Imitation Learning: Behavior Cloning, Distribution Shift, & Distribution Matching

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

Announcements

- HW3 is out last night and is due Nov 24th 11:59pm
 - (Lots of bonus questions, but try them out!)
- No classes on Nov 17, 19, & 24 (university semi-final week)

Recap

Offline RL

 $\mathcal{D} = \{s_i, a_i, r_i, s_i'\}_{i=1}^n$, where $s_i, a_i \sim \mu, r_i = r(s_i, a_i), s_i' \sim P(\cdot | s_i, a_i)$

Fitted Q Iteration: start from $f_0 \in \mathcal{F}$ $f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \left(f(s_i, a_i) - \left(r_i + \gamma \max_{a'} f_t(s'_i, a') \right) \right)_{\mathcal{T}_{f}(s_i, a_i)} \right)^2$

Recap

Offline RL

 $\mathcal{D} = \{s_i, a_i, r_i, s_i'\}_{i=1}^n$, where $s_i, a_i \sim \mu, r_i = r(s_i, a_i), s_i' \sim P(\cdot | s_i, a_i)$

Recap

Offline RL

 $\mathcal{D} = \{s_i, a_i, r_i, s_i'\}_{i=1}^n$, where $s_i, a_i \sim \mu, r_i = r(s_i, a_i), s_i' \sim P(\cdot | s_i, a_i)$

Fitted Q Iteration: start from $f_0 \in \mathscr{F}$ $f_{t+1} = \arg\min_{f \in \mathscr{F}} \sum_{i=1}^n \left(f(s_i, a_i) - \underbrace{\left(r_i + \gamma \max_{a'} f_t(s'_i, a')\right)}_{\mathscr{T}f_t(s_i, a_i)} \right)^2 \quad \begin{array}{c} \text{Performing regression} \\ \text{from } (s_i, a_i) \text{ to } \mathscr{T}f_t(s_i, a_i) \end{array}$

Offline RL $\mathcal{D} = \{s_i, a_i, r_i, s_i'\}_{i=1}^n$, where $s_i, a_i \sim \mu, r_i = r(s_i, a_i), s_i' \sim P(\cdot | s_i, a_i)$

Fitted Q Iteration

$$f_{t+1} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} f(s_i, a_i) - \underbrace{\left(r_i + \gamma \max_{a'} f_t(s'_i, a')\right)}_{\mathcal{T}f_t(s_i, a_i)}$$

$$\sup_{\pi,s,a} \frac{d^{\pi}(s,a)}{\mu(s,a)} < \infty, \quad \forall f \in \mathcal{F}, \mathcal{T}f \in$$

Recap

 \mathbf{n}^2

on: start from
$$f_0 \in \mathcal{F}$$

Performing regression from (s_i, a_i) to $\mathcal{T}_f(s_i, a_i)$

 \mathcal{F}, \Rightarrow FQI learns near-optimal policy in polynomially sample complexity

Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching

An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]

30x32 Video Input Retina

Figure 1: ALVINN Architecture

Expert Demonstrations

Expert Demonstrations

- SVM
- Gaussian Process Kernel Estimator • Deep Networks **Random Forests** LWR

. . .

Machine Learning Algorithm

Expert Demonstrations

- SVM

. . .

- LWR

 Gaussian Process Kernel Estimator • Deep Networks **Random Forests**

Maps states to <u>actions</u>

Learning to Drive by Imitation

Input:

Camera Image

[Pomerleau89, Saxena05, Ross11a] Output:

Steering Angle in [-1, 1]

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64, Pomerleau89]

Dataset

Supervised Learning

Expert Trajectories

control (steering direction)

[Widrow64, Pomerleau89]

Dataset

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

We have a dataset $\mathscr{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

We have a dataset

- Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$
- Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

$$\mathsf{t}\,\mathscr{D} = (s_i^\star, a_i^\star)_{i=1}^M \sim d^{\pi^\star}$$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi = \{ \pi : S \mapsto \Delta(A) \}$

BC with Maximum Likelihood Estimation (MLE):

Let's formalize the Behavior Cloning algorithm

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$
 - BC with Maximum Likelihood Estimation (MLE):

Let's formalize the Behavior Cloning algorithm

 $\hat{\pi} = \arg \max$ $\pi \in]$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$
 - BC with Maximum Likelihood Estimation (MLE):

$$\prod_{I=1}^{M} \frac{\ln \pi(a_i^{\star} | s_i^{\star})}{\lim_{i \to 1} \frac{1}{2} \ln \pi(a_i^{\star} | s_i^{\star})}$$

(We can reduce it to other supervised learning oracles such as classification, regression)

Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$

Analysis

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Analysis

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):
 - Theorem [MLE Guarantee] With probability at least 1δ , we have: $\mathbb{E}_{s \sim d^{\pi^{\star}}} \left\| \widehat{\pi}(\cdot \mid s) - \pi^{\star}(\cdot \mid s) \right\|_{tv} \leq \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):
 - Theorem [MLE Guarantee] With probability at least 1δ , we have: $\mathbb{E}_{s \sim d^{\pi^{\star}}} \left\| \widehat{\pi}(\cdot \mid s) - \pi^{\star}(\cdot \mid s) \right\|_{tv} \leq \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$
 - This $1/\sqrt{M}$ rate should be expected: no training and testing mismatch at this stage!

Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 2: Transfer supervised learning error to policy's performance gap

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 2: Transfer supervised learning error to policy's performance gap
- Theorem [BC Sample Complexity] With probability at least 1δ , BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$ MLE error

- Assumption: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$
- Step 2: Transfer supervised learning error to policy's performance gap
- Theorem [BC Sample Complexity] With probability at least 1δ , BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \frac{2}{(1-\gamma)^2} \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$ MLE error
 - Note that $1/(1 \gamma)^2$ quadratic dependency on effective horizon

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right) = \mathbb{E}_{s\sim d^{\pi^{\star}}}\mathbb{E}_{a\sim\pi^{\star}(\cdot|s)}A^{\widehat{\pi}}(s,a)$$

$$(1 - \gamma) \left(V^{\star} - V^{\widehat{\pi}} \right) = \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \pi^{\star}(\cdot|s)} A^{\widehat{\pi}}(s, a)$$
$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \pi^{\star}(\cdot|s)} A^{\widehat{\pi}}(s, a) - \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} A^{\widehat{\pi}}(s, a)$$

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right) = \mathbb{E}_{s\sim d^{\pi^{\star}}}\mathbb{E}_{a\sim\pi^{\star}(\cdot|s)}A^{\widehat{\pi}}(s,a)$$

$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \pi^{\star}(\cdot|s)} A^{\widehat{\pi}}(s,a) - \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} A^{\widehat{\pi}}(s,a)$$

$$\leq \mathbb{E}_{s \sim d^{\pi^{\star}}} \frac{1}{1 - \gamma} \| \pi^{\star} (\cdot | s) - \hat{\pi} (\cdot | s) \|_{1}$$

$$(1-\gamma)\left(V^{\star}-V^{\widehat{\pi}}\right) = \mathbb{E}_{s\sim d^{\pi^{\star}}}\mathbb{E}_{a\sim\pi^{\star}(\cdot|s)}A^{\widehat{\pi}}(s,a)$$

$$= \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \pi^{\star}(\cdot|s)} A^{\widehat{\pi}}(s,a) - \mathbb{E}_{s \sim d^{\pi^{\star}}} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} A^{\widehat{\pi}}(s,a)$$

$$\leq \mathbb{E}_{s \sim d^{\pi^{\star}}} \frac{1}{1 - \gamma} \| \pi^{\star}(\cdot | s) - \hat{\pi}(\cdot | s) \|_{1}$$

$$\leq \frac{2}{1-\gamma} \mathbb{E}_{s \sim d^{\pi^{\star}}} \| \pi^{\star}(\cdot | s) - \hat{\pi}(\cdot | s) \|_{tv}$$

What could go wrong? [Pomerleau89,Daume09] Predictions affect future inputs/

observations

Learned Policy

Let's just focus on finite horizon (H) and deterministic policies here:

Let's just focus on finite horizon (H) and deterministic policies here:

*s*₀

Let's just focus on finite horizon (H) and deterministic policies here:

Let's just focus on finite horizon (H) and deterministic policies here:

Let's just focus on finite horizon (H) and deterministic policies here:

An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]

An Autonomous Land Vehicle In A Neural Network [Pomerleau, NIPS '88]

"If the network is not presented with sufficient variability in its training exemplars to cover the conditions it is likely to encounter...[it] will perform poorly"

A potential Fix

A potential Fix

Let's roll out our policy in the real world, and compare our trajectories to the expert's trajectories, and then refine our learned model.

The Hybrid Imitation Learning Setting:

- Recall BC: we only use offline expert data—no interaction with the environment
 - Hybrid setting: offline expert data + simulator (e.g., known transition P)

The Hybrid Imitation Learning Setting:

- Recall BC: we only use offline expert data—no interaction with the environment
 - Hybrid setting: offline expert data + simulator (e.g., known transition P)

Let's formalize the Hybrid Setting

Discounted infinite horizon

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is the optimal policy π^*

$$\mathsf{MDP}\,\mathscr{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$$

We have a dataset $\mathscr{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$

Let's formalize the Hybrid Setting

Discounted infinite horizon

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is the optimal policy π^*

We have a dataset

This time, we have a known transition P (but we cannot plan because r is unknown)

$$\mathsf{MDP}\,\mathscr{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$$

$$\mathbf{t} \, \mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Let's formalize the Hybrid Setting

Discounted infinite horizon

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is the optimal policy π^*

We have a dataset

This time, we have a known transition P (but we cannot plan because r is unknown)

$$\mathsf{MDP}\,\mathscr{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$$

$$\mathbf{t} \, \mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Key Q: can we do better than offline IL Behavior Cloning (statistically at least – assuming infinite computation power)?

Integral probability metric (IPM)

- Integral probability metric (IPM)
- Metric measures the divergence between two distributions

- Integral probability metric (IPM)
- Metric measures the divergence between two distributions
- Given a discriminator class: $\mathcal{F} = \{f : X \mapsto \mathbb{R}\}$, and two distributions p_1 and p_2

- Integral probability metric (IPM)
- Metric measures the divergence between two distributions
- Given a discriminator class: $\mathscr{F} = \{f : X \mapsto \mathbb{R}\}$, and two distributions p_1 and p_2

 $\mathsf{IPM}_{\mathscr{F}}(p_1, p_2) = \max_{f \in \mathscr{F}}$

$$\underset{z}{\mathbf{X}} \left[\mathbb{E}_{x \sim p_1} f(x) - \mathbb{E}_{x \sim p_2} f(x) \right]$$

- Integral probability metric (IPM)
- Metric measures the divergence between two distributions
- Given a discriminator class: $\mathscr{F} = \{f : X \mapsto \mathbb{R}\}$, and two distributions p_1 and p_2
 - $\mathsf{IPM}_{\mathscr{F}}(p_1, p_2) = \max_{f \in \mathscr{F}}$

 $\mathscr{F} = \{f : \|f\|_{\infty} \le 1\} \Rightarrow \mathsf{IPM}_{\mathscr{F}}(p_1, p_2) := \|p_1 - p_2\|_{tv}$

$$\underset{z}{\mathbf{x}} \left[\mathbb{E}_{x \sim p_1} f(x) - \mathbb{E}_{x \sim p_2} f(x) \right]$$

- Integral probability metric (IPM)
- Metric measures the divergence between two distributions

Given a discriminator class:
$$\mathcal{F} = \{f$$

$$\mathsf{IPM}_{\mathscr{F}}(p_1, p_2) = \max_{f \in \mathscr{F}} \left[\mathbb{E}_{x \sim p_1} f(x) - \mathbb{E}_{x \sim p_2} f(x) \right]$$

 $\mathscr{F} = \{f : f \text{ is } 1\text{-Lipschitz}\} \Rightarrow \mathsf{IPM}_{\mathscr{F}}(p_1, p_2) := \text{wasserstein } \mathsf{dis}(p_1, p_2)$

 $f: X \mapsto \mathbb{R}$, and two distributions p_1 and p_2

 $\mathscr{F} = \{f : \|f\|_{\infty} \le 1\} \Rightarrow \mathsf{IPM}_{\mathscr{F}}(p_1, p_2) := \|p_1 - p_2\|_{tv}$

Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \le 1\}$ (IPM corresponds to TV distance)

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^* \in \Pi$

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^{\star} \in \Pi$
 - **Step 1:** for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)

$$f_{\pi,\pi'} = \arg\max_{f\in\mathscr{F}} \left[\mathbb{E}_{s,a\sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a\sim d^{\pi'}} f(s,a) \right]$$

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^{\star} \in \Pi$
 - **Step 1:** for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)
 - **Step 2:** select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

$$f_{\pi,\pi'} = \arg \max_{f \in \mathscr{F}} \left[\mathbb{E}_{s,a \sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a \sim d^{\pi'}} f(s,a) \right]$$

discriminator class $\widetilde{\mathscr{F}} := \{ f_{\pi,\pi'} : \pi \And \pi' \in \Pi, \pi \neq \pi' \}$

Set refined c

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^{\star} \in \Pi$
 - **Step 1:** for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)
 - **Step 2:** select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$
$$f_{\pi,\pi'} = \arg\max_{f\in\mathscr{F}} \left[\mathbb{E}_s \right]$$

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^{\star} \in \Pi$
 - **Step 1:** for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)
 - **Step 2:** select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

$$\begin{split} f_{\pi,\pi'} &= \arg \max_{f \in \mathscr{F}} \left[\mathbb{E}_{s,a \sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a \sim d^{\pi'}} f(s,a) \right] & \quad \mathbf{Q}: \text{ what is the size of } \\ \text{discriminator class } \widetilde{\mathscr{F}} &:= \{ f_{\pi,\pi'} : \pi \And \pi' \in \Pi, \pi \neq \pi' \} \end{split}$$

Set refined c

$$\forall \pi \& \pi' \in \Pi, \| d^{\pi} - d^{\pi'} \|_{tv}$$

- Consider the Discriminator class: $\mathcal{F} = \{f : \|f\|_{\infty} \leq 1\}$ (IPM corresponds to TV distance)
 - Same assumption as we had in BC: Π is discrete, and realizable, i.e., $\pi^{\star} \in \Pi$
 - **Step 1:** for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)
 - **Step 2:** select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

 $= \max_{f \in \widetilde{\mathscr{F}}} \mathbb{E}_{s, a \sim d^{\pi}} f(s, a) - \mathbb{E}_{s, a \sim d^{\pi'}} f(s, a)$

$$f_{\pi,\pi'} = \arg\max_{f\in\mathscr{F}} \left[\mathbb{E}_{s,a\sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a\sim d^{\pi'}} f(s,a) \right]$$

Set refined discriminator class

Step 1: for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)

Step2: select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

s
$$\widetilde{\mathscr{F}} := \{ f_{\pi,\pi'} : \pi \And \pi' \in \Pi, \pi \neq \pi' \}$$

$$f_{\pi,\pi'} = \arg\max_{f\in\mathscr{F}} \left[\mathbb{E}_{s,a\sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a\sim d^{\pi'}} f(s,a) \right]$$

Set refined discriminator class

Step 1: for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)

Step2: select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

s
$$\widetilde{\mathscr{F}} := \{ f_{\pi,\pi'} : \pi \And \pi' \in \Pi, \pi \neq \pi' \}$$

Step 3: Select a policy using expert dataset $\mathcal{D} = \{s_i^{\star}, a_i^{\star}\}_{i=1}^M$

$$f_{\pi,\pi'} = \arg\max_{f\in\mathscr{F}} \left[\mathbb{E}_{s,a\sim d^{\pi}} f(s,a) - \mathbb{E}_{s,a\sim d^{\pi'}} f(s,a) \right]$$

Set refined discriminator class

$$\widehat{\pi} := \arg\min_{\pi \in \Pi} \left[\max_{f \in \widetilde{\mathscr{F}}} \left[\mathbb{E}_{s, a \sim d^{\pi}} f(s, a) - \frac{1}{M} \sum_{i=1}^{M} f(s_i^{\star}, a_i^{\star}) \right] \right]$$

Step 1: for each $\pi \in \Pi$, compute $d^{\pi} \in \Delta(S \times A)$ (recall P is known); (This step is computationally inefficient)

Step2: select useful discriminators: for all pair $\pi \& \pi'$, with $\pi \neq \pi'$

s
$$\widetilde{\mathscr{F}} := \{ f_{\pi,\pi'} : \pi \And \pi' \in \Pi, \pi \neq \pi' \}$$

Step 3: Select a policy using expert dataset $\mathcal{D} = \{s_i^{\star}, a_i^{\star}\}_{i=1}^M$

Theorem [Dis-match w/ TV dist] With probability at least $1 - \delta$, our algorithm finds a policy $\hat{\pi}$, s.t., $V^{\pi^{\star}} - V^{\widehat{\pi}} \le \mathcal{O}\left(\frac{1}{1 - \gamma}\sqrt{\frac{\ln(|\Pi|/\delta)}{M}}\right)$

Theorem [Dis-match w/ TV dist] With probability at least $1 - \delta$, our algorithm finds a policy $\hat{\pi}$, s.t., $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \mathcal{O}\left(\frac{1}{1 - \gamma}\sqrt{\frac{\ln(|\Pi|/\delta)}{M}}\right)$ 1. Key step is to prove: $\| d^{\hat{\pi}} - d^{\pi^*} \|_{tv} \le \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$

Theorem [Dis-match w/ TV dist] With probability at least $1-\delta$, our algorithm finds a policy $\widehat{\pi}$, s.t., $V^{\pi^{\star}} - V^{\widehat{\pi}} \le \mathcal{O}\left(\frac{1}{1 - \gamma}\sqrt{\frac{\ln(|\Pi|/\delta)}{M}}\right)$

1. Key step is to prove: $\int d^{3}$

2. For performance: $V^{\pi^*} - V^{\pi} \leq \frac{1}{1 - \nu} \left[\mathbb{E}_{s, a \sim d^{\pi^*}} r(s, a) - \mathbb{E}_{s, a \sim d^{\widehat{\pi}}} r(s, a) \right]$

$$\widehat{\pi} - d^{\pi^{\star}} \|_{tv} \leq \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$$

Theorem [Dis-match w/ TV dist] With probability at least $1 - \delta$, our algorithm finds a policy $\hat{\pi}$, s.t., $V^{\pi^{\star}} - V^{\widehat{\pi}} \leq \mathcal{O}\left(\frac{1}{1 - \gamma}\sqrt{\frac{\ln(|\Pi|/\delta)}{M}}\right)$

1. Key step is to prove: $\| d^{i}$

2. For performance: $V^{\pi^{\star}} - V^{\pi} \leq$

$$\widehat{\pi} - d^{\pi^{\star}} \Big\|_{tv} \le \sqrt{\frac{\ln(|\Pi|/\delta)}{M}}$$

$$\leq \frac{1}{1-\gamma} \left[\mathbb{E}_{s,a \sim d^{\pi}} r(s,a) - \mathbb{E}_{s,a \sim d^{\hat{\pi}}} r(s,a) \right]$$

Theorem [Offline BC] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$: $V^{\pi^{\star}} - V^{\widehat{\pi}} = \mathcal{O}\left(\frac{1}{(1-\gamma)^2}\sqrt{\frac{\ln(|\Pi|/\delta)}{M}}\right)$

d^{π} : generator that generators state-action pairs

- d^{π} : generator that generators state-action pairs
- $d^{\pi^{\star}}$: Ground truth state-action distribution (we have samples from it)

- d^{π} : generator that generators state-action pairs
- $d^{\pi^{\star}}$: Ground truth state-action distribution (we have samples from it)
 - $\widetilde{\mathscr{F}}$: discriminators which distinguish red and blue

Next lecture we will talk about a computationally efficient algorithm in the hybrid setting

Conclusion:

1. Offline RL: only use offline expert data

BC is simple and easy to implement, has reasonable guarantees; but the quadratic dependency on horizon could cause real problems

Conclusion:

1. Offline RL: only use offline expert data

BC is simple and easy to implement, has reasonable guarantees; but the quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator) Statistically, Distribution-matching has linear dependency on horizon, but the algorithm is computationally inefficient

Conclusion:

1. Offline RL: only use offline expert data

BC is simple and easy to implement, has reasonable guarantees; but the quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)

Statistically, Distribution-matching has linear dependency on horizon, but the algorithm is computationally inefficient

Take home message:

There is a provable statistical benefit from the hybrid setting! Ps: the distribution matching algorithm is very new (it was discovered when I was writing the book chapter...)