic) gradient descent

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

θt+1 = θt − η∇θℓ(θt)GD:

θt
θt+1

Optimization

We focus on first-order optimization techiqune: (stochatsic) gradient descent

ℓ(θ) =
1
N

N

∑
i=1

− ln Pθ(yi |xi)

θt+1 = θt − η ∇̃θℓ(θt)SGD:

Q: how to get this unbiased
estimate of the gradient?

Optimization

Often we use adaptive gradient methods such as Adagrad or Adam:

In high level, adaptively set learning rates for different
coordinates and time

Visualization of AdaGrad VS GD

ℓ(w) = w[1]2 + 0.01w[2]2

AdaGrad can make good progress on
all axis

We often use Adam (Adagrad +
momentum) in practice

Outline

Recap supervised learning

Tutorial on PyTorch and Gym

