Approximate Policy lteration
& Conservative Policy Iteration

Recap

Recall Policy lteration (PI):

Recap

Recall Policy lteration (PI):

Assume MDP is known, we compute A”(s, a) exactly for all s, a, Pl updates policy as:

Recap

Recall Policy lteration (PI):

Assume MDP is known, we compute A”(s, a) exactly for all s, a, Pl updates policy as:

7'(s) = argmax A”(s, a)

Recap

Recall Policy lteration (PI):

Assume MDP is known, we compute A”(s, a) exactly for all s, a, Pl updates policy as:

7'(s) = argmax A”(s, a)

l.e., be greedy with respect to & at every state s,

Recap

Recall Policy lteration (PI):

Assume MDP is known, we compute A”(s, a) exactly for all s, a, Pl updates policy as:

7'(s) = argmax A”(s, a)

l.e., be greedy with respect to & at every state s,

Monotonic improvement of PI: Qﬂ,(S, a) > 0"(s,a),Vs,a

Recap

Recall Policy lteration (PI):

Assume MDP is known, we compute A”(s, a) exactly for all s, a, Pl updates policy as:

7'(s) = argmax A”(s, a)

l.e., be greedy with respect to & at every state s,

Monotonic improvement of PI: Qﬂ,(S, a) > 0"(s,a),Vs,a

However, for large scale, unknown MDP

there is no way we will be able to know A”(s, a) at all s, a,
so how can we do policy update?

Recap

Recall Policy lteration (Pl):

7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Recap

Recall Policy lteration (Pl):

7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Performance Difference Lemma (PDL): for all s, € S

Recap

Recall Policy lteration (Pl):

7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Performance Difference Lemma (PDL): for all s, € S

, 1
VZ(s0) = Vi(sp) = [, A%(s, 7'(5))]

Recap

Recall Policy lteration (Pl):

7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Performance Difference Lemma (PDL): for all s, € S

, 1
VZ(s0) = Vi(sp) = [, A%(s, 7'(5))]

> 0

= - lmax A*(s, a
1 —y s [aeA (5,)

Recap

Recall Policy lteration (Pl):

7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Performance Difference Lemma (PDL): for all s, € S

, 1
V(o) = VA(s0) = 7y |4 7))

> 0

1
= = [max A”(s, a)
I =y

~d”
: acA

50

However, for large scale, unknown MDP

there is no way we will be able to know A”(s, a) at all s, a,
so how can we do policy update?

Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

State visitation: d;(s) = (1 —y) Z VhJ'DZ
h=0

(85 p)

Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

State visitation: d;f(s) =1 -y) Z }/hJ'DZ(S;//t)
h=0

Unbiased estimate of A*(s,a) = Q"(s,a) — V*(s)

Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

State visitation: d;f(s) =1 -y) Z }/hJ'DZ(S;//t)
h=0

Unbiased estimate of A*(s,a) = Q"(s,a) — V*(s)

As we will consider large scale unknown MDP here, we start with a (restricted) function class 11:

[I={7r:5~ AA)}

Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

State visitation: d;f(s) =1 -y) Z }/hJ'DZ(S;//t)
h=0

Unbiased estimate of A*(s,a) = Q"(s,a) — V*(s)

As we will consider large scale unknown MDP here, we start with a (restricted) function class 11:

[I={7r:5~ AA)}

Note that the optimal policy 7* may not be in I1

Attempt One: Approximate Policy Iteration (API)

Attempt One: Approximate Policy Iteration (API)

Given the current policy 7/, let’s act greedily wrt 7 under d;f

Attempt One: Approximate Policy Iteration (API)

Given the current policy 7/, let’s act greedily wrt 7 under d;f

.e., let’s aim to (approximately) solve the following program:

argmax &, _ A”t(s, 7(S))
rell AL]

Attempt One: Approximate Policy Iteration (API)

Given the current policy 7/, let’s act greedily wrt 7 under d/ft

.e., let’s aim to (approximately) solve the following program:

arg max

el

|

A7(s, 2(s))

Greedy Policy Selector

Attempt One: Approximate Policy Iteration (API)

Given the current policy 7/, let’s act greedily wrt 7 under d/’f

.e., let’s aim to (approximately) solve the following program:

S Mas T A™(s,7(s))| Greedy Policy Selector

But we can only sample from d”, and we can only get an approximation ofA”t(S, a)

Attempt One: Approximate Policy Iteration (API)

Given the current policy 7/, let’s act greedily wrt 7 under d/’f

.e., let’s aim to (approximately) solve the following program:

S Mas T A™(s,7(s))| Greedy Policy Selector

But we can only sample from d”, and we can only get an approximation ofA”t(S, a)

We can hope for an Approximate Greedy Policy Selector a reduction to Regression

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, ’Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(si, Cll)

l

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(si, Cll)

l

Regression oracle:

. ~—\2
= arg min Si, a;) — Al-)
f gf69;<f(l)

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(Sl', Cll)

l

Regression oracle:

. ~—\2
= arg min Si, a;) — Al-)
f gf69;<f(l)

Act greedily wrt the estimator f (as we hope f ~ A”t):

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(Sl', Cll)

l

Regression oracle:

. ~—\2
= arg min Si, a;) — Al-)
f gf69;<f(l)

Act greedily wrt the estimator f (as we hope f ~ A”t):

7(s) = arg max f(s, a), Vs

Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(sl', al)

l

Do finite sample analysis for Regression oracle:

Regression first, and then transfer _\2
the guarantee to greedy policy J = argmin Z (f (spa;) — A i)

. cF
selection U i

Act greedily wrt the estimator f (as we hope f ~ A”t):

7(s) = arg max f(s, a), Vs

=g [A7 (5, 7(5))] =

>

>

>

Analyzing Approximation error via Regression

Greedy Policy Selector

7T .= arg max

nell

A™(s, 7(s))

A
~ T
\) dﬂ

fis, #(s)) + A% (s, 7(5) = s, 2(5)

fs, 7s)) + A% (s, 7(5)) — fis, 7(5))

AT (5, 7(s) + s, 7)) = A7(s, F(5)) + A7 (s, 2(5)) = fs, 7))

{Si’ Cli, Xl}’ Sl d d;ft,a d U(A),

f=argmin ¥ (f(s,a) - 4,

T _Swdjf

A™(s. 7(s))

feF =
I

7(s) = arg max f(s, a), Vs

fts,) — A% (s, 7(s)) + A7 (s, 7(5)) = s, 2(5)

Summary So Far:

By reduction to Supervised Learning (i.e., classification using I1 or Regression using &), with high
probability, we get:

Summary So Far:

By reduction to Supervised Learning (i.e., classification using I1 or Regression using &), with high
probability, we get:

s~ Aﬂt(S, ;Z'\(S)) > marylc _SNd;ff Aﬂt(S, JZ'(S))
- - e . _

A \/ln(\f’ff\/é)
1 —y N

statistical error:e

-4

Summary So Far:

By reduction to Supervised Learning (i.e., classification using I1 or Regression using &), with high
probability, we get:

s~ Aﬂt(S, ;Z'\(S)) > mar)I(_SNd/fff Aﬂt(S, 7Z'(S))
- - e . _

A \/ln(\f’ff\/é)
1 —vy N

statistical error:e

-4

In the rest of the lecture, as we will focus on convergence
rather than sample complexity, we ignore the statistical error
(goes to zero as N increases),

Summary So Far:

By reduction to Supervised Learning (i.e., classification using I1 or Regression using &), with high
probability, we get:

s~ Aﬂt(S, ;Z'\(S)) > mar)I(_SNdlff Aﬂt(S, JZ'(S))
- - e . _

A \/ln(\f’ff\/é)
1 —vy N

statistical error:e

-4

In the rest of the lecture, as we will focus on convergence
rather than sample complexity, we ignore the statistical error
(goes to zero as N increases),

i.e., we assume we can do the exact greedy policy selector: arg max E_ lA”t(s, ﬂ(S))]
nell :

Algorithm: Approximate Policy lteration (API)

lterate;

APl: 7't € arg max = amdy’ A% (s, n(s)))

mell

Algorithm: Approximate Policy lteration (API)

lterate;

APl 7"l € argmax E, ,_ - [A"(s, 7(s))|
rell o

Question:
(1) Does API has monotonic improvement?
(2) Does it convergence?

The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3
A”(s,a)
/\/Aﬂt
— — — = - - = = o >
S, d

The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a)

O o—0 000000 00 O g

The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a)

The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a) ammy frH

The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A"(s,a) e T

O O—0 0 00000 0 0 0 00 0 0000000
S, d

Oscillation between two updates:
No monotonic improvement

Key Issue: Abrupt Policy Change, i.e., d/ffm and d/fft could be widely different

Key Issue: Abrupt Policy Change, i.e., d/ffm and d/fft could be widely different

Our estimatorft is only good under d” ie.

_SNdﬁt,aNU(A)(f t(S ,a) —A”" (s, czz))2 small,

but E,_ 1 g7y (f(5 @) = A" (s, a))* might be arbitrarily big

Key Issue: Abrupt Policy Change, i.e., d/ffm and d/fft could be widely different

Our estimatorft is only good under d” ie.

_SNdﬁt,aNU(A)(f t(S ,a) —A”" (s, czz))2 small,

but E,_ 1 g7y (f(5 @) = A" (s, a))* might be arbitrarily big

To make API to make improvement, we need a much stronger coverage assumption:

d,(s)
A strong Concentrability Coefficient: (' := max sup L <
rell //t(S)

Key Issue: Abrupt Policy Change, i.e., d/ffm and d/fft could be widely different

Our estimatorft is only good under d” ie.

_SNd;ft,aNU(A)(f t(S ,a) —A”" (s, cl))2 small,

but E,_ 1 g7y (f(5 @) = A" (s, a))* might be arbitrarily big

To make API to make improvement, we need a much stronger coverage assumption:

d,(s)
A strong Concentrability Coefficient: (' := max sup L <
rell //t(S)

If C < o0, i.e., u covers all d”, then we can expect error

= gds™ am U A)(ft(s, a) — A”t(s, a))? is reasonably under control;

Conservative Policy Iteration—An Incremental Policy Optimization Approach

(And the benefit of being incremental)

Key Idea of CPI: Incremental Update—No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d™ are not that different!

Key Idea of CPI: Incremental Update —No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d* are not that different!

Recall Performance Difference Lemma:

r+1 t 1

| VAR VAC— — g~ lAﬂt(Sa ﬂH_l(S))]
1 —y g

Key Idea of CPI: Incremental Update —No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d* are not that different!

Recall Performance Difference Lemma:

r+1 t 1

| VAR VAC— — g~ lAﬂt(Sa ﬂH_l(S))]
1 —y g

t +1

d” ~ d”

Key Idea of CPI: Incremental Update —No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d* are not that different!

Recall Performance Difference Lemma:

+1 { 1

| VAR VAC— — g~ ! lAﬂt(Sa ﬂH_l(S))]
1 —y g

{ 1

d” ~ d”

s.t., E,_ lA”t(s, JZ'H_I(S))] N E, e lAﬂt(S, JZ'H_I(S))]

Key Idea of CPI: Incremental Update —No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d* are not that different!

Recall Performance Difference Lemma:

r+1 t 1

| VAR VAC— — g~ lAﬂt(Sa ﬂH_l(S))]

This we know how to optimize: the Greedy Policy Selector

CPI Algorithm:

CPI Algorithm:

1. Greedy Policy Selector:

7' € argmax k;_ lAﬂt(S, ﬂ(S))]
rnell 3

CPI Algorithm:

1. Greedy Policy Selector:

7' € argmax k;_ lAﬂt(S, ﬂ(S))]
rnell 3

2. If max E SNd,,z[A”t(s, n(s))] < e
rell .

Return 7’

CPI Algorithm:

1. Greedy Policy Selector:

7' € argmax k;_ lAﬂt(S, ﬂ(S))]
rnell 3

2. If max E SNd,,z[A”t(s, n(s))] < e
rell .

Return 7’

3. Incremental Update:
At ls) =1 —a)a'(- |s)+an'(-|s),Vs

CPI Algorithm:

1. Greedy Policy Selector:

7' € argmax k;_ lAﬂt(S, ﬂ(S))]
rnell 3

Q: Why this is incremental? In what sense?

2. If max E SNd,,z[A”t(s, n(s))] < e
ell :
i Q: Can we get monotonic policy improvement?

Return 7’

3. Incremental Update:
At ls) =1 —a)a'(- |s)+an'(-|s),Vs

The incremental Nature of CPI:

a1 =0 =—a)a'(-|s)+an'(-|s), Vs

The incremental Nature of CPI:

a1 =0 =—a)a'(-|s)+an'(-|s), Vs

Key observation 1:

For any state s, we have ||z"t(- |s) = 7'(- | 9)||, £ 2a

The incremental Nature of CPI:

a1 =0 =—a)a'(-|s)+an'(-|s), Vs

Key observation 1:

For any state s, we have ||z"t(- |s) = 7'(- | 9)||, £ 2a

Key observation 2:

Y0
1=y

For any two policies and 7', if ||z(- | s) — z'(- | $)[[; < O, then [|d} — d/’le <

The incremental Nature of CPI:

a1 =0 =—a)a'(-|s)+an'(-|s), Vs

Key observation 1:

For any state s, we have ||z"t(- |s) = 7'(- | 9)||, £ 2a

Key observation 2:

Y0
1=y

For any two policies and 7', if ||z(- | s) — z'(- | $)[[; < O, then [|d} — d/’le <

2ya
1 —y

- . +1 t
CPl ensures incremental update, i.e., ||d; —d; || <

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

o _ 2. If max E SNdﬁt[Aﬂt(S, n(s))] < e
A = — g7 A" (s, 7'(s)| = ¢ rell
fL - Return 7’

3. Incremental Update:
a1 =0 —a)a'(-|s)+an'(-|s),Vs

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

= [aAT (s, (s))| (= aA)

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

= [aAT (s, (s))| (= aA)

cgrt | AT (5, ()| + E,_ vt |@AT (5, 7(5)) | — E,_ge |@AT (s, 7(5))

Policy Improvement before Termination:

Before terminate, we have non-trivial avg local advantage:

A :

L (AT (5, 7 (s)| 2 €

1
Can we translate local advantage A to | VAR vC

(1 —y)<v;; - V;f) _

AV

AT (s, 7(5))

AT (s, 7(5))

o qntt]
s~d]

= "
~ %
s~d]

= g+l AT (S, @)

+ g _aA”t(s, ()| -

1 -y

ﬂ'H_l ﬂt
ldy —d; 1l

(xA”t(S, JT/(S)) (:= aA)

AT (s, 7(5))

Recall CPI:

1. Greedy Policy Selector:

' € arg max = s A”t(S, E(S))]

nell

2. lfmax E,_,[A" (s, 7(s))] < &
rell 4

Return 7’

3. Incremental Update:
a1 =0 —a)a'(-|s)+an'(-|s),Vs

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

= [aAT (s, (s))| (= aA)

= E,gp aA”™ (s, 7'(s))| + gt aA” (s, 7'(s))| — E,_ ” aA”™ (s, 7'(s))
| ¢ , | o] -
> By qr |aA™ (s, 7(s)) T }/Hdﬂ —dy; |l
2ya®
> aA !

- (1—1y)?

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

= [aAT (s, (s))| (= aA)

= E,gp aA™ (s, 7'(s))| + E__ o |@A™ (s, 7(s))| — = it aA™ (s, 7'(s))
> By |ad™ (5w 6)| =7l = 4

2ya” (1 — y)?A
> aA 4 (Set a = !)

- (1 —7p) 4y

Recall CPI:

Policy Improvement before Termination: 1. Greedy Policy Selector

' € arg max = s A”t(S, E(S))]

nell
Before terminate, we have non-trivial avg local advantage:

2. If max —SNdﬁz[A”t(s, n(s))] < e

A = _dﬁt AEI(S,]z"(s)) > £ rell
- : Return 7'
+1 [
Can we translate local advantage A to V¥ — V*? 3. Incremental Update:

1) =0 —a)al(-|s)+ax'(-|s), Vs

t+1 { | t |
(1 - y)<v;; _ V;;) = gt | EgurrirpA™(5,@)

= [aAT (s, (s))| (= aA)

= E,gp aA™ (s, 7'(s))| + E__ o |@A™ (s, 7(s))| — = it aA™ (s, 7'(s))
> By |ad™ (5w 6)| =7l = 4

2ya” A%(1 — (1 — y)?A
> aA / > d-r (Set a = 4)

- (I-y> 8 4y

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. 1f max E,. A" (s, 2(s)] < ¢

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max E,_.[A” (s, 7(s))] < €
rell .

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. f max B, (A" (s, n(s)] < €

Return 7’

1. No more positive advantage by one-step deviation from 7”’s own states

max E,_.[A” (s, 7(s))] < €
rell 8

. dr (s)
2. Indeed, we can say more if u covers d” , i.e., C* = sup M() < 00
s M\S

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. ifmax E,_glA"™(s, 2(s)] < €

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max E,_.[A” (s, 7(s))] < €
rell 8

. dr (s)
2. Indeed, we can say more if u covers d” , i.e., C* = sup M() < 00
s M\S

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. ifmax E,_glA"™(s, 2(s)] < €

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max E,_.[A” (s, 7(s))] < €
rell 8

. dr (s)
2. Indeed, we can say more if u covers d” , i.e., C* = sup M() < 00
s M\S

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

4 _ 4 _ dﬂ:t(s) 4
E. .- [A” (s, Jr’(s))] +eq > L, o |maxA”(s,a)| =k, [dli()] max A” (s, a)
K N |) a

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. ifmax E,_glA"™(s, 2(s)] < €

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max E,_.[A” (s, 7(s))] < €
rell 8

. dr (s)
2. Indeed, we can say more if u covers d” , i.e., C* = sup M() < 00
s M\S

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

4 _ 4 _ dﬂ:t(s) 4
E. .- [A” (s, Jr’(s))] +eq > L, o |maxA”(s,a)| =k, [dli()] max A” (s, a)
K N |) a

d7 (s) t
> Inf [ESNd* max AE(S, CZ)
s | d*(s) a

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. ifmax E,_glA"™(s, 2(s)] < €

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max [k SNd,[z[A”t(s, n(s)] < e
nell s

. dr (s)
2. Indeed, we can say more if 4 covers d” , i.e., C* := sup M() < o0
s MO

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

4 _ 4 _ dﬂ:t(s) 4
E. .- [A” (s, Jr’(s))] +eq > L, o |maxA”(s,a)| =k, [dli()] max A” (s, a)
K N |) a

d7 (s)

d*(s)

d7 (s) t
> inf E.. , max A%(s,a) > inf
s | d*(s) a s

] E.. AT (s, 7%(s))

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. ifmax E,_glA"™(s, 2(s)] < €

Return 7’
1. No more positive advantage by one-step deviation from 7”’s own states

max [k SNd,[z[A”t(s, n(s)] < e
nell s

. dr (s)
2. Indeed, we can say more if 4 covers d” , i.e., C* := sup M() < o0
s MO

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

4 _ 4 _ dﬂ:t(s) 4
E. .- [A” (s, Jr’(s))] +eq > L, o |maxA”(s,a)| =k, [dli()] max A” (s, a)
K N |) a

> inf dgt(S) E A7 (s,a) > inf d:t(S) E._A%(s,* > 1nf d:t(S) <V* v)1
_IISl 7 (5) SNd*maaX S, d _1IS1 0 (5) gy AT (8, T7(5)) _usl 05) -)(— %)

Upon Termination we get a locally optimal solution
(or globally optimal if i is nice)

1. No more positive advantage by one-step deviation from 7”’s own states

2. Indeed, we can say more if i covers d”*, .e., C* = sup

max
nell

Recall I1 is restricted, denote e =k, _ [
U

[ESNd/ft [A]Z’t(s,]Z"(S))] + €1 > [ESNdet

\) a

d*(s)

V* — V7 < sup

\)

| d

d7 (s) , d7 (s)
> inf E.. , max A%(s,a) > inf

d*(s)

max A” (s, a)

_S"“dﬁ[[Aﬂt(S , 7(s))] < ¢

a

d*(s)

' d” (s)
— [ESNd* [-

\)

d*(s)

£ + €

dr(s) | 1

—7

max A”t(s, a)]

|

dr’(s)
< 0
s H(S)
— max E,_u |A%(s, 7(s))
nell oL _

max A” (s, a)

a

E. A%(s,7*(s)) > inf

\)

2. If max

_SNd/’ft[Aﬂt(S’ E(S))] <é¢

nell

[d~ (s)

d*(s)

] (v -v)a-p

Return 7’

Upon Termination we get a locally optimal solution
(or globally optimal if 4 is nice) 2. f max B, (A" (s, n(s)] < €

Return 7’

1. No more positive advantage by one-step deviation from 7”’s own states

max E,_,.[A" (s, n(s))] < &
rell 8

. dr (s)
2. Indeed, we can say more if u covers d” , i.e., C* = sup M() < 00
s M\S

Recall I1 is restricted, denote e = E;_ [max A”t(s, a)] —max E_ A”t(s, 7(s))
K a rell oL i

4 _ 4 _ dﬂt(S) 4
E. .- [A” (s, Jr’(s))] +eq > L, o |maxA”(s,a)| =k, [d/:()] max A” (s, a)
K N |) a

2y | e max AT @) 2) 5 0 g AT 278) - 2 ant) 2 e (VE = VE) =)
' t d \) E + €H € 61‘]

P\) T=y = a=pp

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~a<s),y € [A]

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~n<(s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee A= 11

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~n<(s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~n<(s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

In([T1[/3)
N

=y ymnr(s) (7(8),y) Smink w0 (a(s), y) + \/

nell

.

e statistical error: ¢

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~a<s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

(7(s),y) < mi £(n(s),y) + \/ln(\ 79)
= ooy verr ()L (TT(S), min =g, — o Z (7(S),
S~V y=1*(5) y g Y=1*(5) Yy N
€vn stétisticél erroir: ¢

In RL:

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~a<s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

£(7(s),y) < mi £(n(s),y) + \/ln(\ 79)
= ooy verr ()L (TT(S), min i, o C (7(S),
S~U,y=1*(s) Y J Y (5) Yy N
gn stétisticél erroir: ¢

. d* € + €
nRL: V* = V7 < sup (5)) “n :
s \ u(s) J (1—=y)

Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~a<s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

£(7(s),y) < mi £(n(s),y) + \/ln(\ 79)
= ooy verr ()L (TT(S), min i, o C (7(S),
S~U,y=1*(s) Y J Y (5) Yy N
gn stétisticél erroir: ¢

. d* € + €
nRL: V* = V7 < sup ()) m :
s \ u(s) J (1—=y)

1. Multi-step prediction (not i.i.d), 2. We don’t get to see samples from d*

Compare the two Concentrability Coefficients from CPI and API:

Just need to cover the best in 11,
steady improvement via incremental update

d’(s)
APl: max sup < o0
rell p(s)

d*
CPI: sup) 00

<
p(s)
Wide enough to cover all policies, ’

i.e.,making sure A is accurate at all places
where any policy would go

Compare the two Concentrability Coefficients from CPI and API:

Just need to cover the best in 11,
steady improvement via incremental update

d’(s)
APl: max sup < o0
rell p(s)

d*
CPI: sup) 00

<
p(s)
Wide enough to cover all policies, ’

i.e.,making sure A is accurate at all places

where any policy would go 1. Prior knowledge of how the optimal

trajectories look like

2. Expert demonstrations (Imitation + RL)

Summary of Policy Gradient Learning

1. PG formulation: [, 4= VIn my(a| s)A™(s, a)

Summary of Policy Gradient Learning

1. PG formulation: [, 4= VIn my(a| s)A™(s, a)

2. For tabular MDP, gradient ascent on KL-regularized objective converges to global optimality:

Vio+ 1) Y Inzgals), where mya|s) « exp(d,,)

Summary of Policy Gradient Learning

1. PG formulation: [, 4= VIn my(a| s)A™(s, a)

2. For tabular MDP, gradient ascent on KL-regularized objective converges to global optimality:

Vio+ 1) Y Inzgals), where mya|s) « exp(d,,)

3. Natural Policy Gradient (trust region optimization) and its convergence (tabular, linear, & neural)

W eargminEg, 4 |(w' Vylnzyals) —A’Te(a\s))2 , 0=0+nw

Summary of Policy Gradient Learning

1. PG formulation: [, 4= VIn my(a| s)A™(s, a)

2. For tabular MDP, gradient ascent on KL-regularized objective converges to global optimality:

Vio+ 1) Y Inzgals), where mya|s) « exp(d,,)

3. Natural Policy Gradient (trust region optimization) and its convergence (tabular, linear, & neural)

W eargminEg, 4 |(w' Vylnzyals) —A”ﬁ(a\s))2 , 0=0+nw

4. The incremental nature of NPG/CPI/PPO and its advantage comparing to naive API

CPI (TRPO): V7" > V™ > V7 thanks to Hd/’f+1 — d/fftHI is small (i.e., incremental)

and APl could oscillate and never converges

Next week on Control Theory:

Basics of Optimal Control on Linear Quadratic Regulators
(no learning, just planning/control)

