
Imitation Learning:
Behavior Cloning, Distribution
Shift, & Distribution Matching 

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning

Announcements

HW3 is out last night and is due Nov 24th 11:59pm

(Lots of bonus questions, but try them out!)

No classes on Nov 17, 19, & 24 (university semi-final week)

Recap

Offline RL

 𝒟 = {si, ai, ri, s′ i}n

i=1, where si, ai ∼ μ, ri = r(si, ai), s′ i ∼ P(⋅ |si, ai)

Recap

Offline RL

 𝒟 = {si, ai, ri, s′ i}n

i=1, where si, ai ∼ μ, ri = r(si, ai), s′ i ∼ P(⋅ |si, ai)

Fitted Q Iteration: start from f0 ∈ ℱ

ft+1 = arg min
f∈ℱ

n

∑
i=1

f(si, ai) − (ri + γ max
a′

ft(s′ i, a′))
𝒯ft(si,ai)

2

Recap

Offline RL

 𝒟 = {si, ai, ri, s′ i}n

i=1, where si, ai ∼ μ, ri = r(si, ai), s′ i ∼ P(⋅ |si, ai)

Fitted Q Iteration: start from f0 ∈ ℱ

ft+1 = arg min
f∈ℱ

n

∑
i=1

f(si, ai) − (ri + γ max
a′

ft(s′ i, a′))
𝒯ft(si,ai)

2

Performing regression
from to (si, ai) 𝒯ft(si, ai)

Recap

Offline RL

 𝒟 = {si, ai, ri, s′ i}n

i=1, where si, ai ∼ μ, ri = r(si, ai), s′ i ∼ P(⋅ |si, ai)

Fitted Q Iteration: start from f0 ∈ ℱ

ft+1 = arg min
f∈ℱ

n

∑
i=1

f(si, ai) − (ri + γ max
a′

ft(s′ i, a′))
𝒯ft(si,ai)

2

Performing regression
from to (si, ai) 𝒯ft(si, ai)

sup
π,s,a

dπ(s, a)
μ(s, a)

< ∞, ∀f ∈ ℱ, 𝒯f ∈ ℱ, ⇒ FQI learns near-optimal policy in
polynomially sample complexity

Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching

An Autonomous Land Vehicle
In A Neural Network [Pomerleau, NIPS ‘88]

Imitation Learning

Imitation Learning

Imitation Learning

Imitation Learning

Expert
Demonstrations

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

Expert
Demonstrations

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

 Policy

Maps states
to actions

Expert
Demonstrations

Learning to Drive by Imitation

Policy

Steering Angle
in [-1, 1]

Input: Output:

Camera Image

10

[Pomerleau89, Saxena05, Ross11a]

Supervised Learning Approach: Behavior Cloning

11

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

11

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

11

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

11

[Widrow64,Pomerleau89]

Learned
Policy π

Mapping from state (image) to
control (steering direction)

But Poor Performance...

12

But Poor Performance...

12

But Poor Performance...

12

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Goal: learn a policy from that is as good as the expert 𝒟 π⋆

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC with Maximum Likelihood Estimation (MLE):

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC with Maximum Likelihood Estimation (MLE):

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC with Maximum Likelihood Estimation (MLE):

(We can reduce it to other supervised learning oracles such as classification, regression)

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at least , we have:
1 − δ

𝔼s∼dπ⋆ ̂π (⋅ |s) − π⋆(⋅ |s)
tv

≤
ln(|Π | /δ)

M

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at least , we have:
1 − δ

𝔼s∼dπ⋆ ̂π (⋅ |s) − π⋆(⋅ |s)
tv

≤
ln(|Π | /δ)

M

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

This rate should be expected:

no training and testing mismatch at this stage!

1/ M

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Assumption: is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Note that quadratic dependency on effective horizon1/(1 − γ)2

Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

= 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a) − 𝔼s∼dπ⋆𝔼a∼ ̂π (⋅|s)A ̂π (s, a)

Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

= 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a) − 𝔼s∼dπ⋆𝔼a∼ ̂π (⋅|s)A ̂π (s, a)

≤ 𝔼s∼dπ⋆
1

1 − γ
π⋆(⋅ |s) − ̂π (⋅ |s)

1

Analysis

Theorem [BC Sample Complexity] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π ≤
2

(1 − γ)2

ln(|Π | /δ)
M

MLE error

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i)

(1 − γ)(V⋆ − V ̂π) = 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a)

= 𝔼s∼dπ⋆𝔼a∼π⋆(⋅|s)A ̂π (s, a) − 𝔼s∼dπ⋆𝔼a∼ ̂π (⋅|s)A ̂π (s, a)

≤ 𝔼s∼dπ⋆
1

1 − γ
π⋆(⋅ |s) − ̂π (⋅ |s)

1

≤
2

1 − γ
𝔼s∼dπ⋆∥π⋆(⋅ |s) − ̂π (⋅ |s)∥tv

What could go wrong?
• Predictions affect future inputs/

observations

18

[Pomerleau89,Daume09]

Expert’s trajectoryLearned Policy

Distribution Shift: Intuitive Explanation
Let’s just focus on finite horizon (H) and deterministic policies here:

𝔼s∼dπ⋆
h

̂π (s) ≠ π⋆(s) ≤ ϵ, ∀h

Distribution Shift: Intuitive Explanation
Let’s just focus on finite horizon (H) and deterministic policies here:

𝔼s∼dπ⋆
h

̂π (s) ≠ π⋆(s) ≤ ϵ, ∀h

s0

Distribution Shift: Intuitive Explanation
Let’s just focus on finite horizon (H) and deterministic policies here:

𝔼s∼dπ⋆
h

̂π (s) ≠ π⋆(s) ≤ ϵ, ∀h

s0

̂π (s0)

π⋆(s0)

s1

s1

Distribution Shift: Intuitive Explanation
Let’s just focus on finite horizon (H) and deterministic policies here:

𝔼s∼dπ⋆
h

̂π (s) ≠ π⋆(s) ≤ ϵ, ∀h

s0

̂π (s0)

π⋆(s0)

s1

s1

̂π (s1)

π⋆(s1)

s2

s2

Distribution Shift: Intuitive Explanation
Let’s just focus on finite horizon (H) and deterministic policies here:

𝔼s∼dπ⋆
h

̂π (s) ≠ π⋆(s) ≤ ϵ, ∀h

s0

̂π (s0)

π⋆(s0)

s1

s1

̂π (s1) s̃2

̂π (s1)

π⋆(s1)

s2

s2

An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]

An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]

“If the network is not presented
with sufficient variability in its
training exemplars to cover the
conditions it is likely to
encounter…[it] will perform
poorly”

A potential Fix

A potential Fix

Let’s roll out our policy in the real
world, and compare our
trajectories to the expert’s
trajectories, and then refine our
learned model.

The Hybrid Imitation Learning Setting:

Recall BC: we only use offline expert data—no interaction with the environment

Hybrid setting: offline expert data + simulator (e.g., known transition)P

22

The Hybrid Imitation Learning Setting:

Recall BC: we only use offline expert data—no interaction with the environment

Hybrid setting: offline expert data + simulator (e.g., known transition)P

22

Expert’s trajectoryLearned Policy

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is the optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is the optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

This time, we have a known transition (but we cannot plan because is unknown)P r

Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown; assume expert is the optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

This time, we have a known transition (but we cannot plan because is unknown)P r

Key Q: can we do better than offline IL Behavior Cloning
(statistically at least—assuming infinite computation power)?

Key Idea: distribution matching

Integral probability metric (IPM)

Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: , and two distributions and ℱ = {f : X ↦ ℝ} p1 p2

Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: , and two distributions and ℱ = {f : X ↦ ℝ} p1 p2

IPMℱ(p1, p2) = max
f∈ℱ [𝔼x∼p1

f(x) − 𝔼x∼p2
f(x)]

Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: , and two distributions and ℱ = {f : X ↦ ℝ} p1 p2

IPMℱ(p1, p2) = max
f∈ℱ [𝔼x∼p1

f(x) − 𝔼x∼p2
f(x)]

ℱ = {f : ∥f∥∞ ≤ 1} ⇒ IPMℱ(p1, p2) := ∥p1 − p2∥tv

Key Idea: distribution matching

Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: , and two distributions and ℱ = {f : X ↦ ℝ} p1 p2

IPMℱ(p1, p2) = max
f∈ℱ [𝔼x∼p1

f(x) − 𝔼x∼p2
f(x)]

ℱ = {f : ∥f∥∞ ≤ 1} ⇒ IPMℱ(p1, p2) := ∥p1 − p2∥tv

ℱ = {f : f is 1-Lipschitz} ⇒ IPMℱ(p1, p2) := wasserstein dis(p1, p2)

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step 2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step 2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step 2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }
Q: what is the size of ? ℱ̃

Algorithm: Distribution Matching TV distance

Consider the Discriminator class: (IPM corresponds to TV distance)ℱ = {f : ∥f∥∞ ≤ 1}

Same assumption as we had in BC:

 is discrete, and realizable, i.e., Π π⋆ ∈ Π

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step 2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }
Q: what is the size of ? ℱ̃

∀π & π′ ∈ Π, ∥dπ − dπ′ ∥tv = max
f∈ℱ̃

𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }

Algorithm: Distribution Matching TV distance

Step 3: Select a policy using expert dataset 𝒟 = {s⋆
i , a⋆

i }M
i=1

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }

Algorithm: Distribution Matching TV distance

Step 3: Select a policy using expert dataset 𝒟 = {s⋆
i , a⋆

i }M
i=1

̂π := arg min
π∈Π

max
f∈ℱ̃ [𝔼s,a∼dπ f(s, a) −

1
M

M

∑
i=1

f(s⋆
i , a⋆

i)]

Step 1: for each , compute (recall is known);

(This step is computationally inefficient)

π ∈ Π dπ ∈ Δ(S × A) P

Step2: select useful discriminators: for all pair π & π′ , with π ≠ π′

fπ,π′
= arg max

f∈ℱ [𝔼s,a∼dπ f(s, a) − 𝔼s,a∼dπ′ f(s, a)]
Set refined discriminator class ℱ̃ := {fπ,π′

: π & π′ ∈ Π, π ≠ π′ }

Algorithm: Distribution Matching TV distance

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least , our algorithm finds a policy , s.t.,
1 − δ ̂π

Vπ⋆ − V ̂π ≤ 𝒪 (1
1 − γ

ln(|Π | /δ)
M)

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least , our algorithm finds a policy , s.t.,
1 − δ ̂π

Vπ⋆ − V ̂π ≤ 𝒪 (1
1 − γ

ln(|Π | /δ)
M)

1. Key step is to prove: d ̂π − dπ⋆

tv ≤
ln(|Π | /δ)

M

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least , our algorithm finds a policy , s.t.,
1 − δ ̂π

Vπ⋆ − V ̂π ≤ 𝒪 (1
1 − γ

ln(|Π | /δ)
M)

1. Key step is to prove: d ̂π − dπ⋆

tv ≤
ln(|Π | /δ)

M

2. For performance: Vπ⋆ − Vπ ≤
1

1 − γ [𝔼s,a∼dπ⋆r(s, a) − 𝔼s,a∼d ̂π r(s, a)]

Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least , our algorithm finds a policy , s.t.,
1 − δ ̂π

Vπ⋆ − V ̂π ≤ 𝒪 (1
1 − γ

ln(|Π | /δ)
M)

Theorem [Offline BC] With probability at least , BC returns a policy :
1 − δ ̂π

Vπ⋆ − V ̂π = 𝒪 (1
(1 − γ)2

ln(|Π | /δ)
M)

1. Key step is to prove: d ̂π − dπ⋆

tv ≤
ln(|Π | /δ)

M

2. For performance: Vπ⋆ − Vπ ≤
1

1 − γ [𝔼s,a∼dπ⋆r(s, a) − 𝔼s,a∼d ̂π r(s, a)]

Expert’s trajectoryA Policy’s trajectory

Expert’s trajectoryA Policy’s trajectory

 generator that generators state-action pairsdπ :

Expert’s trajectoryA Policy’s trajectory

 generator that generators state-action pairsdπ :
 Ground truth state-action distribution (we have samples from it)dπ⋆ :

Expert’s trajectoryA Policy’s trajectory

 generator that generators state-action pairsdπ :
 Ground truth state-action distribution (we have samples from it)dπ⋆ :

 discriminators which distinguish red and blueℱ̃ :

Next lecture we will talk about a computationally efficient
algorithm in the hybrid setting

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the

quadratic dependency on horizon could cause real problems

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the

quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the

algorithm is computationally inefficient

Conclusion:

1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the

quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the

algorithm is computationally inefficient

Take home message:

There is a provable statistical benefit from the hybrid setting!

Ps: the distribution matching algorithm is very new (it was discovered when
I was writing the book chapter…)

