
Temporal Difference Learning

Recap: Bellman equation (consistency)

Bellman Eq

Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′)], ∀s

Vt+1 ⇐ R + γPVt

An iterative approach for estimating Vπ

Recap: Bellman equation (consistency)

Bellman Eq

Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′)], ∀s

Vt+1 ⇐ R + γPVt

An iterative approach for estimating Vπ

1. Need to know the transition

Recap: Bellman equation (consistency)

Bellman Eq

Vπ(s) = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)Vπ(s′)], ∀s

Vt+1 ⇐ R + γPVt

An iterative approach for estimating Vπ

1. Need to know the transition
2. Only works for discrete small MDPs

Today

Given MDP & a ,

how to estimate WITHOUT knowing
(i.e., how to learn from experience)

ℳ = (S, A, r, P, γ) π : S ↦ Δ(A)

Vπ(s), ∀s P
Vπ

Motivation

our opponent’s
strategy is unknown

hard to model the transitions
of the other drivers/
pedestrians/cyclists)

Hard to model users’
reactions to

recommendations

Outline:

1. Simple Monte Carlo methods

2. Temporal Difference Learning

MC estimation

Setup: we have MDP , and stochastic , i.e., ℳ = (S, A, P, γ, r) π a ∼ π(⋅ |s)

Vπ(s) = 𝔼 [
∞

∑
h=0

γhrh π, s0 = s]

MC estimation

Setup: we have MDP , and stochastic , i.e., ℳ = (S, A, P, γ, r) π a ∼ π(⋅ |s)

Vπ(s) = 𝔼 [
∞

∑
h=0

γhrh π, s0 = s]
MC methods replace Expectation by Sample Average

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
Reward at time h at the i-th

trajectory

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
Total discounted reward

of the i-th trajectory

Reward at time h at the i-th
trajectory

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
Total discounted reward

of the i-th trajectory
Averaging

Reward at time h at the i-th
trajectory

MC estimation
For all state :s ∈ 𝒮

Generate N i.i.d trajectories from using s0 = s π

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
Total discounted reward

of the i-th trajectory
Averaging

Reward at time h at the i-th
trajectory

T needs to be large enough (i.e.,)γT ≈ 0

MC estimation

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
When and , we have T → ∞ N → ∞ ̂Vπ(s) → Vπ(s)

MC estimation

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
When and , we have T → ∞ N → ∞ ̂Vπ(s) → Vπ(s)

The future after T-step has
near zero contribution

MC estimation

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
When and , we have T → ∞ N → ∞ ̂Vπ(s) → Vπ(s)

The future after T-step has
near zero contribution

Law of large number

MC estimation with incremental update

For all state :s ∈ 𝒮

Instead of waiting for all N trajs, we can also update the
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

MC estimation with incremental update

For all state :s ∈ 𝒮

Generate one traj from using ;s0 = s π

Instead of waiting for all N trajs, we can also update the
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

MC estimation with incremental update

For all state :s ∈ 𝒮

Generate one traj from using ;s0 = s π

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

Instead of waiting for all N trajs, we can also update the
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

MC estimation with incremental update

For all state :s ∈ 𝒮

Generate one traj from using ;s0 = s π

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

Instead of waiting for all N trajs, we can also update the
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

total reward of one traj

MC estimation with incremental update

For all state :s ∈ 𝒮

Generate one traj from using ;s0 = s π

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

Instead of waiting for all N trajs, we can also update the
estimator incrementally every traj

Initialize ̂Vπ(s) = 0,∀s

total reward of one traj: learning rateη

MC estimation with incremental update

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

The incremental update is performing
Stochastic gradient descent (SGD)

MC estimation with incremental update

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

The incremental update is performing
Stochastic gradient descent (SGD) ℓ(̂Vπ(s)) := (̂Vπ(s) − Vπ(s))

2

MC estimation with incremental update

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

The incremental update is performing
Stochastic gradient descent (SGD) ℓ(̂Vπ(s)) := (̂Vπ(s) − Vπ(s))

2

∇ℓ(x) |x= ̂Vπ(s) = 2 (̂Vπ(s) − Vπ(s))

MC estimation with incremental update

̂Vπ(s) ⇐ ̂Vπ(s) + η (
∞

∑
h=0

γhrh)) − ̂Vπ(s)

The incremental update is performing
Stochastic gradient descent (SGD) ℓ(̂Vπ(s)) := (̂Vπ(s) − Vπ(s))

2

∇ℓ(x) |x= ̂Vπ(s) = 2 (̂Vπ(s) − Vπ(s))
To get a stochastic gradient, replace

 by its unbiased estimate Vπ(s)
∞

∑
h=0

γhrh

Summary

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
MC estimation is simple, and is based on well-established statistical guarantee

Summary

̂Vπ(s) = 1
N

N

∑
i=1 [

T

∑
h=0

γhri,h]
MC estimation is simple, and is based on well-established statistical guarantee

However

It has high variance, i.e., total reward on an extremely long trajectory
can have a lot of randomness;

Need to wait for completing full trajectories to update/estimate Vπ(s)

Outline:

1. Simple Monte Carlo methods

2. Temporal Difference Learning

TD Learning
History: developed by Rich

Sutton back in 1988

TD Learning
History: developed by Rich

Sutton back in 1988
My first research project in

grad school

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…̂Vπ(s)

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…̂Vπ(s)
̂Vπ(s′)

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…̂Vπ(s)
̂Vπ(s′)r(s, a) + γ

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…̂Vπ(s)
̂Vπ(s′)r(s, a) + γ

New target value (bootstrapping)

TD Learning
TD relies on the idea of Bootstrapping — using predictions from our

estimator to update the estimator itself

s a s′

…̂Vπ(s)
̂Vπ(s′)r(s, a) + γ

New target value (bootstrapping)

TD update: ̂Vπ(s) ⇐ ̂Vπ(s) + η (r(s, a) + γ ̂Vπ(s′) − ̂Vπ(s))

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward and next state a ∼ π(⋅ |s) r s′ ∼ P(⋅ |s, a)

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward and next state a ∼ π(⋅ |s) r s′ ∼ P(⋅ |s, a)
Form TD target r + γ ̂Vπ(s′)

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward and next state a ∼ π(⋅ |s) r s′ ∼ P(⋅ |s, a)
Form TD target r + γ ̂Vπ(s′)

Update for : s ̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward and next state a ∼ π(⋅ |s) r s′ ∼ P(⋅ |s, a)
Form TD target r + γ ̂Vπ(s′)

Update for : s ̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))
Set s ⇐ s′

TD Learning

Initialize . Set initial state Vπ(s) = 0,∀s s ∈ 𝒮
While True:

Take action , get reward and next state a ∼ π(⋅ |s) r s′ ∼ P(⋅ |s, a)
Form TD target r + γ ̂Vπ(s′)

Update for : s ̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))
Set s ⇐ s′ Remark: (1) we perform online update while interacting w/ MDP;

(2) no need to wait to the end for an update (one update per step)

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

In-class exercise:

derive one-step SGD update for

(Hint: how to get an unbiased estimate for using one transition)
ℓtd(̂Vπ(s))

y

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

∇ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − y)

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

∇ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − y)
∇̃ ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − (r + γ ̂Vπ(s′)))

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

∇ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − y)
∇̃ ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − (r + γ ̂Vπ(s′)))

Unbiased
estimate of y

Interpret TD as “SGD” on TD loss
TD is not the usual SGD, i.e., it is not running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an evolving loss function (TD loss)

ℓtd(̂Vπ(s)) := (̂Vπ(s) − y)
2
, where y = 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′ ∼P(⋅|s,a) ̂Vπ(s′)]

This keeps changing as
we learning

∇ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − y)
∇̃ ℓtd(x) |x= ̂Vπ(s) := 2 (̂Vπ(s) − (r + γ ̂Vπ(s′)))

Unbiased
estimate of y

TD: ̂Vπ(s) ⇐ ̂Vπ(s) − η ∇̃ ℓtd(x) |x= ̂Vπ(s)

TD Learning

[Informal] Assume has non-trivial probability of visiting every state.
Setting learning rate properly, we will have:

π
η

̂Vπ(s) → Vπ(s), ∀s,
when # of interactions approaches to ∞

(concrete convergence rates are known as well)

Example of faster learning with TD

[Sutton, 1988]

Example of faster learning with TD

[Sutton, 1988]

From past game experiences
(not necessarily very accurate)

Example of faster learning with TD

first time encounter
“novel” state, wanna tell

if it’s good/bad

[Sutton, 1988]

From past game experiences
(not necessarily very accurate)

Example of faster learning with TD

first time encounter
“novel” state, wanna tell

if it’s good/bad

MC: have to rollout from NOVEL many times
to get a reasonable estimate of future

[Sutton, 1988]

From past game experiences
(not necessarily very accurate)

Example of faster learning with TD

first time encounter
“novel” state, wanna tell

if it’s good/bad

MC: have to rollout from NOVEL many times
to get a reasonable estimate of future

TD (bootstrapping): NOVEL leading to BAD
in one-step implies NOVEL is likely bad

[Sutton, 1988]

From past game experiences
(not necessarily very accurate)

TD learning on CartPole
Note: Cartpole’s state is continuous, so we will need TD w/ function

approximation, e.g., neural network (we will get there very soon)

TD learning on CartPole
Note: Cartpole’s state is continuous, so we will need TD w/ function

approximation, e.g., neural network (we will get there very soon)

TD learning on CartPole
Note: Cartpole’s state is continuous, so we will need TD w/ function

approximation, e.g., neural network (we will get there very soon)
A randomly

initialized NN as
 (very bad

estimator)
̂Vπ(s)

TD learning on CartPole
Note: Cartpole’s state is continuous, so we will need TD w/ function

approximation, e.g., neural network (we will get there very soon)
A randomly

initialized NN as
 (very bad

estimator)
̂Vπ(s)

Almost perfectly
estimate the true

target Vπ(s)

TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))

TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))
Randomness in target is

from one-step transition

TD vs MC: bias-variance tradeoff
MC is unbiased, but has higher variance (i.e., randomness over an entire traj)

TD can have high bias, but has lower variance

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))

Large bias when is
far from

̂Vπ(s′)
Vπ(s′)

Randomness in target is
from one-step transition

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator
’s prediction to improve the estimator itself̂Vπ ̂Vπ

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator
’s prediction to improve the estimator itself̂Vπ ̂Vπ

Key update step in TD:

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator
’s prediction to improve the estimator itself̂Vπ ̂Vπ

Key update step in TD:

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator
’s prediction to improve the estimator itself̂Vπ ̂Vπ

Key update step in TD:

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))
TD target

(bootstrapping)

Summary
TD Learning: an online algorithm for estimating on the

fly from agent’s own experience
Vπ

TD Learning uses idea of bootstrapping: using estimator
’s prediction to improve the estimator itself̂Vπ ̂Vπ

Key update step in TD:

̂Vπ(s) ⇐ ̂Vπ(s) + η (r + γ ̂Vπ(s′) − ̂Vπ(s))
TD target

(bootstrapping)
TD error

