Temporal Difference Learning

Recap: Bellman equation (consistency)

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s') \right], \forall s$$

 $V^{t+1} \Leftarrow$

1. Need to know the transition

2. Only works for discrete small MDPs

Bellman Eq

An iterative approach for estimating V^{π}

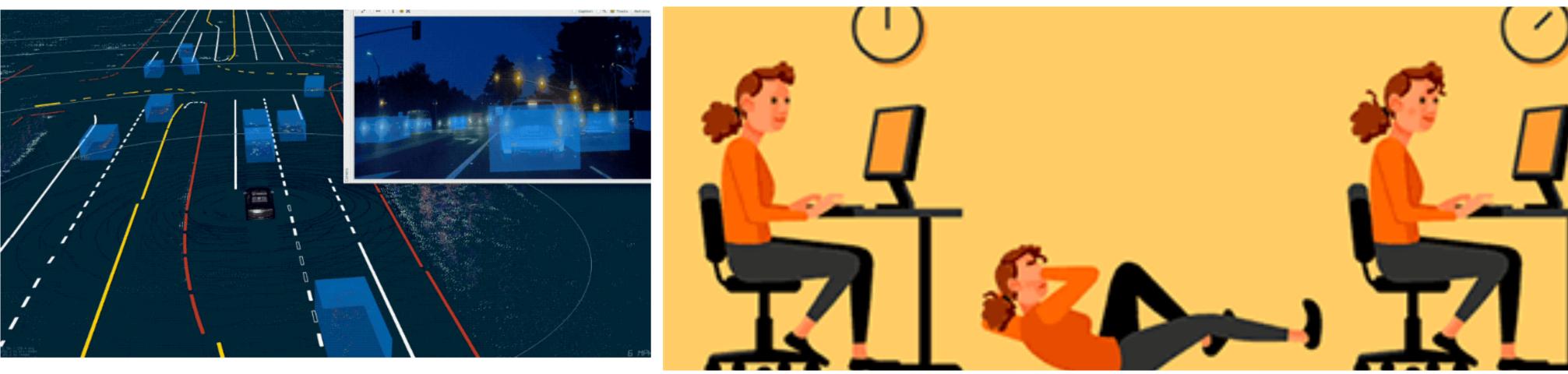
$$= R + \gamma P V^t$$

Today

Given MDP $\mathcal{M} = (S, A, r, P, \gamma)$ & a $\pi : S \mapsto \Delta(A)$,

how to estimate $V^{\pi}(s)$, $\forall s$ WITHOUT knowing P (i.e., how to learn V^{π} from experience)

Motivation



our opponent's strategy is unknown

hard to model the transitions of the other drivers/ pedestrians/cyclists)

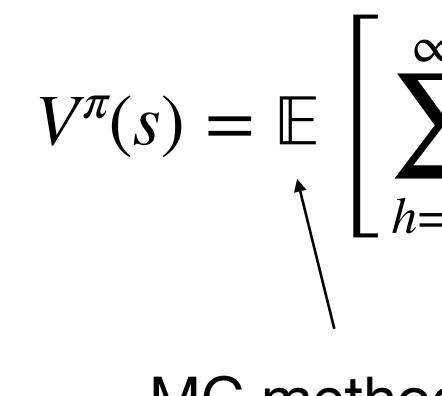
Hard to model users' reactions to recommendations

Outline:

1. Simple Monte Carlo methods

2. Temporal Difference Learning

MC estimation



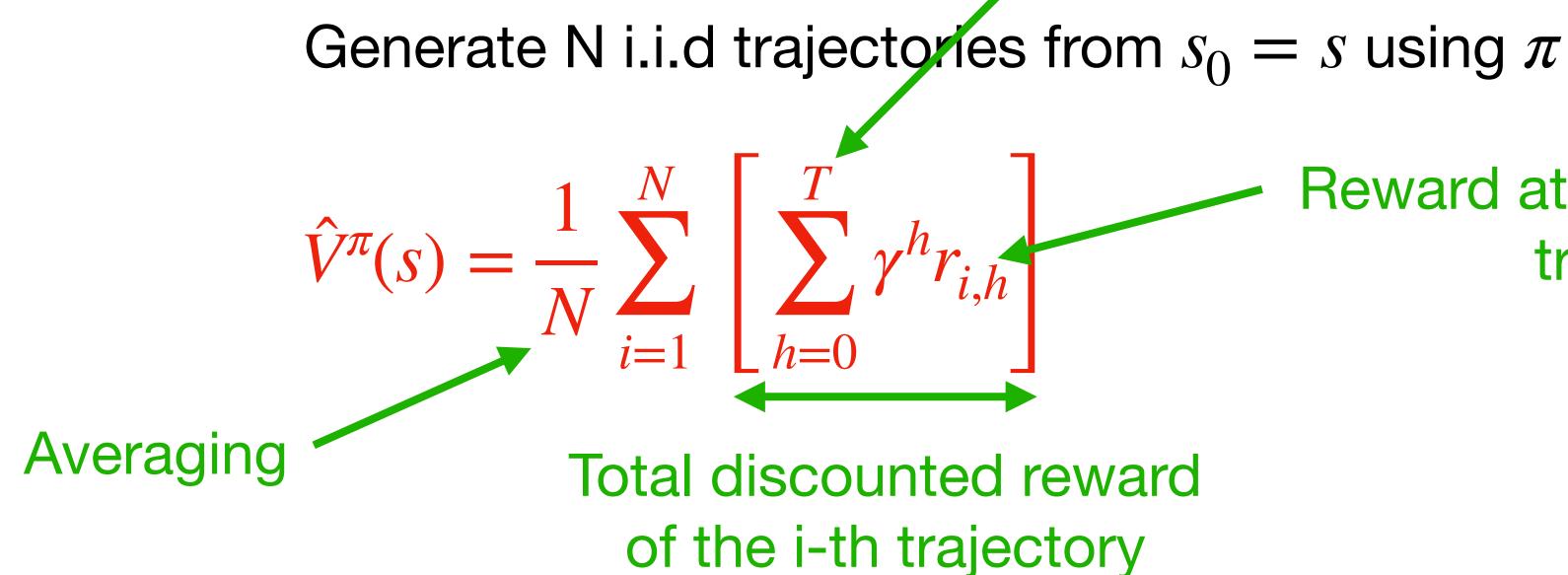
Setup: we have MDP $\mathcal{M} = (S, A, P, \gamma, r)$, and stochastic π , i.e., $a \sim \pi(\cdot | s)$

$$\sum_{h=0}^{\infty} \gamma^{h} r_{h} | \pi, s_{0} = s$$

MC methods replace Expectation by Sample Average

MC estimation

For all state $s \in \mathcal{S}$:



T needs to be large enough (i.e., $\gamma^T \approx 0$)

Reward at time h at the i-th trajectory

 $\hat{V}^{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{i=1}^{N} \right]$

The future after T-step has near zero contribution

MC estimation

$$\sum_{i=1}^{N} \begin{bmatrix} T \\ \sum \gamma^{h} r_{i,h} \\ h=0 \end{bmatrix}$$

When $T \to \infty$ and $N \to \infty$, we have $\hat{V}^{\pi}(s) \to V^{\pi}(s)$

Law of large number

MC estimation with incremental update

Instead of waiting for all N trajs, we can also update the estimator incrementally every traj

Initialize $\hat{V}^{\pi}(s) = 0, \forall s$ For all state $s \in \mathcal{S}$: Generate one traj from $s_0 = s$ using π ; $\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \left(\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right) - \hat{V}^{\pi}(s)$ η : learning rate

total reward of one traj

MC estimation with incremental update

The incremental update is performing **Stochastic gradient descent (SGD)**

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta \left[\left(\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right) - \hat{V}^{\pi}(s) \right]$$

$$\ell(\hat{V}^{\pi}(s)) := \left(\hat{V}^{\pi}(s) - V^{\pi}(s)\right)^{2}$$

$$\nabla \ell(x)|_{x=\hat{V}^{\pi}(s)} = 2\left(\hat{V}^{\pi}(s) - V^{\pi}(s)\right)$$
To get a stochastic gradient, replace
$$V^{\pi}(s) \text{ by its unbiased estimate } \sum_{h=0}^{\infty} \gamma^{h} r_{h}$$

$\hat{V}^{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} \left| \sum_{h=0}^{T} \gamma^{h} r_{i,h} \right|$

MC estimation is simple, and is based on well-established statistical guarantee

Summary

However

It has high variance, i.e., total reward on an extremely long trajectory can have a lot of randomness;

Need to wait for completing full trajectories to update/estimate $V^{n}(s)$

Outline:

2. Temporal Difference Learning

History: developed by Rich Sutton back in 1988

Learning to Predict by the Methods of Temporal Differences

RICHARD S. SUTTON (RICH@GTE.COM) GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254, U.S.A.

(Received: April 22, 1987) (Revised: February 4, 1988)

TD Learning

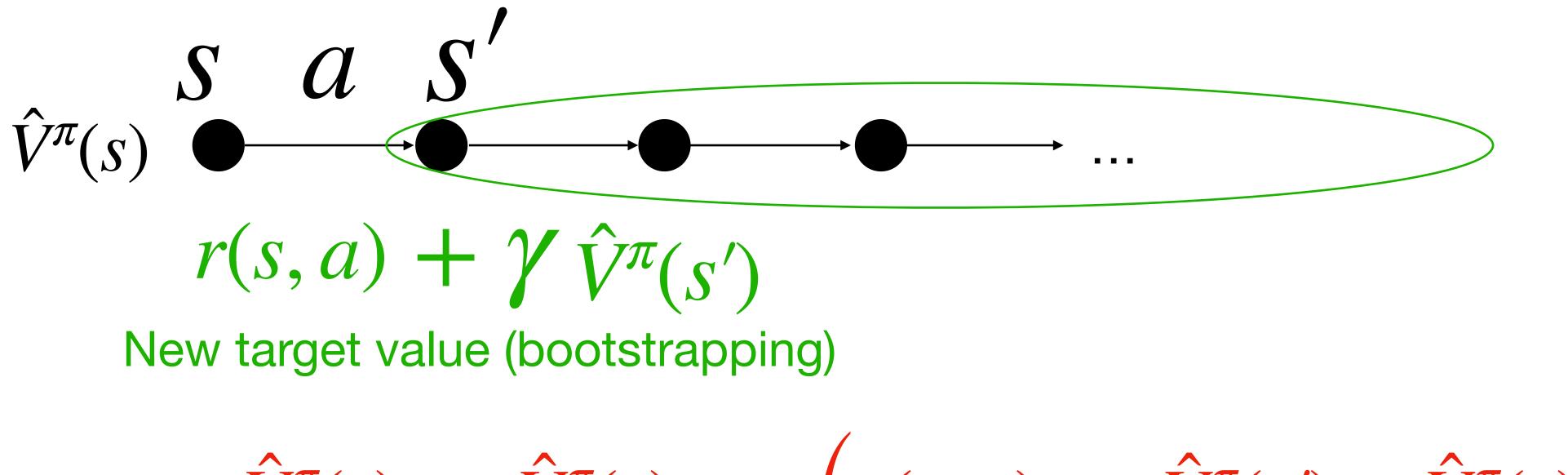
My first research project in grad school

Online Bellman Residual Algorithms with Predictive Error Guarantees

Wen Sun **Robotics Institute** Carnegie Mellon University Pittsburgh, PA 15213 wensun@cs.cmu.edu

J. Andrew Bagnell **Robotics Institute** Carnegie Mellon University Pittsburgh, PA 15213 dbagnell@ri.cmu.edu

TD Learning



TD update: $\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s)$

TD relies on the idea of **Bootstrapping** — using predictions from our estimator to update the estimator itself

$$+ \eta \left(r(s,a) + \gamma \hat{V}^{\pi}(s') - \hat{V}^{\pi}(s) \right)$$

TD Learning

Initialize $V^{\pi}(s) = 0, \forall s$. Set initial state $s \in \mathcal{S}$ While True:

> Take action $a \sim \pi(\cdot | s)$, get reward r and next state $s' \sim P(\cdot | s, a)$ Form TD target $r + \gamma \hat{V}^{\pi}(s')$ Update for s: $\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s) + \eta \left(r\right)$ Set $s \Leftarrow s'$ **Remark**: (1) we perform online update while interacting w/ MDP;

$$(+\gamma \hat{V}^{\pi}(s') - \hat{V}^{\pi}(s))$$

(2) no need to wait to the end for an update (one update per step)

Interpret TD as "SGD" on TD loss

TD is not the usual SGD, i.e., it is **not** running SGD to minimize a fixed loss function

TD may be interpreted as running SGD on an **evolving** loss function (TD loss)

$$\ell_{td}(\hat{V}^{\pi}(s)) := \left(\hat{V}^{\pi}(s) - y\right)^{2}, \text{ where } y = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \hat{V}^{\pi}(s')\right]$$

This keeps changing we learning

In-class exercise:

- derive one-step SGD update for $\ell_{td}(\hat{V}^{\pi}(s))$
- (Hint: how to get an unbiased estimate for y using one transition)

TD Learning

- [Informal] Assume π has non-trivial probability of visiting every state. Setting learning rate η properly, we will have:
 - $\hat{V}^{\pi}(s) \rightarrow V^{\pi}(s), \forall s,$
 - when # of interactions approaches to ∞
 - (concrete convergence rates are known as well)

Example of faster learning with TD



[Sutton, 1988]

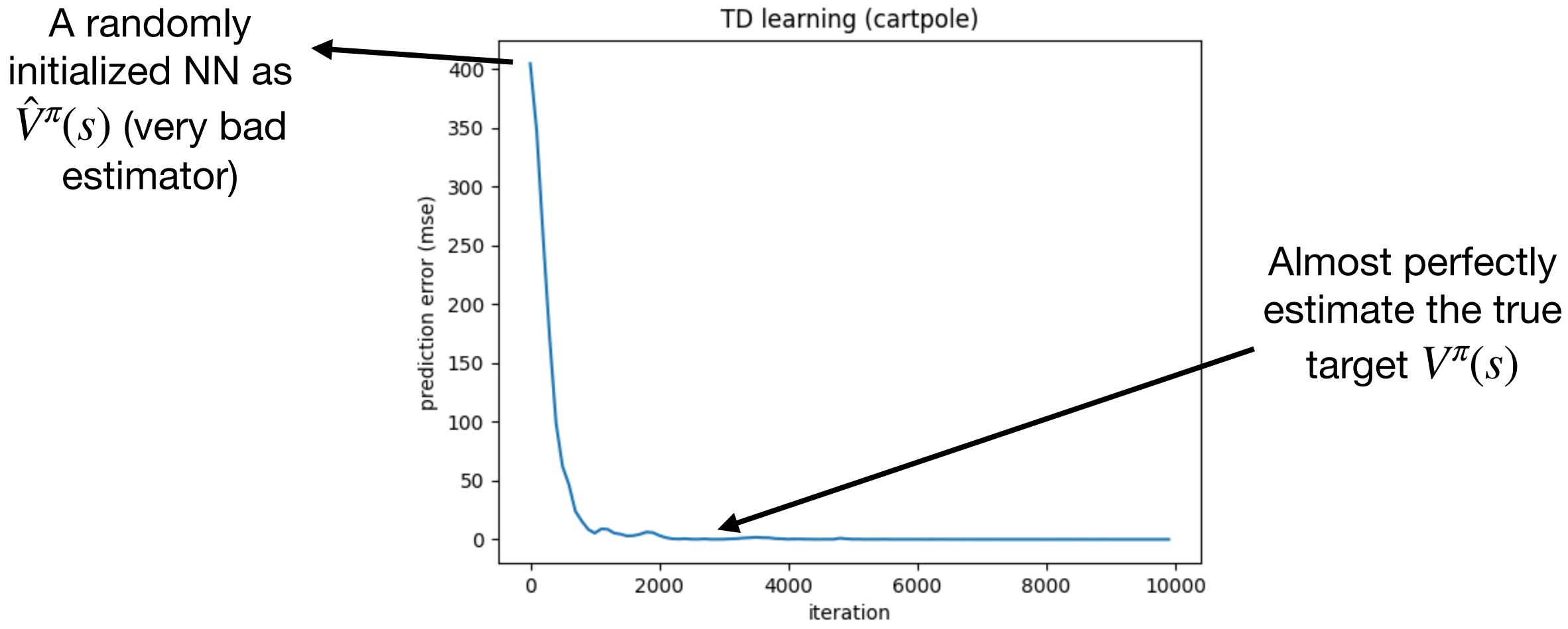
MC: have to rollout from NOVEL many times to get a reasonable estimate of future

TD (bootstrapping): NOVEL leading to BAD immediately implies NOVEL is likely bad

)

TD learning on CartPole

Note: Cartpole's state is continuous, so we will need TD w/ function approximation, e.g., neural network (we will get there very soon)



TD vs MC: bias-variance tradeoff

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta$$

Randomness in target is from one-step transition

- MC is unbiased, but has higher variance (i.e., randomness over an entire traj)
 - TD can have high bias, but has lower variance

Large bias when $\hat{V}^{\pi}(s')$ is $\int \text{far from } V^{\pi}(s')$ $\left(r + \gamma \hat{V}^{\pi}(s') - \hat{V}^{\pi}(s)\right)$

$$\hat{V}^{\pi}(s) \Leftarrow \hat{V}^{\pi}(s) + \eta$$

TD target (bootstrapping)

Summary

- **TD Learning**: an online algorithm for estimating V^{π} on the fly from agent's own experience
- TD Learning uses idea of bootstrapping: using estimator \hat{V}^{π} 's prediction to improve the estimator \hat{V}^{π} itself

