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7'(s) = argmax A”(s, a)

Monotonic improvement of PI: Q* (s, a) > Q™(s,a), Vs, a

Performance Difference Lemma (PDL): for all s, € S
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However, for large scale, unknown MDP

there is no way we will be able to know A”(s, a) at all s, a,
so how can we do policy update?
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Setting and Notation

Discounted infinite horizon MDP:

M= 1{S,A,y,r,P,u}

State visitation: d;f(s) =1 -y) Z }/hJ'DZ(S;//t)
h=0

Unbiased estimate of A*(s,a) = Q"(s,a) — V*(s)

As we will consider large scale unknown MDP here, we start with a (restricted) function class 11:

[I={7r:5~ AA)}

Note that the optimal policy 7* may not be in I1
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Implementing Approximate Greedy Policy Selector via Regression

We can do a reduction to Regression via Advantage function approximation

F={f:SXAP R} (xA7

II = {n(s) = argmax f(s,a) : f € F}

—

{Si’ Cli, Xl}’ Sl i d;ft, a ~ U(A), N A | — Aﬂt(sl', al)

l

Do finite sample analysis for Regression oracle:

Regression first, and then transfer _\2
the guarantee to greedy policy J = argmin Z (f (spa;) — A i)

. cF
selection U i

Act greedily wrt the estimator f (as we hope f ~ A”t):

7(s) = arg max f(s, a), Vs
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Analyzing Approximation error via Regression

Greedy Policy Selector

7T .= arg max
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In the rest of the lecture, as we will focus on convergence
rather than sample complexity, we ignore the statistical error
(goes to zero as N increases),

i.e., we assume we can do the exact greedy policy selector: arg max E_ lA”t(s, ﬂ(S))]
nell :
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Algorithm: Approximate Policy lteration (API)

lterate;

APl 7"l € argmax E, ,_ - [A"(s, 7(s))|
rell o

Question:
(1) Does API has monotonic improvement?
(2) Does it convergence?



The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3
A”(s,a)
/\/Aﬂt
— — — = - - = = o >
S, d



The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a)

O o—0 000000 00 O g




The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a)




The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A”(s, a) ammy frH




The Oscillation of APl from Abrupt Distribution Change

APl cannot guarantee to succeed (let’s think about advantage function approximation setting)

Concrete
example In
Chapter 3

A"(s,a) e T

O O—0 0 00000 0 0 0 00 0 0000000
S, d

Oscillation between two updates:
No monotonic improvement
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Our estimatorft is only good under d” ie.

_SNd;ft,aNU(A)(f t(S ,a) —A”" (s, cl))2 small,

but E,_ 1 g7y (f(5 @) = A" (s, a))* might be arbitrarily big

To make API to make improvement, we need a much stronger coverage assumption:

d,(s)
A strong Concentrability Coefficient: (' := max sup L <
rell //t(S)

If C < o0, i.e., u covers all d”, then we can expect error

= gds™ am U A)( ft(s, a) — A”t(s, a))? is reasonably under control;
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Key Idea of CPI: Incremental Update —No Abrupt Distribution Change

Let’s design policy update rule such that d™" and d* are not that different!

Recall Performance Difference Lemma:

r+1 t 1

| VAR VAC— — g~ lAﬂt(Sa ﬂH_l(S))]

This we know how to optimize: the Greedy Policy Selector
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CPI Algorithm:

1. Greedy Policy Selector:

7' € argmax k;_ lAﬂt(S, ﬂ(S))]
rnell 3

Q: Why this is incremental? In what sense?

2. If max E SNd,,z[A”t(s, n(s))] < e
ell :
i Q: Can we get monotonic policy improvement?

Return 7’

3. Incremental Update:
At ls) =1 —a)a'(- |s)+an'(-|s),Vs
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a1 =0 =—a)a'(-|s)+an'(-|s), Vs

Key observation 1:

For any state s, we have ||z"t( - |s) = 7'( - | 9)||, £ 2a

Key observation 2:

Y0
1=y

For any two policies  and 7', if ||z( - | s) — z'( - | $)[[; < O, then [|d} — d/’le <

2ya
1 —y

- . +1 t
CPl ensures incremental update, i.e., ||d; —d; || <
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= "
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Connection to Agnostic Guarantees in Supervised Learning

Multi-class Classification (A many classes):

s~u,y~a<s),y € [A]

We start with a set of classifiers 11; but we cannot guarantee = 11
What we can hope is that we can find the best classifier in the class 11

£(7(s),y) < mi £(n(s),y) + \/ln(\ 79)
= ooy verr ()L (TT(S), min i, o C (7(S),
S~U,y=1*(s) Y J Y (5) Yy N
gn stétisticél erroir: ¢

. d* € + €
nRL: V* = V7 < sup () ) m :
s \ u(s) J (1—=y)

1. Multi-step prediction (not i.i.d), 2. We don’t get to see samples from d*
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Compare the two Concentrability Coefficients from CPI and API:

Just need to cover the best in 11,
steady improvement via incremental update

d’(s)
APl: max sup < o0
rell p(s)

d*
CPI: sup ) 00

<
p(s)
Wide enough to cover all policies, ’

i.e.,making sure A is accurate at all places

where any policy would go 1. Prior knowledge of how the optimal

trajectories look like

2. Expert demonstrations (Imitation + RL)
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Summary of Policy Gradient Learning

1. PG formulation: [ , 4= VIn my(a| s)A™(s, a)

2. For tabular MDP, gradient ascent on KL-regularized objective converges to global optimality:

Vio+ 1) Y Inzgals), where mya|s) « exp(d,,)

3. Natural Policy Gradient (trust region optimization) and its convergence (tabular, linear, & neural)

W eargminEg, 4 |(w' Vylnzyals) —A”ﬁ(a\s))2 , 0=0+nw

4. The incremental nature of NPG/CPI/PPO and its advantage comparing to naive API

CPI (TRPO): V7" > V™ > V7 thanks to Hd/’f+1 — d/fftHI is small (i.e., incremental)

and APl could oscillate and never converges



Next week on Control Theory:

Basics of Optimal Control on Linear Quadratic Regulators
(no learning, just planning/control)



