Model-based RL

Recap: Planning algorithm for computing π^{\star}

We assumed that $P(s' | s, a), r(s, a) \forall s, a, s'$ are **known**

Recap: Planning algorithm for computing π^{\star}

We assumed that $P(s' | s, a), r(s, a) \forall s, a, s'$ are **known**

Value Iteration: $Q^{t+1}(s,a) \leftarrow r(s,a) + \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{t}(s',a'), \forall s, a$

Recap: Planning algorithm for computing π^{\star}

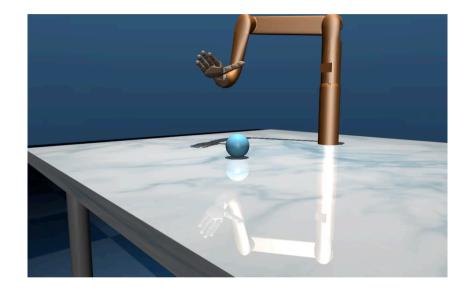
We assumed that $P(s' | s, a), r(s, a) \forall s, a, s'$ are **known**

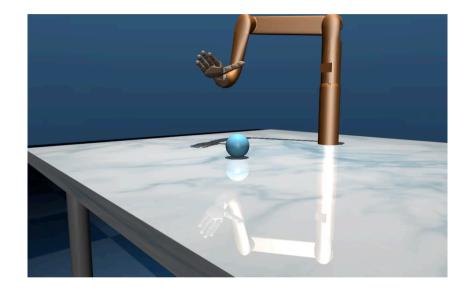
Value Iteration: $Q^{t+1}(s,a) \leftarrow r(s,a) + \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{t}(s',a'), \forall s,a$ Policy Iteration: $\pi^{t+1}(s) = \arg \max Q^{\pi^t}(s, a)$, for all s

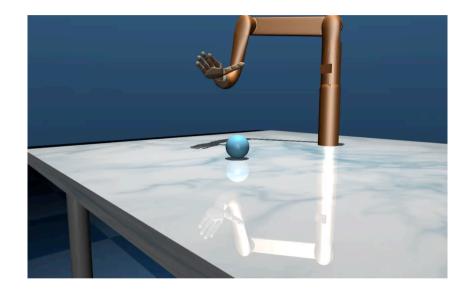
Recap: Value-based Learning

When P(s' | s, a) is unknown, Q-learning aims to learn Q^* directly $\hat{Q}(s, a) \leftarrow \hat{Q}(s, a) + \left(r(s, a) + \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)\right)$ where $a \sim \epsilon$ -greedy(\hat{Q}), and $s' \sim P(\cdot | s, a), r = r(s, a)$

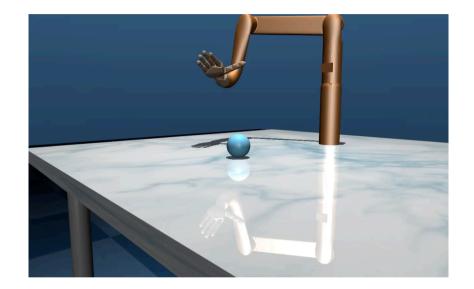
Can we learn the transition from data and then compute its optimal policy; and what performance guarantee we can get?





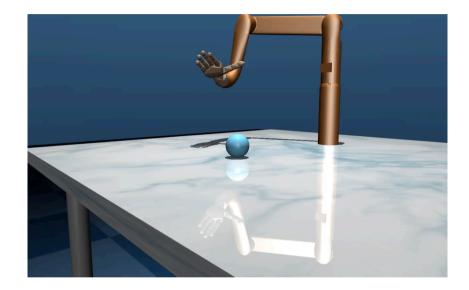


While we cannot model the exact analytical dynamics, we can learn it from data $\{s, a, s'\}$



While we cannot model the exact analytical dynamics, we can learn it from data $\{s, a, s'\}$

> Then we do planning: e.g., $\widehat{\pi}^{\star} = \operatorname{VI}(\widehat{P}, r)$ \checkmark $\widehat{P} \curvearrowright P$



While we cannot model the exact analytical dynamics, we can learn it from data $\{s, a, s'\}$ Then we do planning: e.g., $(\widehat{\pi}^{\star}) = \operatorname{VI}(\widehat{P}, r)$

(Often in practice we iterate the above process)

Potential benefits of learning model over Q-learning

Potential benefits of learning model over Q-learning

There are cases where model is much easier to learn than value function

Potential benefits of learning model over Q-learning

There are cases where model is much easier to learn than value function

Once model is learned, we can optimize different rewards (i.e., multi-task)

Outline:

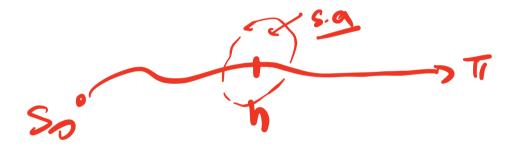
1. Simulation lemma: What is the performance of π under (\widehat{P}, r)

2. Algorithm: estimate \widehat{P} from data and compute $\widehat{\pi}^{\star}$ —the optimal policy of \widehat{P}

3. Analyzing the performance $\hat{\pi}^{\star}$ under (P, r)

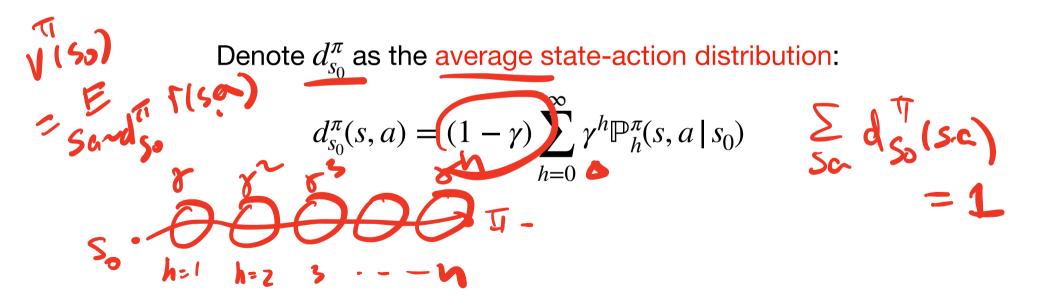
State-action distribution

Given a poicy π and s_0 , we denote $\mathbb{P}_h^{\pi}(s, a \mid s_0)$ as the prob of reaching (s, a) at time h, given we start at s_0 at h = 0



State-action distribution

Given a policy π and s_0 , we denote $\mathbb{P}_h^{\pi}(s, a \mid s_0)$ as the **prob of** reaching (s, a) at time h, given we start at s_0 at h = 0



A key fundamental question in Model-based RL:

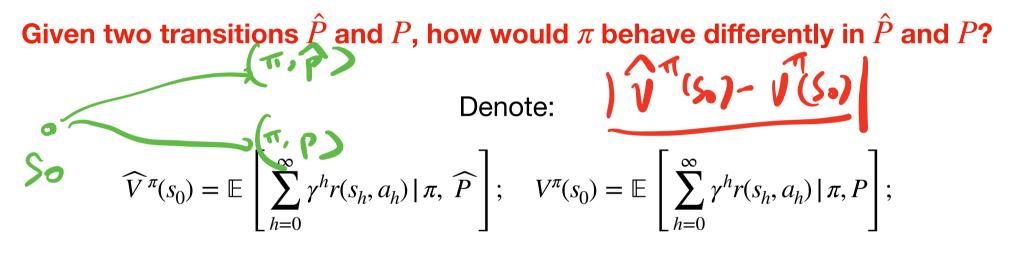
Given two transitions \hat{P} and P, how would π behave differently in \hat{P} and P?

A key fundamental question in Model-based RL:

Given two transitions \hat{P} and P, how would π behave differently in \hat{P} and P?

$$\widehat{V}^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi, \widehat{P}\right]; \quad V^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid \pi, P\right];$$

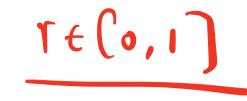
A key fundamental question in Model-based RL:



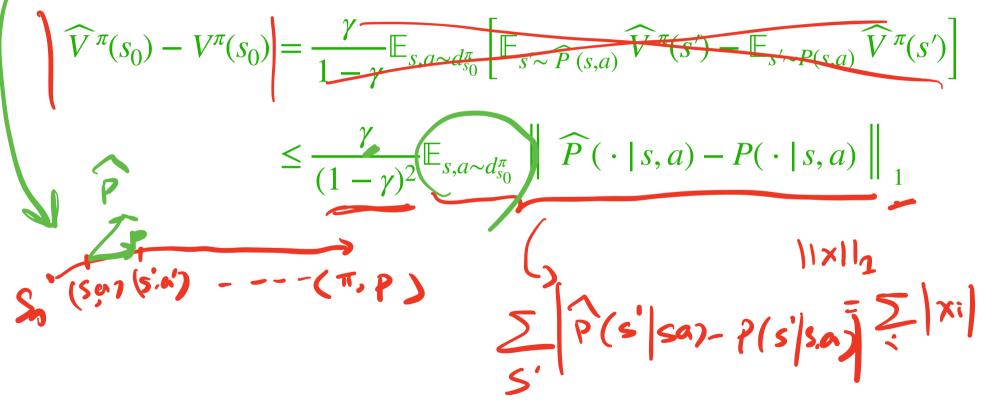
What is the difference between $\widehat{V}^{\pi}(s_0) \& V^{\pi}(s_0)$?

In other words, how does the model error propagate to values

Simulation Lemma



Simulation Lemma:



$$\widehat{V}^{\pi}(s_0) - V^{\pi}(s_0) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right]$$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) + \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} V^{\pi}(s_{1}) \right]$$

$$\begin{split} \widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) &= \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right] \\ \widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) + \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0}), s_{1} \sim P(s_{0}, a_{0})} \left[\widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[\mathbb{E}_{s_{1} \sim \widehat{P}(s_{0}, a_{0})} \widehat{V}^{\pi}(s_{1}) - \mathbb{E}_{s_{1} \sim \mathbb{E}_{s_{1}$$

Summary so far: $r \in [0, 1]$ $\tilde{r} \in [0, \frac{1}{2}]$

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right]$$

$$\leq \frac{\gamma}{(1 - \gamma)^{2}} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left\| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \right\|_{1}$$

$$\int \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} f(x) - \mathbb{E}_{s' \sim p} f(x)$$

$$\leq \left(\max | f(x)| \right) \| P - g \|_{1}$$

Summary so far:

Simulation Lemma:

$$\widehat{V}^{\pi}(s_{0}) - V^{\pi}(s_{0}) = \frac{\gamma}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left[\mathbb{E}_{s' \sim \widehat{P}(s, a)} \widehat{V}^{\pi}(s') - \mathbb{E}_{s' \sim P(s, a)} \widehat{V}^{\pi}(s') \right]$$
$$\leq \frac{\gamma}{(1 - \gamma)^{2}} \mathbb{E}_{s, a \sim d_{s_{0}}^{\pi}} \left\| \widehat{P}(\cdot \mid s, a) - P(\cdot \mid s, a) \right\|_{1}$$

Total model disagreement over the real traces

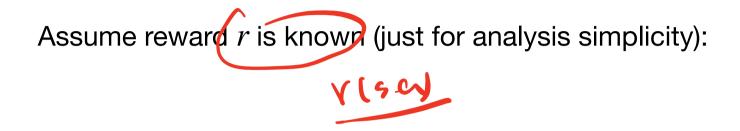
Outline:

1. Simulation lemma: What is the performance of π under any estimator \widehat{P}

2. Algorithm: estimate $(\widehat{P}, \widehat{r})$ from data and compute $\widehat{\pi}^{\star}$ —the optimal policy of $(\widehat{P}, \widehat{r})$

3. Analyzing the performance $\hat{\pi}^{\star}$ under (P, r)

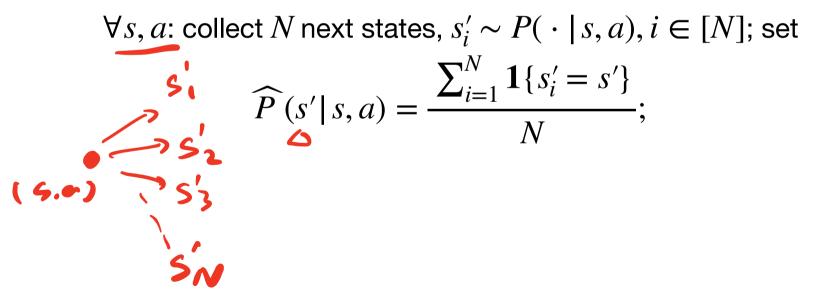
A Model-based Algorithm



A Model-based Algorithm

Assume reward *r* is known (just for analysis simplicity):

1. Model fitting:



A Model-based Algorithm

Assume reward *r* is known (just for analysis simplicity):

1. Model fitting:

 $\forall s, a: \text{ collect } N \text{ next states, } s'_i \sim P(\cdot | s, a), i \in [N]; \text{ set}$ $\widehat{P}(s'|s, a) = \frac{\sum_{i=1}^N \mathbf{1}\{s'_i = s'\}}{N};$

2. Planning w/ the learned model:

$$\widehat{\pi}^{\star} = \mathsf{PI}\left(\widehat{P}, r\right)$$

Given: we have a biased coin:

With probability p, it gives +1, and w/ prob 1-p, it gives -1;

Given: we have a biased coin: With probability p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate *p*: We flip the coin *N* times independently, get N outcomes, $\{x_i\}_{i=1}^N$,

 $x_i \in \{-1, +1\}$

Given: we have a biased coin: With probability p, it gives +1, and w/ prob 1-p, it gives -1;

To estimate p: We flip the coin N times independently, get N outcomes, $\{x_i\}_{i=1}^N$,

$$x_{i} \in \{-1, +1\}$$

$$\sum_{p=1}^{N} \mathbf{1}\{x_{i} = +1\}$$

$$N$$

Given: we have a biased coin: With probability p, it gives +1, and w/ prob 1-p, it gives -1;

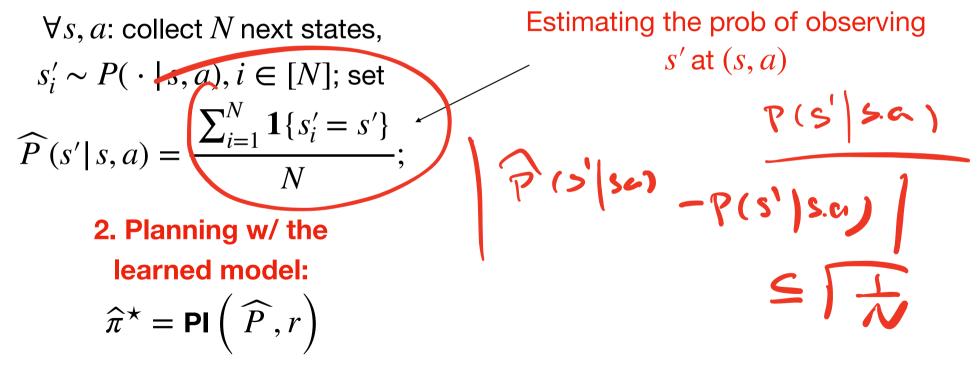
To estimate p: We flip the coin N times independently, get N outcomes, $\{x_i\}_{i=1}^N$,

$$x_i \in \{-1, +1\}$$

$$\hat{p} = \frac{\sum_{i=1}^{N} \mathbf{1}\{x_i = +1\}}{N}$$
(Informal) we can show that $|\hat{p} - p| \leq \sqrt{\frac{1}{N}}$
(proof out of scope)

Model-based RL

1. Model fitting:



Model-based RL

1. Model fitting:

 $\forall s, a: \text{ collect } N \text{ next states,}$ $s'_i \sim P(\cdot \mid s, a), i \in [N]; \text{ set}$ $\widehat{P}(s' \mid s, a) = \frac{\sum_{i=1}^N \mathbf{1}\{s'_i = s'\}}{N};$ 2. Planning w/ the || $\hat{P}(s'_i \mid s, a) = \frac{\hat{P}(s'_i \mid s, a)}{N}$

$$\widehat{\pi}^{\star} = \mathsf{PI}\left(\ \widehat{P}, r\right)$$

Estimating the prob of observing s' at (s, a)

We can show (informally):

 $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \lesssim \sqrt{1/N}, \forall s, a$

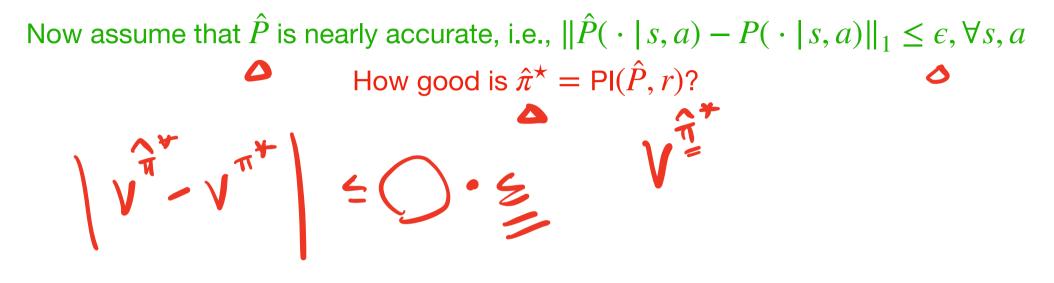
Summary so far:

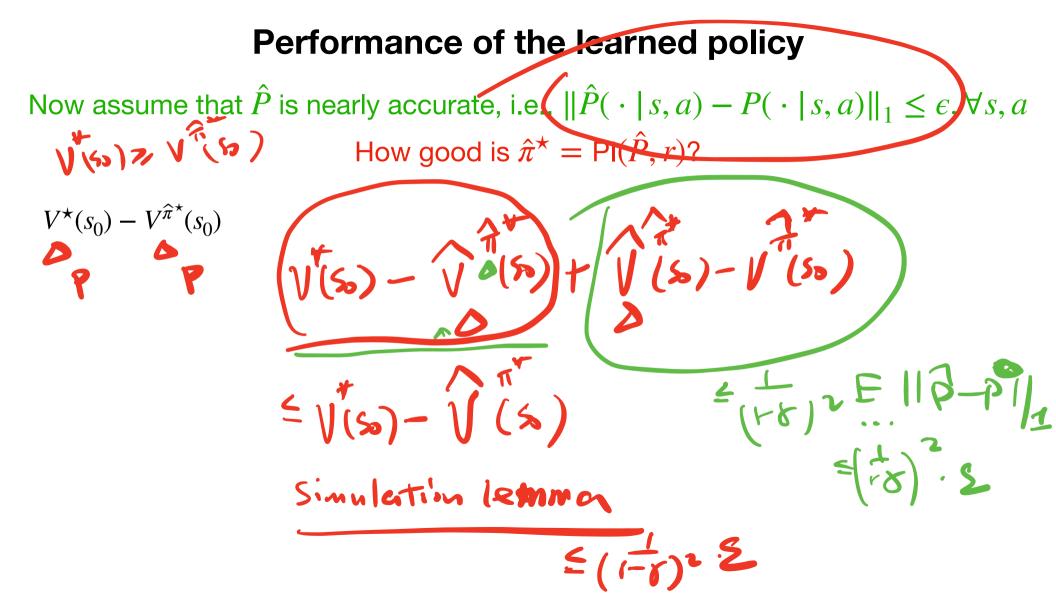
By collecting data (next state) at very (s, a), we build an estimator \hat{P} that is close to P (e.g., possible to show error shrinks $\approx 1/\sqrt{N}$)

Outline:

What is the performance of π under any estimator \widehat{P}





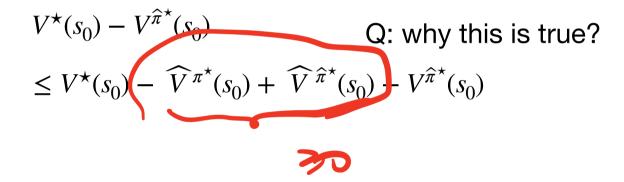


Now assume that \hat{P} is nearly accurate, i.e., $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \le \epsilon, \forall s, a$ How good is $\hat{\pi}^* = PI(\hat{P}, r)$?

 $V^{\star}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

 $\leq V^{\star}(s_0) - \widehat{V}^{\pi^{\star}}(s_0) + \widehat{V}^{\widehat{\pi}^{\star}}(s_0) - V^{\widehat{\pi}^{\star}}(s_0)$

Now assume that \hat{P} is nearly accurate, i.e., $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \le \epsilon, \forall s, a$ How good is $\hat{\pi}^* = PI(\hat{P}, r)$?



Now assume that \hat{P} is nearly accurate, i.e., $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \le \epsilon, \forall s, a$ How good is $\hat{\pi}^* = PI(\hat{P}, r)$?

Now assume that \hat{P} is nearly accurate, i.e., $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \le \epsilon, \forall s, a$ How good is $\hat{\pi}^* = PI(\hat{P}, r)$?

 $V^{\star}(s_{0}) - V^{\widehat{\pi}^{\star}}(s_{0}) \qquad \text{Q: why this is true?}$ $\leq V^{\star}(s_{0}) - \widehat{V}^{\pi^{\star}}(s_{0}) + \widehat{V}^{\widehat{\pi}^{\star}}(s_{0}) - V^{\widehat{\pi}^{\star}}(s_{0}) \qquad \text{(Simulation lemma)}$ $\leq \frac{1}{(1-\gamma)^{2}} \left[\mathbb{E}_{s,a \sim d_{s_{0}}^{\pi^{\star}}} \| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \|_{1} + \mathbb{E}_{s,a \sim d_{s_{0}}^{\widehat{\pi}^{\star}}} \| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \|_{1} \right]$

Now assume that \hat{P} is nearly accurate, i.e., $\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \le \epsilon, \forall s, a$ How good is $\hat{\pi}^* = PI(\hat{P}, r)$?

 $V^{\star}(s_{0}) - V^{\hat{\pi}^{\star}}(s_{0}) \qquad \text{Q: why this is true?}$ $\leq V^{\star}(s_{0}) - \widehat{V}^{\pi^{\star}}(s_{0}) + \widehat{V}^{\hat{\pi}^{\star}}(s_{0}) - V^{\hat{\pi}^{\star}}(s_{0}) \qquad \text{(Simulation lemma)}$ $\leq \frac{\mathbf{q}}{(1-\gamma)^{2}} \left[\mathbb{E}_{s,a \sim d_{s_{0}}^{\pi^{\star}}} \| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \|_{1} + \mathbb{E}_{s,a \sim d_{s_{0}}^{\hat{\pi}^{\star}}} \| \widehat{P}(\cdot | s, a) - P(\cdot | s, a) \|_{1} \right]$ $\leq \frac{2}{(1-\gamma)^{2}} \cdot \epsilon,$

Summary for Today:

1. A model-based RL Algorithm for small-size MDP

$$\widehat{P}(s'|s,a) = \frac{\sum_{i=1}^{N} \mathbf{1}\{s'_i = s'\}}{N}, \forall s,a; \quad \widehat{\pi}^* = \mathsf{PI}\left(\widehat{P},r\right)$$

Summary for Today:

1. A model-based RL Algorithm for small-size MDP

$$\widehat{P}(s'|s,a) = \frac{\sum_{i=1}^{N} \mathbf{1}\{s'_i = s'\}}{N}, \forall s,a; \quad \widehat{\pi}^* = \mathsf{PI}\left(\widehat{P},r\right)$$

2. Simulation lemma allows us to link model error to policy's performance

Summary for Today:

1. A model-based RL Algorithm for small-size MDP

$$\widehat{P}(s'|s,a) = \frac{\sum_{i=1}^{N} \mathbf{1}\{s'_i = s'\}}{N}, \forall s,a; \quad \widehat{\pi}^* = \mathsf{PI}\left(\widehat{P},r\right)$$

2. Simulation lemma allows us to link model error to policy's performance

3. Good model leads to a good policy, up to some error amplification based on effective horizon

