Optimal Control Theory and Linear Quadratic Regulators

Sham Kakade and Wen Sun CS 6789: Foundations of Reinforcement Learning

- Recap: • TRPO/PPO
- Today: LQRs

 - LQRs are MDPs with special structure

• The model + planning + SDP formulations

Recap

TRPO:

$\max V^{\pi_{\theta}}(\rho)$ $\pi_{ heta}$

s.t., $KL\left(\mathsf{Pr}^{\pi_{\theta_{0}}}||\mathsf{Pr}^{\pi_{\theta}}\right) \leq \delta$

TRPO: second order Taylor's expansion

$$\max_{\theta} \nabla V^{\pi_{\theta_0}}(\rho)^{\top} \left(\theta - \theta_0\right)$$

s.t. $\left(\theta - \theta_0\right)^{\top} F_{\theta_0}(\theta - \theta_0) \leq \delta$

We have a closed form solution:

$$\theta = \theta_0 + \sqrt{\frac{\delta}{(\nabla V^{\pi_{\theta_0}})^\top F_{\theta_0}^{-1} \nabla V^{\pi_{\theta_0}}} \cdot F_{\theta_0}^{-1} \nabla V^{\pi_{\theta_0}}}$$

 Self-normalized step-size (Learning rate is adaptive)

• Solve with CG

• To find the next policy π_{t+1} , use objective: $\max_{\theta} E_{s \sim d^{\pi_t}} E_{a \sim \pi^{\theta}(\cdot|s)} A^{\pi_t}(s, a)$ subject to $\sup_{s} \left\| \pi^{\theta}(\cdot | s) - \pi_{t}(\cdot | s) \right\|_{TV} \leq \delta,$ This is like the CPI greedy policy chooser.

- To find the next policy π_{t+1} , use objective: $\max_{\theta} E_{s \sim d^{\pi_t}} E_{a \sim \pi^{\theta}(\cdot|s)} A^{\pi_t}(s, a)$ subject to $\sup \left\| \pi^{\theta}(\cdot | s) - \pi_t(\cdot | s) \right\|_{TV} \le \delta$, This is like the CPI greedy policy chooser.
- importance weighting:

 $\max_{\theta} E_{s \sim d^{\pi_t}} E_{a \sim \pi_t(\cdot \mid s)} \left[\frac{\pi^{\theta}(a \mid s)}{\pi_{\star}(\cdot \mid s)} A^{\pi_t}(s, a) \right]$ steps)

We can do multiple gradient steps by rewriting the objective function using

practice: enforce constraint by just changing θ a "little" (say with a few gradient

Today

Robotics and Controls

Dexterous Robotic Hand Manipulation OpenAl, 2019

Optimal Control

• a dynamical system is described as $x_{t+1} = f_t(x_t, u_t, w_t)$ where f_t maps a state $x_t \in R^d$, a control (the action) $u_t \in R^k$, and a disturbance w_t , to the next state $x_{t+1} \in R^d$, starting from an initial state x_0 .

Optimal Control

- a dynamical system is described as $x_{t+1} = f_t(x_t, u_t, w_t)$ where f_t maps a state $x_t \in \mathbb{R}^d$, a control (the action) $u_t \in \mathbb{R}^k$, and a disturbance w_t , to the next state $x_{t+1} \in \mathbb{R}^d$, starting from an initial state x_0 .
- The objective is to find the control policy π which minimizes the long term cost, minimize $E_{\pi} \left[\sum_{t=0}^{H-1} c_t(x_t, u_t) \right]$

such that $x_{t+1} = f_t(x_t, u_t, w_t)$

statistical or constrained in some way.

where H is the time horizon (which can be finite or infinite) and where w_t is either

 \bullet the dynamics are approximated by

 $x_{t+1} = A_t x_t + B_t u_t + w_t,$

with the matrices A_t and B_t are derivatives of the dynamics f (around some trajectory) and where the costs are approximated by a quadratic function in x_t and u_t .

In practice, this is often solved by considering the linearized control (sub-)problem where

 \bullet the dynamics are approximated by

 $x_{t+1} = A_t x_t + B_t u_t + w_t,$

with the matrices A_t and B_t are derivatives of the dynamics f (around some trajectory) and where the costs are approximated by a quadratic function in x_t and u_t .

This linearization is often accurate provided the noise is 'small', the dynamics are 'smooth', \bullet and controls don't change too quickly. (The details are important).

In practice, this is often solved by considering the linearized control (sub-)problem where

 \bullet the dynamics are approximated by

 $x_{t+1} = A_t x_t + B_t u_t + w_t,$

with the matrices A_t and B_t are derivatives of the dynamics f (around some trajectory) and where the costs are approximated by a quadratic function in x_t and u_t .

- This linearization is often accurate provided the noise is 'small', the dynamics are 'smooth', \bullet and controls don't change too quickly. (The details are important).
- This approach does not capture global information. \bullet

In practice, this is often solved by considering the linearized control (sub-)problem where

The LQR Model

(clearly false but this is an effective approach once when we 'close').

Let's suppose this local approximation to a non-linear model is globally valid.

- (clearly false but this is an effective approach once when we 'close').
- The finite horizon LQR problem is given by minimize $E \left[x_H^T Q x_H + \sum_{t=0}^{H-1} (x_t^T Q x_t + u_t^T R u_t) \right]$

such that $x_{t+1} = A_t x_t + B_t u_t + w_t$, $x_0 \sim D, w_t \sim N(0, \sigma^2 I)$, where initial state $x_0 \sim D$ is randomly distributed according D; the disturbance $w_t \in \mathbb{R}^d$ is multi-variate normal, with covariance $\sigma^2 I$; $A_t \in R^{d \times d}$ and $B_t \in R^{d \times k}$ are referred to as system (or transition) matrices; $Q \in R^{d \times d}$ and $R \in R^{k \times k}$ are psd matrices that parameterize the quadratic costs.

• Let's suppose this local approximation to a non-linear model is globally valid.

- (clearly false but this is an effective approach once when we 'close').
- The finite horizon LQR problem is given by minimize $E \left[x_H^T Q x_H + \sum_{t=0}^{H-1} (x_t^T Q x_t + u_t^T R u_t) \right]$

such that $x_{t+1} = A_t x_t + B_t u_t + w_t$, $x_0 \sim D, w_t \sim N(0, \sigma^2 I)$, where initial state $x_0 \sim D$ is randomly distributed according D; the disturbance $w_t \in \mathbb{R}^d$ is multi-variate normal, with covariance $\sigma^2 I$; $A_t \in R^{d \times d}$ and $B_t \in R^{d \times k}$ are referred to as system (or transition) matrices; $Q \in R^{d \times d}$ and $R \in R^{k \times k}$ are psd matrices that parameterize the quadratic costs.

• Let's suppose this local approximation to a non-linear model is globally valid.

Note that this model is a finite horizon MDP, where the $S = R^d$ and $A = R^k$.

• The infinite horizon LQR problem is given by minimize $\lim_{H \to \infty} \frac{1}{H} E \left[\sum_{t=0}^{H} (x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t) \right]$

such that $x_{t+1} = Ax_t + Bu_t + w_t$, $x_0 \sim D$, $w_t \sim N(0, \sigma^2 I)$.

where A and B are time homogenous.

• The infinite horizon LQR problem is given by minimize $\lim_{H \to \infty} \frac{1}{H} E \left[\sum_{t=0}^{H} (x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t) \right]$

such that $x_{t+1} = Ax_t + Bu_t + w_t$, where A and B are time homogenous.

Studied often in theory, but less relevant in practice (?) approximations)

$$x_0 \sim D, \ w_t \sim N(0, \sigma^2 I).$$

(largely due to that time homogenous, globally linear models are rarely good

• The infinite horizon LQR problem is given by minimize $\lim_{H \to \infty} \frac{1}{H} E \left[\sum_{t=0}^{H} (x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t) \right]$

such that $x_{t+1} = Ax_t + Bu_t + w_t$, where A and B are time homogenous.

- Studied often in theory, but less relevant in practice (?) approximations)
- Discounted case never studied. \bullet (discounting doesn't necessarily make costs finite)

$$x_0 \sim D, \ w_t \sim N(0, \sigma^2 I).$$

(largely due to that time homogenous, globally linear models are rarely good

• The infinite horizon LQR problem is given by minimize $\lim_{H \to \infty} \frac{1}{H} E \left[\sum_{t=0}^{H} (x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t) \right]$

such that $x_{t+1} = Ax_t + Bu_t + w_t$, where A and B are time homogenous.

- Studied often in theory, but less relevant in practice (?) approximations)
- Discounted case never studied. \bullet (discounting doesn't necessarily make costs finite)
- Note that we can have 'unbounded' average cost.

$$x_0 \sim D, \ w_t \sim N(0, \sigma^2 I).$$

(largely due to that time homogenous, globally linear models are rarely good

Bellman Optimality: Value Iteration and the Ricatti Equations

Same defs (but for costs)

- define the value function $V_h^{\pi}: \mathbb{R}^d \to \mathbb{R}$ as $V_{h}^{\pi}(x) = E \Big[x_{H}^{\top} Q x_{H} + \sum_{t=1}^{H-1} (x_{t}^{\top} Q x_{t} + u_{t}^{\top} R u_{t}) \ \Big| \ \pi, x_{h} = x \Big],$ t=h
- and the state-action value Q_h^{π} : $R^d \times R^k \to R$ as: $Q_{h}^{\pi}(x,u) = E[x_{H}^{\top}Qx_{H} + \sum_{t=1}^{H-1} (x_{t}^{\top}Qx_{t} + u_{t}^{\top}Ru_{t}) \mid \pi, x_{h} = x, u_{h} = u],$ t=h

The optimal policy is a linear controller specified by:

Theorem: (for the finite horizon case, with time homogenous $A_t = A, B_t = B$)

- $\pi^{\star}(x_t) = -K_t^{\star}x_t$ where $K_t^{\star} = (B^{\top}P_{t+1}B + R)^{-1}B^{\top}P_{t+1}A$

Theorem: (for the finite horizon case, with time homogenous $A_{\tau} = A, B_{\tau} = B$) The optimal policy is a linear controller specified by: $\pi^{\star}(x_{t}) = -K_{t}^{\star}x_{t}$ where $K_{t}^{\star} = (B^{\top}P_{t+1}B + R)^{-1}B^{\top}P_{t+1}A$

algebraic Ricatti equations, where for $t \in [H]$, $= A^{\mathsf{T}} P_{t+1} A + Q - (K_{t+1}^{\star})^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) K_{t+1}^{\star}$

and where $P_{H} = Q$.

where P_t can be computed iteratively, in a backwards manner, using the following $P_{t} = A^{\mathsf{T}} P_{t+1} A + Q - A^{\mathsf{T}} P_{t+1} B (B^{\mathsf{T}} P_{t+1} B + R)^{-1} B^{\mathsf{T}} P_{t+1} A$

Theorem: (for the finite horizon case, with time homogenous $A_{\tau} = A, B_{\tau} = B$) The optimal policy is a linear controller specified by: $\pi^{\star}(x_{t}) = -K_{t}^{\star}x_{t}$ where $K_{t}^{\star} = (B^{\top}P_{t+1}B + R)^{-1}B^{\top}P_{t+1}A$

algebraic Ricatti equations, where for $t \in [H]$, $= A^{\mathsf{T}} P_{t+1} A + Q - (K_{t+1}^{\star})^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) K_{t+1}^{\star}$

and where $P_{H} = Q$.

The above equation is simply the value iteration algorithm.

- where P_t can be computed iteratively, in a backwards manner, using the following $P_{t} = A^{\mathsf{T}} P_{t+1} A + Q - A^{\mathsf{T}} P_{t+1} B (B^{\mathsf{T}} P_{t+1} B + R)^{-1} B^{\mathsf{T}} P_{t+1} A$

Theorem: (for the finite horizon case, with time homogenous $A_{\tau} = A, B_{\tau} = B$) The optimal policy is a linear controller specified by: $\pi^{\star}(x_{t}) = -K_{t}^{\star}x_{t}$ where $K_{t}^{\star} = (B^{\top}P_{t+1}B + R)^{-1}B^{\top}P_{t+1}A$

algebraic Ricatti equations, where for $t \in [H]$,

 $= A^{\mathsf{T}} P_{t+1} A + Q - (K_{t+1}^{\star})^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) K_{t+1}^{\star}$

and where $P_{H} = Q$.

The above equation is simply the value iteration algorithm. Furthermore, for $t \in [H]$, we have that: $V_t^{\star}(x) = x^{\mathsf{T}} P_t x + \sigma^2 \sum_{t} \operatorname{Trace}(P_h)$ *h*=*t*+1

where P_t can be computed iteratively, in a backwards manner, using the following $P_{t} = A^{\mathsf{T}} P_{t+1} A + Q - A^{\mathsf{T}} P_{t+1} B (B^{\mathsf{T}} P_{t+1} B + R)^{-1} B^{\mathsf{T}} P_{t+1} A$

Proof: optimal control at h = H - 1

• Bellman equations \Rightarrow there is an optin function of x_t and t.

Bellman equations \Rightarrow there is an optimal policy which is deterministic + only a

Proof: optimal control at h = H - 1

- function of x_t and t.
- Due to that $x_H = Ax + Bu + w_{H-1}$, we have:

Bellman equations \Rightarrow there is an optimal policy which is deterministic + only a

 $Q_{H-1}(x, u) = E[(Ax + Bu + w_{H-1})^{\mathsf{T}}Q(Ax + Bu + w_{H-1})] + x^{\mathsf{T}}Qx + u^{\mathsf{T}}Ru$ $= (Ax + Bu)^{\mathsf{T}}O(Ax + Bu) + \sigma^{2}\mathsf{Trace}(O) + x^{\mathsf{T}}Ox + u^{\mathsf{T}}Ru$

Proof: optimal control at h = H - 1

- function of x_t and t.
- Due to that $x_H = Ax + Bu + w_{H-1}$, we have: $Q_{H-1}(x, u) = E[(Ax + Bu + w_{H-1})^{\mathsf{T}}Q(Ax + Bu + w_{H-1})] + x^{\mathsf{T}}Qx + u^{\mathsf{T}}Ru$ $= (Ax + Bu)^{\mathsf{T}}O(Ax + Bu) + \sigma^{2}\mathsf{Trace}(O) + x^{\mathsf{T}}Ox + u^{\mathsf{T}}Ru$ • This is a quadratic function of u. Solving for the optimal control at x, gives:
- $\pi_{H-1}^{\star}(x) = -(B^{\top}QB + R)^{-1}B^{\top}QAx = -K_{H-1}^{\star}x,$

where the last step uses that $P_H := Q$.

Bellman equations \Rightarrow there is an optimal policy which is deterministic + only a

Proof: optimal value at h = H - 1

Proof: optimal value at h = H - 1

• (shorthand $K_{H-1}^{\star} = K$). using the optimal control at: $V_{H-1}^{\star}(x) = Q_{H-1}(x, -K_{H-1}^{\star}x)$

 $= x^{\mathsf{T}}(A - BK)^{\mathsf{T}}Q(A - BK)x + x^{\mathsf{T}}Qx + x^{\mathsf{T}}KKx - \sigma^{2}\mathsf{Trace}(Q)$

Proof: optimal value at h = H - 1

- (shorthand $K_{H-1}^{\star} = K$). using the optimal control at: $V_{H-1}^{\star}(x) = Q_{H-1}(x, -K_{H-1}^{\star}x)$ $= x^{\mathsf{T}}(A - BK)^{\mathsf{T}}Q(A - BK)x + x^{\mathsf{T}}Qx + x^{\mathsf{T}}KKx - \sigma^{2}\mathsf{Trace}(Q)$
- Continuing
 - $V_{H-1}^{\star}(x) \sigma^2 \operatorname{Trace}(Q) = x^{\mathsf{T}} \Big((A BK)^{\mathsf{T}} Q (A BK) + Q + K^{\mathsf{T}} RK \Big) x$ $= x^{\mathsf{T}} \Big(AQA + Q - 2K^{\mathsf{T}}B^{\mathsf{T}}QA + K^{\mathsf{T}}(B^{\mathsf{T}}QB + R)K \Big) x$ $= x^{\mathsf{T}} \Big(AQA + Q - 2K^{\mathsf{T}} (B^{\mathsf{T}}QB + R)K + K^{\mathsf{T}} (B^{\mathsf{T}}QB + R)K \Big) x$ $= x^{\mathsf{T}} \Big(AQA + Q - K^{\mathsf{T}} (B^{\mathsf{T}} QB + R) K \Big) x$ $= x^{\mathsf{T}} P_{H-1} x \,.$

where the fourth step uses our expression for $K = K_{H-1}^{\star}$.

Proof: wrapping up...

Proof: wrapping up...

• This implies that: $Q_{H-2}^{\star}(x, u) = E[V_{H-1}^{\star}(Ax + Bu + w_{H-2})] + x^{\top}Qx + u^{\top}Ru$ $= (Ax + Bu)^{\mathsf{T}} P_{H-1}(Ax + Bu) + \sigma^2 \Big(\operatorname{Trace}(P_{H-1}) + \operatorname{Trace}(Q) \Big) + x^{\mathsf{T}} Qx + u^{\mathsf{T}} Ru \,.$

Proof: wrapping up...

- This implies that: $Q_{H-2}^{\star}(x,u) = E[V_{H-1}^{\star}(Ax + Bu + w_{H-2})] + x^{\top}Qx + u^{\top}Ru$ $= (Ax + Bu)^{\mathsf{T}} P_{H-1}(Ax + Bu) + \sigma^2 \Big(\operatorname{Trace}(P_{H-1}) + \operatorname{Trace}(Q) \Big) + x^{\mathsf{T}} Qx + u^{\mathsf{T}} Ru \,.$
- The remainder of the proof follows from a recursive argument, which can be verified along identical lines to the t = H - 1 case.

Theorem:

Suppose that the optimal average cost is finite.

Theorem:

Suppose that the optimal average cost is finite. Let P be a solution to the following algebraic Riccati equation: $P = A^T P A + Q - A^T P B (B^T P B + R)^{-1} B^T P A.$

(Note that P is a positive definite matrix).

Theorem:

Suppose that the optimal average cost is finite. Let P be a solution to the following algebraic Riccati equation: $P = A^T P A + Q - A^T P B (B^T P B + R)^{-1} B^T P A.$

(Note that P is a positive definite matrix). We have that the optimal policy is:

 $\pi^{\star}(x) = -K^{\star}x$

where the optimal control gain is:

 $K^* = -(B^T P B + R)^{-1} B^T P A$

Theorem:

Suppose that the optimal average cost is finite. Let P be a solution to the following algebraic Riccati equation: $P = A^T P A + Q - A^T P B (B^T P B + R)^{-1} B^T P A.$

(Note that P is a positive definite matrix). We have that the optimal policy is:

 $\pi^{\star}(x) = -K^{\star}x$

where the optimal control gain is:

 $K^* = -(B^T P B + R)^{-1} B^T P A$

We have that P is unique and that the optimal average cost is $\sigma^2 \operatorname{Trace}(P)$.

Semidefinite Programs to find P

The Primal SDP: (for the infinite horizon LQR)

• The primal optimization problem is given as: maximize $\sigma^2 \operatorname{Trace}(P)$

where the optimization variable is P.

subject to $\begin{bmatrix} A^T P A + Q - I & A^T P B \\ B^T P A & B^T P B + R \end{bmatrix} \ge 0, \quad P \ge 0$

The Primal SDP: (for the infinite horizon LQR)

• The primal optimization problem is given as: maximize $\sigma^2 \operatorname{Trace}(P)$

where the optimization variable is P.

- This SDP has a unique solution, P^{\star} , which implies:
 - P^{\star} satisfies the Ricatti equations.
 - The optimal average cost of the infinite horizon LQR is $\sigma^2 \text{Trace}(P^{\star})$

subject to $\begin{bmatrix} A^T P A + Q - I & A^T P B \\ R^T P A & B^T P B + R \end{bmatrix} \ge 0, \quad P \ge 0$

• The optimal policy use the gain matrix: $K^* = -(B^T P B + R)^{-1} B^T P A$

The Primal SDP: (for the infinite horizon LQR)

• The primal optimization problem is given as: maximize $\sigma^2 \operatorname{Trace}(P)$

where the optimization variable is P.

- This SDP has a unique solution, P^{\star} , which implies:
 - P^{\star} satisfies the Ricatti equations.
 - The optimal average cost of the infinite horizon LQR is $\sigma^2 \text{Trace}(P^{\star})$
- Proof idea: Following from the Ricatti equation, we have the relaxation that for all matrices K, the matrix P must satisfy: $P \geq (A - BK)^T P(A - BK) + Q - K^T RK.$

subject to $\begin{bmatrix} A^T P A + Q - I & A^T P B \\ R^T P A & B^T P B + R \end{bmatrix} \ge 0, \quad P \ge 0$

• The optimal policy use the gain matrix: $K^* = -(B^T P B + R)^{-1} B^T P A$

The Dual SDP:

The dual optimization problem is: \bullet minimize Trace $\begin{pmatrix} \Sigma & \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix}$ $\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xu} \\ \Sigma_{ux} & \Sigma_{uu} \end{bmatrix}$

subject to $\Sigma_{xx} = (A \ B)\Sigma(A \ B)^{T} + \sigma^{2}I, \quad \Sigma \geq 0$

where the optimization variable is Σ , a $(d + k) \times (d + k)$ matrix, with the block structure:

The Dual SDP:

- The dual optimization problem is: minimize Trace $\begin{pmatrix} \Sigma & \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix}$ $\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xu} \\ \Sigma_{xx} & \Sigma_{xu} \end{bmatrix}$
- \bullet

subject to $\Sigma_{xx} = (A \ B)\Sigma(A \ B)^{T} + \sigma^{2}I, \quad \Sigma \geq 0$ where the optimization variable is Σ , a $(d + k) \times (d + k)$ matrix, with the block structure:

The interpretation of Σ is that it is the covariance matrix of the stationary distribution. This analogous to state-action visitation distributions (the dual variables in the MDP LP).

The Dual SDP:

- The dual optimization problem is: minimize Trace $\begin{pmatrix} \Sigma & \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix}$ $\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xu} \\ \Sigma & \Sigma \end{bmatrix}$
- \bullet
- $K^{\star} = -\Sigma_{ux}^{\star} (\Sigma_{xx}^{\star})^{-1}$

subject to $\Sigma_{xx} = (A \ B)\Sigma(A \ B)^{T} + \sigma^{2}I, \quad \Sigma \geq 0$ where the optimization variable is Σ , a $(d + k) \times (d + k)$ matrix, with the block structure:

The interpretation of Σ is that it is the covariance matrix of the stationary distribution. This analogous to state-action visitation distributions (the dual variables in the MDP LP).

This SDP has a unique solution, say Σ^{\star} . The optimal gain matrix is then given by: