Imitation Learning:
Behavior Cloning, Distribution
Shift, & Distribution Matching

CS 6789: Foundations of Reinforcement Learning



Announcements

HW3 is out last night and is due Nov 24th 11:59pm

(Lots of bonus questions, but try them out!)

No classes on Nov 17, 19, & 24 (university semi-final week)
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Fitted Q lteration: start from f, € F

n

fi41 = argmin 2 (s a;) — <rl- +y max f(s;, a’)>

feF

Performing regression
from (s;, a;) to T £.(s;, a;)
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T f(spa;)

d” s, a _ . . .
sup (s,a) <o, VfeF.TfeF. > FQl Iearn_s near-optimal pol|cy_|n
zsa M(S,a) polynomially sample complexity



Today: Imitation Learning

1. Introduction of Imitation Learning

2. Offline Imitation Learning: Behavior Cloning

3. The hybrid Setting: Statistical Benefit and Distribution Matching
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Imitation Learning

Machine :
l Expert Learning Policy 7T
Demonstrations Algorithm

SVM
* Gaussian Process

. Kernel Estimator ~ Maps states
« Deep Networks to actions
« Random Forests

« LWR




Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

Learned «
Policy n
M

Mapping from state (image) to I

control (steering direction) Supervised Learning 11












Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S,A,v,r,P,p,n*}



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S, A, y,r, P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal polic@
N T



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S, A, y,r, P, p, n*}

Ground truth reward 7(s, @) € [0,1] is unknown; assume expert is a near optimal policy 7 *

*\M Ndﬂ*

We have a dataset @ = (s, a;)Z,



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ./ = {S, A, y,r, P, p, n*}

Ground truth reward 7(s, @) € [0,1] is unknown; assume expert is a near optimal policy 7 *

*\M Ndﬂ*

We have a dataset @ = (s, a;)Z,

Goal: learn a policy from & that is as good as the expert 7*

057'}1‘\“/"\7'2 f

b



Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class I = {7 : S —» A(A)}
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class I = {7 : S —» A(A)}

BC with Maximum Likelihood Estimation (MLE):

(We can reduce it to other supervised learning oracles such as classification, regression)
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Assumption: I is discrete, and realizable, i.e., #* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):
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=

Assumption: I is discrete, and realizable, i.e., #* € I1

Step 1: Supervised learning (MLE) guarantee (see the book for reference to the classic MLE analysis):

Theorem [MLE Guarantee] With probability at leas we have:

Dlrci-rcw] =2 L

X ¥ =
Sr Ul e oM

This 1/4/M rate should be expected:
no training and testing mismatch at this stage!
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Assumption: I is discrete, and realizable, i.e., #* € I1

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least 1 — &, BC returns a policy 7:
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Assumption: I is discrete, and realizable, i.e., #* € I1

Step 2: Transfer supervised learning error to policy’s performance gap

Theorem [BC Sample Complexity] With probability at least 1 — &, BC returns a policy 7:

R 2 In(|TL[/5)
v©—VE < \/
(1-yp)2 M

MLE error

Note that 1/(1 — y)? quadratic dependency on effective horizon
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Theorem [BC Sample Complexity] With probability at least 1 — &, BC returns a policy 7:

v VR < 2 [In(|IT]/6)
= (1 =) M &— 8 'f exput Savpl)

MLE error
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Theorem [BC Sample Complexity] With probability at least 1 — &, BC returns a policy 7:
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MLE error
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Theorem [BC Sample Complexi — J, BC returns a policy 7:
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What could go wrong?

[Pomerleau89,Daume09]

* Predictions affect future inputs/
observations

Learned Polic ) Expert’s trajectory
sl d RS I8
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Distribution Shift: Intuitive Explanation

Let’s just focus on finite horizon (H) and deterministic policies here:

[Es~d;;*7?(5) + 1*(s) < e,Vh

S0 \ 7/1\'(51) V\I/ $
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¥ (s) ™ 51 I ¢ & ,V\ué? : ) o ey
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“If the network is not presented
with sufficient variability in its
training exemplars to cover the
conditions it is likely to
encounter...[it] will perform
poorly”




A potential Fix




A potential Fix

I‘I/w wTer
pgass 1o P meybe o aletor )

Let’s roll out our policy in the real
world, and compare our
trajectories to the expert’s
trajectories, and then refine our
learned model.
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Let’s formalize the Hybrid Setting

Discounted infinite horizon MDP ./ = {S,A,y,r, P, p, n*}

Ground truth reward r(s, @) € [0,1] is unknown; assume expert is the optimal policy 7*

We have a dataset 2 = (s, ~d"

This time, we have a known transition P (but we cannot plan because r is unknown)

Key Q: can we do better than offline IL Behavior Cloning
(statistically at least—assuming infinite computation power)?
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Key ldea: distribution matching
Integral probability metric (IPM)

Metric measures the divergence between two distributions

Given a discriminator class: & = {f: X = R}, and two distributions p, and p,

v IPMg(py, py) =/max ||E,., f(x) — [Ex%f(X)]
! A
\(w./{

F = fllo £ 1} = IPMz(p1.py) = lIp1 = pally

F } = IPMg(p;, p,) := wasserstein dis(p;, p,)
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Algorithm: Distribution Matching TV distance

Step 1: for each 7 € 11, compute d* € A(S X A) (recall P is known);
(This step is computationally inefficient)

Step2: select useful discriminators: for all pair 7 & 7', with & # 7’
f]t,ﬂ’ = arg max [Es,a~d”f(s’ Cl) - [Es aNdﬂ'f(S’ Cl)
feF .

Set refined discriminator class 7 ={fir r&a €ll,n # n'}

Step 3: Select a policy using expert dataset D = {s * ?il

TPme Cd " A )
ares >
lm??} [[Es,a~d”f (s,a) Z (s, ai*)] ]

7 := argmin

#€ll | feF

yAS
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Theorem: Distribution Matching TV distance

Theorem [Dis-match w/ TV dist] With probability at least 1 — & , our algorithm finds a policy 7, s.t.,

x - 1 In(|11|/6)
Vi -VP <0
1 —y M
< [In(|T1|/0)
tv — M

2. For performance: V* — V” < T, [[Es g P (s, a) — B, 21 (s, a)]
—_ 7/ ’ ’

1. Key step is to prove: ” d* —d*™

Theorem [Offline BC] With probabili least 1 — &, BC returns a policy 7:

e 1\ [In([I[/8)
B (1-%V M
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d” : generator that generators state-action pairs

. ’ . / )
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d” : generator that generators state-action pairs

d™ : Ground truth state-action distribution (we have samples from it)

& . discriminators which distinguish red and blue

A Policy’s trajectory ﬁ‘ - Expert’s trajectory
‘\““ " : .'0’
0%“ —_— %
‘0:0 \“



Next lecture we will talk about a computationally efficient
algorithm in the hybrid setting
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1. Offline RL: only use offline expert data
BC is simple and easy to implement, has reasonable guarantees; but the
quadratic dependency on horizon could cause real problems

2. Hybrid RL: offline expert data + known transition (simulator)
Statistically, Distribution-matching has linear dependency on horizon, but the
algorithm is computationally inefficient

Vet T
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Conclusion:

quadratic dependency on horizon could cause real problems

stft‘wu. 9 -

2. Hybrid RL: offline expert data + known transition (simulator
Statistically, Distribution-matching has linear dependency on horizon, but the
algorithm is computationally inefficient

Take home message:
There is a provable statistical benefit from the hybrid setting!
Ps: the distribution matching algorithm is very new (it was discovered when
| was writing the book chapter...)



