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Announcements

HW3 is out last night and is due Nov 24th 11:59pm

(Lots of bonus questions, but try them out!)

No classes on Nov 17, 19, & 24 (university semi-final week)
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Performing regression 
from  to (si, ai) 𝒯ft(si, ai)

sup
π,s,a

dπ(s, a)
μ(s, a)

< ∞, ∀f ∈ ℱ, 𝒯f ∈ ℱ, ⇒ FQI learns near-optimal policy in 
polynomially sample complexity



Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching











An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]



Imitation Learning



Imitation Learning



Imitation Learning



Imitation Learning

Expert 
Demonstrations



Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

Expert 
Demonstrations



Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

    Policy

Maps states 
to actions

Expert 
Demonstrations



Learning to Drive by Imitation

Policy

Steering Angle 
in [-1, 1]

Input: Output:

Camera Image
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[Pomerleau89, Saxena05, Ross11a]
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Supervised Learning Approach: Behavior Cloning
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[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)



But Poor Performance...
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward  is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Goal: learn a policy from   that is as good as the expert 𝒟 π⋆
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BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC with Maximum Likelihood Estimation (MLE):

(We can reduce it to other supervised learning oracles such as classification, regression)

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )
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This  rate should be expected: 

no training and testing mismatch at this stage! 

1/ M



Analysis

Assumption:  is discrete, and realizable, i.e., Π π⋆ ∈ Π

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )



Analysis

Assumption:  is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )



Analysis

Assumption:  is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )



Analysis

Assumption:  is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )

Note that  quadratic dependency on effective horizon1/(1 − γ)2



Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )



Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)



Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

= 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a) − 𝔼s∼dπ⋆𝔼a∼ ̂π (⋅|s)A ̂π (s, a)



Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln( |Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

= 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a) − 𝔼s∼dπ⋆𝔼a∼ ̂π (⋅|s)A ̂π (s, a)

≤ 𝔼s∼dπ⋆
1

1 − γ
π⋆( ⋅ |s) − ̂π ( ⋅ |s)

1



Analysis
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What could go wrong?
• Predictions affect future inputs/

observations

18

[Pomerleau89,Daume09]

Expert’s trajectoryLearned Policy
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An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]

“If the network is not presented 
with sufficient variability in its 
training exemplars to cover the 
conditions it is likely to 
encounter…[it] will perform 
poorly”
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A potential Fix

Let’s roll out our policy in the real 
world, and compare our 
trajectories to the expert’s 
trajectories, and then refine our 
learned model. 



The Hybrid Imitation Learning Setting:

Recall BC: we only use offline expert data—no interaction with the environment

Hybrid setting: offline expert data + simulator (e.g., known transition )P
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Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward  is unknown; assume expert is the optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

This time, we have a known transition  (but we cannot plan because  is unknown)P r

Key Q: can we do better than offline IL Behavior Cloning  
(statistically at least—assuming infinite computation power)? 
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Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: , and two distributions  and ℱ = {f : X ↦ ℝ} p1 p2

IPMℱ(p1, p2) = max
f∈ℱ [𝔼x∼p1

f(x) − 𝔼x∼p2
f(x)]

ℱ = {f : ∥f∥∞ ≤ 1} ⇒ IPMℱ(p1, p2) := ∥p1 − p2∥tv

ℱ = {f : f is 1-Lipschitz} ⇒ IPMℱ(p1, p2) := wasserstein dis(p1, p2)
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1 − δ ̂π

Vπ⋆ − V ̂π ≤ 𝒪 ( 1
1 − γ

ln( |Π | /δ)
M )

Theorem [Offline BC] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π = 𝒪 ( 1
(1 − γ)2

ln( |Π | /δ)
M )

1. Key step is to prove:  d ̂π − dπ⋆

tv ≤
ln( |Π | /δ)

M

2. For performance:  Vπ⋆ − Vπ ≤
1

1 − γ [𝔼s,a∼dπ⋆r(s, a) − 𝔼s,a∼d ̂π r(s, a)]





Expert’s trajectoryA Policy’s trajectory 



Expert’s trajectoryA Policy’s trajectory 

 generator that generators state-action pairsdπ :



Expert’s trajectoryA Policy’s trajectory 

 generator that generators state-action pairsdπ :
 Ground truth state-action distribution (we have samples from it)dπ⋆ :



Expert’s trajectoryA Policy’s trajectory 

 generator that generators state-action pairsdπ :
 Ground truth state-action distribution (we have samples from it)dπ⋆ :

 discriminators which distinguish red and blueℱ̃ :



Next lecture we will talk about a computationally efficient 
algorithm in the hybrid setting
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Conclusion:

1. Offline RL: only use offline expert data 
BC is simple and easy to implement, has reasonable guarantees; but the 

quadratic dependency on horizon could cause real problems

2. Hybrid RL:  offline expert data + known transition (simulator)  
Statistically, Distribution-matching has linear dependency on horizon, but the 

algorithm is computationally inefficient

Take home message: 

There is a provable statistical benefit from the hybrid setting! 


Ps: the distribution matching algorithm is very new (it was discovered when 
I was writing the book chapter…)


