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Today

• Recap: 

• TRPO/PPO 

• Today: LQRs

• The model + planning + SDP formulations

• LQRs are MDPs with special structure



Recap



TRPO: max
θ

∇Vπθ0(ρ)⊤(θ − θ0)

s.t.  (θ − θ0)⊤ Fθ0
(θ − θ0) ≤ δ

We have a closed form solution: 

θ = θ0 +
δ

(∇Vπθ0)⊤F−1
θ0

∇Vπθ0
⋅ F−1

θ0
∇Vπθ0

•Self-normalized step-size  
(Learning rate is adaptive)

•Solve with CG

max
πθ

Vπθ(ρ)

s.t., KL (Prπθ0 | |Prπθ) ≤ δ

TRPO: second order Taylor’s expansion



PPO
• To find the next policy , use objective: 

 

This is like the CPI greedy policy chooser. 

πt+1
max

θ
Es∼dπtEa∼πθ(⋅|s)Aπt(s, a)

subject to  sup
s

πθ( ⋅ |s) − πt( ⋅ |s)
TV

≤ δ,
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max

θ
Es∼dπtEa∼πθ(⋅|s)Aπt(s, a)
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TV
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• We can do multiple gradient steps by rewriting the objective function using 
importance weighting: 

 

practice: enforce constraint by just changing  a “little” (say with a few gradient 
steps)

max
θ

Es∼dπtEa∼πt(⋅|s)[ πθ(a |s)
πt( ⋅ |s)

Aπt(s, a)]
θ



Today



Robotics and Controls
Dexterous Robotic Hand Manipulation
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Optimal Control
• a dynamical system is described as  

 
where  maps a state , a control (the action) , and a disturbance ,  
to the next state , starting from an initial state .  

xt+1 = ft(xt, ut, wt)
ft xt ∈ Rd ut ∈ Rk wt

xt+1 ∈ Rd x0
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• The objective is to find the control policy  which minimizes the long term cost,    

 

where  is the time horizon (which can be finite or infinite) and where  is either 
statistical or constrained in some way.

π

minimize Eπ[
H−1

∑
t=0

ct(xt, ut)]
such that xt+1 = ft(xt, ut, wt)

H wt
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Linearization Approach
• In practice, this is often solved by considering the linearized control (sub-)problem where 

the dynamics are approximated by  
 

with the matrices  and  are derivatives of the dynamics  (around some trajectory) 
and where the costs are approximated by a quadratic function in  and .    

xt+1 = Atxt + Btut + wt,
At Bt f

xt ut

• This linearization is often accurate provided the noise is ‘small’, the dynamics are ‘smooth’,  
and controls don’t change too quickly. (The details are important). 

• This approach does not capture global information.
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• Let’s suppose this local approximation to a non-linear model is globally valid.  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• The finite horizon LQR problem is given by 

 

where initial state  is randomly distributed according ;   
the disturbance  is multi-variate normal, with covariance ;  

 and  are referred to as system (or transition) matrices; 
 and  are psd matrices that parameterize the quadratic costs.   

minimize E [x⊤
HQxH +

H−1

∑
t=0

(x⊤
t Qxt + u⊤

t Rut)]
such that xt+1 = Atxt + Btut + wt , x0 ∼ D, wt ∼ N(0,σ2I) ,

x0 ∼ D D
wt ∈ Rd σ2I

At ∈ Rd×d Bt ∈ Rd×k

Q ∈ Rd×d R ∈ Rk×k
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• The finite horizon LQR problem is given by 

 

where initial state  is randomly distributed according ;   
the disturbance  is multi-variate normal, with covariance ;  

 and  are referred to as system (or transition) matrices; 
 and  are psd matrices that parameterize the quadratic costs.   

minimize E [x⊤
HQxH +

H−1

∑
t=0

(x⊤
t Qxt + u⊤

t Rut)]
such that xt+1 = Atxt + Btut + wt , x0 ∼ D, wt ∼ N(0,σ2I) ,

x0 ∼ D D
wt ∈ Rd σ2I

At ∈ Rd×d Bt ∈ Rd×k

Q ∈ Rd×d R ∈ Rk×k

• Note that this model is  a finite horizon MDP, where the  and .S = Rd A = Rk
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• The infinite horizon LQR problem is given by 

 

where  and  are time homogenous. 

minimize lim
H→∞

1
H

E [
H

∑
t=0

(x⊤
t Qxt + u⊤

t Rut)]
such that xt+1 = Axt + But + wt , x0 ∼ D, wt ∼ N(0,σ2I) .

A B

• Studied often in theory, but less relevant in practice (?) 
(largely due to that time homogenous, globally linear models are rarely good 
approximations)

• Discounted case never studied. 
(discounting doesn’t necessarily make costs finite)

• Note that we can have ‘unbounded’ average cost.



Bellman Optimality: 
Value Iteration and the Ricatti Equations



Same defs (but for costs)

• define the value function  as 




• and the state-action value  as: 

Vπ
h : Rd → R

Vπ
h (x) = E[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x],

Qπ
h : Rd × Rk → R

Qπ
h (x, u) = E[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x, uh = u],
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Value Iteration and the Ricatti Equations
Theorem: (for the finite horizon case, with time homogenous ) 
The optimal policy is a linear controller specified by:  
	  where 

At = A, Bt = B

π⋆(xt) = − K⋆
t xt K⋆

t = (B⊤Pt+1B + R)−1B⊤Pt+1A
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Theorem: (for the finite horizon case, with time homogenous ) 
The optimal policy is a linear controller specified by:  
	  where 

At = A, Bt = B

π⋆(xt) = − K⋆
t xt K⋆

t = (B⊤Pt+1B + R)−1B⊤Pt+1A
where  can be computed iteratively, in a backwards manner, using the following 
algebraic Ricatti equations, where for , 

	  

and where . 

Pt
t ∈ [H]

Pt = A⊤Pt+1A + Q − A⊤Pt+1B(B⊤Pt+1B + R)−1B⊤Pt+1A
= A⊤Pt+1A + Q − (K⋆

t+1)
⊤(B⊤Pt+1B + R)K⋆

t+1

PH = Q

The above equation is simply the value iteration algorithm.
Furthermore, for , we have that: 

	

t ∈ [H]

V⋆
t (x) = x⊤Ptx + σ2

H

∑
h=t+1

Trace(Ph)
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Proof: optimal control at h = H − 1

• Bellman equations  there is an optimal policy which is deterministic + only a 
function of  and .

⇒
xt t

• Due to that , we have: xH = Ax + Bu + wH−1
QH−1(x, u) = E[(Ax + Bu + wH−1)⊤Q(Ax + Bu + wH−1)] + x⊤Qx + u⊤Ru

= (Ax + Bu)⊤Q(Ax + Bu) + σ2Trace(Q) + x⊤Qx + u⊤Ru
• This is a quadratic function of . Solving for the optimal control at , gives: 

 
where the last step uses that . 

u x
π⋆

H−1(x) = − (B⊤QB + R)−1B⊤QAx = − K⋆
H−1x,

PH := Q
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Proof: optimal value at h = H − 1
• (shorthand ). using the optimal control at: K⋆

H−1 = K
V⋆

H−1(x) = QH−1(x, − K⋆
H−1x)

= x⊤(A − BK)⊤Q(A − BK)x + x⊤Qx + x⊤K⊤RKx − σ2Trace(Q)
• Continuing 

 

where the fourth step uses our expression for .

V⋆
H−1(x) − σ2Trace(Q) = x⊤((A − BK)⊤Q(A − BK) + Q + K⊤RK)x

= x⊤(AQA + Q − 2K⊤B⊤QA + K⊤(B⊤QB + R)K)x

= x⊤(AQA + Q − 2K⊤(B⊤QB + R)K + K⊤(B⊤QB + R)K)x

= x⊤(AQA + Q − K⊤(B⊤QB + R)K)x

= x⊤PH−1x .

K = K⋆
H−1



Proof: wrapping up…



Proof: wrapping up…

• This implies that: 

 
Q⋆

H−2(x, u) = E[V⋆
H−1(Ax + Bu + wH−2)] + x⊤Qx + u⊤Ru

= (Ax + Bu)⊤PH−1(Ax + Bu) + σ2(Trace(PH−1) + Trace(Q)) + x⊤Qx + u⊤Ru .



Proof: wrapping up…

• This implies that: 

 
Q⋆

H−2(x, u) = E[V⋆
H−1(Ax + Bu + wH−2)] + x⊤Qx + u⊤Ru

= (Ax + Bu)⊤PH−1(Ax + Bu) + σ2(Trace(PH−1) + Trace(Q)) + x⊤Qx + u⊤Ru .

• The remainder of the proof follows from a recursive argument, which can be verified along 
identical lines to the  case.t = H − 1
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Infinite horizon case

Theorem:  
Suppose that the optimal average cost is finite.
Let  be a solution to the following algebraic Riccati equation: 
	  
(Note that  is a positive definite matrix).

P
P = ATPA + Q − ATPB(BTPB + R)−1BTPA .
P

We have that the optimal policy is:  
	  
where the optimal control gain is: 
	  

π⋆(x) = − K⋆x

K* = − (BTPB + R)−1BTPA

We have that  is unique and that the optimal average cost is . P σ2Trace(P)



Semidefinite Programs to find P
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The Primal SDP: 

(for the infinite horizon LQR)

• The primal optimization problem is given as: 

	  

where the optimization variable is .  

maximize σ2Trace(P)

subject to [ATPA + Q − I A⊤PB
BTPA B⊤PB + R] ⪰ 0, P ⪰ 0

P

• This SDP has a unique solution, ,  which implies: 

•  satisfies the Ricatti equations.

• The optimal average cost of the infinite horizon LQR is 

• The optimal policy use the gain matrix:  

P⋆

P⋆

σ2Trace(P⋆)
K* = − (BTPB + R)−1BTPA

• Proof idea: Following from the Ricatti equation,  
we have the relaxation that for all matrices , the matrix  must satisfy: 
	

K P
P ⪰ (A − BK)TP(A − BK) + Q − K⊤RK .



The Dual SDP: 
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The Dual SDP: 
• The dual optimization problem is: 

	 	  

where the optimization variable is , a  matrix, with the block structure: 

	 	  

minimize Trace (Σ ⋅ [Q 0
0 R])

subject to Σxx = (A B)Σ(A B)⊤ + σ2I, Σ ⪰ 0
Σ (d + k) × (d + k)

Σ = [Σxx Σxu

Σux Σuu]
• The interpretation of  is that it is the covariance matrix of the stationary distribution.  

This analogous to state-action visitation distributions (the dual variables in the MDP LP). 
Σ

• This SDP has a unique solution, say . The optimal gain matrix is then given by: Σ⋆

K⋆ = − Σ⋆
ux(Σ⋆

xx)−1


