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Bellman Eq

Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′ )], ∀s

Vt+1 ⇐ R + γPVt

An iterative approach for estimating Vπ

1. Need to know the transition 
2. Only works for discrete small MDPs



Today

Given MDP  & a ,  

how to estimate  WITHOUT knowing  
(i.e., how to learn  from experience)

ℳ = (S, A, r, P, γ) π : S ↦ Δ(A)

Vπ(s), ∀s P
Vπ



Motivation

our opponent’s 
strategy is unknown

hard to model the transitions 
of the other drivers/
pedestrians/cyclists)

Hard to model users’ 
reactions to 

recommendations



Outline:

1. Simple Monte Carlo methods

2. Temporal Difference Learning
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Setup: we have MDP , and stochastic , i.e., ℳ = (S, A, P, γ, r) π a ∼ π( ⋅ |s)

Vπ(s) = 𝔼 [
∞

∑
h=0

γhrh π, s0 = s]
MC methods replace Expectation by Sample Average 
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MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from  using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
Total discounted reward 

of the i-th trajectory 
Averaging

Reward at time h at the i-th 
trajectory

T needs to be large enough (i.e., )γT ≈ 0
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MC estimation

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
When  and , we have T → ∞ N → ∞ ̂Vπ(s) → Vπ(s)

The future after T-step has 
near zero contribution

Law of large number
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MC estimation with incremental update

For all state :s ∈ 𝒮

Generate one traj from  using ;s0 = s π

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

Instead of waiting for all N trajs, we can also update the 
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

total reward of one traj: learning rateη
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MC estimation with incremental update

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

The incremental update is performing 
Stochastic gradient descent (SGD) ℓ( ̂Vπ(s)) := ( ̂Vπ(s) − Vπ(s))

2

∇ℓ(x) |x= ̂Vπ(s) = 2 ( ̂Vπ(s) − Vπ(s))
To get a stochastic gradient, replace 

 by its unbiased estimate Vπ(s)
∞

∑
h=0

γhrh
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Summary

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
MC estimation is simple, and is based on well-established statistical guarantee

However 

It has high variance, i.e., total reward on an extremely long trajectory 
can have a lot of randomness; 


Need to wait for completing full trajectories to update/estimate Vπ(s)



Outline:

1. Simple Monte Carlo methods

2. Temporal Difference Learning
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TD Learning
History: developed by Rich 

Sutton back in 1988
My first research project in 

grad school
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TD Learning
TD relies on the idea of Bootstrapping — using predictions from our 

estimator to update the estimator itself

s a s′ 

…̂Vπ(s)
̂Vπ(s′ )r(s, a) + γ

New target value (bootstrapping)

TD update:   ̂Vπ(s) ⇐ ̂Vπ(s) + η (r(s, a) + γ ̂Vπ(s′ ) − ̂Vπ(s))
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TD Learning

Initialize .  Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward  and next state a ∼ π( ⋅ |s) r s′ ∼ P( ⋅ |s, a)
Form TD target r + γ ̂Vπ(s′ )

Update for : s ̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s))
Set s ⇐ s′ Remark: (1) we perform online update while interacting w/ MDP; 


(2) no need to wait to the end for an update (one update per step)
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TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd( ̂Vπ(s)) := ( ̂Vπ(s) − y)
2
,  where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′ )]

This keeps changing as 
we learning

In-class exercise: 

derive one-step SGD update for 


(Hint: how to get an unbiased estimate for  using one transition)
ℓtd( ̂Vπ(s))

y
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Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd( ̂Vπ(s)) := ( ̂Vπ(s) − y)
2
,  where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′ )]

This keeps changing as 
we learning

∇ℓtd(x) |x= ̂Vπ(s) := 2 ( ̂Vπ(s) − y)
∇̃ ℓtd(x) |x= ̂Vπ(s) := 2 ( ̂Vπ(s) − (r + γ ̂Vπ(s′ )))

Unbiased 
estimate of y

TD: ̂Vπ(s) ⇐ ̂Vπ(s) − η ∇̃ ℓtd(x) |x= ̂Vπ(s)



TD Learning

[Informal] Assume  has non-trivial probability of visiting every state. 
Setting learning rate  properly, we will have:

π
η

̂Vπ(s) → Vπ(s), ∀s,
when # of interactions approaches to ∞

(concrete convergence rates are known as well)
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Example of faster learning with TD

first time encounter 
“novel” state, wanna tell 

if it’s good/bad

MC: have to rollout from NOVEL many times 
to get a reasonable estimate of future  

TD (bootstrapping): NOVEL leading to BAD 
in one-step implies NOVEL is likely bad

[Sutton, 1988]

From past game experiences 
(not necessarily very accurate)
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TD learning on CartPole
Note: Cartpole’s state is continuous, so we will need TD w/ function 

approximation, e.g., neural network (we will get there very soon)
A randomly 

initialized NN as 
 (very bad 

estimator)
̂Vπ(s)

Almost perfectly 
estimate the true 

target Vπ(s)



TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)



TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance



TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s))



TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s))
Randomness in target is 

from one-step transition



TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s))

Large bias when  is 
far from 

̂Vπ(s′ )
Vπ(s′ )

Randomness in target is 
from one-step transition
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Summary
TD Learning: an online algorithm for estimating  on the 

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator 
’s prediction to improve the estimator  itself̂Vπ ̂Vπ

Key update step in TD:

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′ ) − ̂Vπ(s))
TD target 


(bootstrapping)
TD error


