
Model-based RL 



Recap: Planning algorithm for computing π⋆

We assumed that  are knownP(s′￼|s, a), r(s, a)∀s, a, s′￼

Value Iteration:

Qt+1(s, a) ⇐ r(s, a) + max

a
𝔼s′￼∼P(⋅|s,a) max

a′￼

Qt(s′￼, a′￼), ∀s, a

Policy Iteration:

, for all πt+1(s) = arg max

a
Qπt(s, a) s



Recap: Value-based Learning

When  is unknown, Q-learning aims to learn  directlyP(s′￼|s, a) Q⋆

Q̂(s, a) ⇐ Q̂(s, a) + (r(s, a) + max
a′￼

Q̂(s′￼, a′￼) − Q̂(s, a))
where -greedy , and , a ∼ ϵ (Q̂) s′￼ ∼ P( ⋅ |s, a) r = r(s, a)



Questions for Today:  

Can we learn the transition from data and then compute its optimal policy; 


and what performance guarantee we can get?



Motivation for Model-based Approach

While we cannot model the exact 
analytical dynamics, 


we can learn it from data {s, a, s′￼}

Then we do planning: e.g., 

̂π ⋆ = VI( ̂P , r)

(Often in practice we iterate the above process)



Motivation for Model-based Approach

Potential benefits of learning model over Q-learning

There are cases where model is much easier to learn than value function

Once model is learned, we can optimize different rewards (i.e., multi-task)



Outline:

1. Simulation lemma:  
What is the performance of  under π ( ̂P , r)

2. Algorithm: estimate  from data 

and compute —the optimal policy of 

̂P
̂π ⋆ ̂P

3. Analyzing the performance  under ̂π ⋆ (P, r)



State-action distribution

Given a policy  and , we denote  as the prob of 
reaching  at time , given we start at 

π s0 Pπ
h (s, a |s0)

(s, a) h s0

Denote  as the average state-action distribution:dπ
s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhPπ
h (s, a |s0)



A key fundamental question in Model-based RL:

Denote:


̂V π(s0) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |π, ̂P ]; Vπ(s0) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) |π, P];

What is the difference between ? ̂V π(s0) & Vπ(s0)
In other words, how does the model error propagate to values

Given two transitions  and , how would  behave differently in  and ?̂P P π ̂P P



Simulation Lemma

Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′￼∼ ̂P (s,a)
̂V π(s′￼) − 𝔼s′￼∼P(s,a) ̂V π(s′￼)]

≤
γ

(1 − γ)2
𝔼s,a∼dπ

s0
̂P ( ⋅ |s, a) − P( ⋅ |s, a)

1



Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′￼∼ ̂P (s,a)
̂V π(s′￼) − 𝔼s′￼∼P(s,a) ̂V π(s′￼)]

̂V π(s0) − Vπ(s0) = γ𝔼a0∼π(⋅|s0) [𝔼s1∼ ̂P (s0,a0)
̂V π(s1) − 𝔼s1∼P(s0,a0)V

π(s1)]
= γ𝔼a0∼π(⋅|s0) [𝔼s1∼ ̂P (s0,a0)

̂V π(s1) − 𝔼s1∼P(s0,a0)
̂V π(s1) + 𝔼s1∼P(s0,a0)

̂V π(s1) − 𝔼s1∼P(s0,a0)V
π(s1)]

= γ𝔼a0∼π(⋅|s0) [𝔼s1∼ ̂P (s0,a0)
̂V π(s1) − 𝔼s1∼P(s0,a0)

̂V π(s1)]
+γ𝔼a0∼π(⋅|s0),s1∼P(s0,a0) [ ̂V π(s1) − Vπ(s1)]



Summary so far:

Simulation Lemma:

̂V π(s0) − Vπ(s0) =
γ

1 − γ
𝔼s,a∼dπ

s0 [𝔼s′￼∼ ̂P (s,a)
̂V π(s′￼) − 𝔼s′￼∼P(s,a) ̂V π(s′￼)]

≤
γ

(1 − γ)2
𝔼s,a∼dπ

s0
̂P ( ⋅ |s, a) − P( ⋅ |s, a)

1

Total model disagreement over the real traces



Outline:

1. Simulation lemma:  
What is the performance of  under any estimator π ̂P

2. Algorithm: estimate  from data 

and compute —the optimal policy of 

( ̂P , ̂r )
̂π ⋆ ( ̂P , ̂r )

3. Analyzing the performance  under ̂π ⋆ (P, r)



A Model-based Algorithm

1. Model fitting:  
: collect  next states, ; set 

  

∀s, a N s′￼i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

2. Planning w/ the learned model: 

 ̂π ⋆ = PI ( ̂P , r)

Assume reward  is known (just for analysis simplicity):r



Detour: estimating mean of Bernoulli distribution
Given: we have a biased coin: 


With probability , it gives +1, and w/ prob 1-p, it gives -1;p

To estimate : We flip the coin  times independently, get N outcomes, , p N {xi}N
i=1

xi ∈ {−1, + 1}

̂p =
∑N

i=1 1{xi = + 1}

N

(Informal) we can show that 


(proof out of scope)

| ̂p − p | ≲
1
N



Model-based RL

1. Model fitting:  
: collect  next states, 

; set 

  

∀s, a N
s′￼i ∼ P( ⋅ |s, a), i ∈ [N]

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
;

2. Planning w/ the 
learned model:

 ̂π ⋆ = PI ( ̂P , r)

Estimating the prob of observing 
 at s′￼ (s, a)

We can show (informally):

∥ ̂P( ⋅ |s, a) − P( ⋅ |s, a)∥1 ≲ 1/N, ∀s, a



Summary so far:

By collecting data (next state) at very , we build an 
estimator  that is close to 


(e.g., possible to show error shrinks )

(s, a)
̂P P

≈ 1/ N



Outline:

1. Simulation lemma:  
What is the performance of  under any estimator π ̂P

2. Algorithm: estimate  from data 

and compute —the optimal policy of 

( ̂P , ̂r )
̂π ⋆ ( ̂P , ̂r )

3. Analyzing the performance  under ̂π ⋆ (P, r)



Performance of the learned policy
Now assume that  is nearly accurate, i.e., ̂P ∥ ̂P( ⋅ |s, a) − P( ⋅ |s, a)∥1 ≤ ϵ, ∀s, a

V⋆(s0) − V ̂π ⋆(s0)

≤ V⋆(s0) − ̂V π⋆(s0) + ̂V ̂π ⋆(s0) − V ̂π ⋆(s0)

≤
1

(1 − γ)2 [𝔼s,a∼dπ⋆
s0

∥ ̂P ( ⋅ |s, a) − P( ⋅ |s, a)∥1 + 𝔼s,a∼d ̂π⋆
s0

∥ ̂P ( ⋅ |s, a) − P( ⋅ |s, a)∥1]
≤

2
(1 − γ)2

⋅ ϵ,

Q: why this is true? 

How good is ? ̂π⋆ = PI( ̂P, r)

(Simulation lemma)



Summary for Today:

1. A model-based RL Algorithm for small-size MDP

̂P (s′￼|s, a) =
∑N

i=1 1{s′￼i = s′￼}

N
, ∀s, a; ̂π ⋆ = PI ( ̂P , r)

2. Simulation lemma allows us to link model error to 
policy’s performance

3. Good model leads to a good policy, up to some error amplification based 
on effective horizon


