Optimal Control Theory and
Linear Quadratic Regulators

CS 6789: Foundations of Reinforcement Learning



Today

 Recap:
« TRPO/PPO

* Today: LQRs
 The model + planning + SDP formulations
 LQRs are MDPs with special structure



Recap



TRPO: second order Taylor’s expansion

TRPO: max V V™(p)" (0 — 6,)

0
st. (0—6,) Fp0—0) <6

max V”(p)

Ty

We have a closed form solution:
s.t., KL (Pr*o||Pr?) <6
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 Self-normalized step-size
(Learning rate is adaptive)

«Solve with CQG



PPO

» To find the next policy r,_ ;, use objective:
max Eggnk, . q0015A"(S, a)
0

subjectto  sup || 7% - | ) — (- ]s) <0,

. TV

This is like the CPI greedy policy chooser.



PPO

» To find the next policy r,_ ;, use objective:
max Eggnk, . q0015A"(S, a)
0

subjectto  sup || 7% - | ) — (- ]s) <0,

. TV

This is like the CPI greedy policy chooser.

* We can do multiple gradient steps by rewriting the objective function using
importance weighting:

s ’(als)
max T Ly
p s~d aﬂt(lS)—ﬂt("S)

practice: enforce constraint by just changing @ a “little” (say with a few gradient
steps)

A™(s, a)
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Robotics and Controls

Dexterous Robotic Hand Manipulation
OpenAl, 2019




Optimal Control

* adynamical system is described as
Xep1 = X Uy W)
where f, maps a state x, € R¢, a control (the action) u, € R*, and a disturbance w,,
to the next state x,, | € RY, starting from an initial state X)-



Optimal Control

* adynamical system is described as
Xep1 = X Uy W)
where f, maps a state x, € R¢, a control (the action) u, € R*, and a disturbance w,,
to the next state x,, | € RY, starting from an initial state X)-

* The objective is to find the control policy 7 which minimizes the long term cost,
H-1

minimize Eﬂl Z c(x, u,)
=0 _
such that Xy 1 = ]Ct(xt’ U Wt)

where H is the time horizon (which can be finite or infinite) and where w;, is either
statistical or constrained in some way.
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* |n practice, this is often solved by considering the linearized control (sub-)problem where
the dynamics are approximated by

X1 =Ax,+Bu +w,
with the matrices A, and B, are derivatives of the dynamics f (around some trajectory)
and where the costs are approximated by a quadratic function in x, and u..
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Linearization Approach

* |n practice, this is often solved by considering the linearized control (sub-)problem where
the dynamics are approximated by

X1 =Ax,+Bu +w,
with the matrices A, and B, are derivatives of the dynamics f (around some trajectory)
and where the costs are approximated by a quadratic function in x, and u..

* This linearization is often accurate provided the noise is ‘small’, the dynamics are ‘smooth’,
and controls don’t change too quickly. (The details are important).

* This approach does not capture global information.
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(clearly false but this is an effective approach once when we ‘close’).



The Linear Quadratic Regulator (LQR)

(finite horizon case)

* |et’s suppose this local approximation to a non-linear model is globally valid.
(clearly false but this is an effective approach once when we ‘close’).

* The finite horizon LQR problem is given by

minimize E | x,0xy + Z(XtTth u,' Ru,)
=0

suchthat x,,=Ax +Bu +w,, x5~ D,w, ~N(®0,I),

where initial state x, ~ D is randomly distributed according D;

the disturbance w, &€ R%is multi-variate normal, with covariance 61

A € R4 and B, € Rk are referred to as system (or transition) matrices;
) R%4 and R € R** are psd matrices that parameterize the quadratic costs.



The Linear Quadratic Regulator (LQR)

(finite horizon case)

* |et’s suppose this local approximation to a non-linear model is globally valid.
(clearly false but this is an effective approach once when we ‘close’).

* The finite horizon LQR problem is given by

minimize E | x,0xy + Z(erth u,' Ru,)
=0

suchthat x,,=Ax +Bu +w,, x5~ D,w, ~N(®0,I),

where initial state x, ~ D is randomly distributed according D;

the disturbance w, &€ R%is multi-variate normal, with covariance 61

A € R4 and B, € Rk are referred to as system (or transition) matrices;
) R%4 and R € R** are psd matrices that parameterize the quadratic costs.

. Note that this model is a finite horizon MDP, where the S = R% and A = R*.
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The Linear Quadratic Regulator (LQR)

(infinite horizon case)

* The infinite horizon LQR problem is given by

minimize  lim —E lz (xtTth + utTRut)]

H-oo0o H

suchthat x,_, =Ax,+Bu +w,, x5~ D, w, ~ N(O0,6°I).

where A and B are time homogenous.



The Linear Quadratic Regulator (LQR)

(infinite horizon case)

* The infinite horizon LQR problem IS given by
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H—oo H Z( t Q t t t)

such that x,,; = Ax, + But +w,, xy~D, w,~ NQ0,°I.
where A and B are time homogenous.
e Studied often in theory, but less relevant in practice (?)

(largely due to that time homogenous, globally linear models are rarely good
approximations)
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The Linear Quadratic Regulator (LQR)

(infinite horizon case)

* The infinite horizon LQR problem IS given by

S T T
minimize hl{l_I)I;OEE Z(x Ox, + u, Ru,)

such that x,.; =Ax, + But +w,, xy~D, w ~ N®O,c°I).

where A and B are time homogenous.

e Studied often in theory, but less relevant in practice (?)
(largely due to that time homogenous, globally linear models are rarely good
approximations)

* Discounted case never studied.
(discounting doesn’t necessarily make costs finite)




Bellman Optimality:

Value lteration and the Ricatti Equations



Same defs (but for costs)

» define the value function V} : R? - R as

H—1
Vi) = E[xjOxy + ) (x
t=h

Ox, + u,

Ru,)

ﬂ,xh — .X],

+ and the state-action value QF : RY X R — R as:

H-1
Qr(x,u) =E [X;QXH + 2 (x,' Ox, + u,' Ru,)

=h

ﬂ,xh =X,I/th — M],
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and where P,; = 0.
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Value lteration and the Ricatti Equations

Theorem: (for the finite horizon case, with time homogenous A, = A, B, = B)
The optimal policy is a linear controller specified by:

7*(x) = — K*x, where K* = (B'P,,,B+R)"'B'P, A
where P, can be computed iteratively, in a backwards manner, using the following

algebraic Ricatti equations, where for t € [H |,
P=A'"P,_A+Q—-A'"P_,BB'P,_,B+R)"'B'P_ A

=A'"P L A+Q—-(K: ) (B'PB+RK},
and where P,; = 0.

The above equation is simply the value iteration algorithm.
Furthermore, for t € |H |, we have that:

H
V¥(x) = xTPtx + o° Z Trace(P))

h=t+1



Proof: optimal controlat h = H — 1

 Bellman equations = there is an optimal policy which is deterministic + only a

function of X, and 7.



Proof: optimal controlat h = H — 1

 Bellman equations = there is an optimal policy which is deterministic + only a
function of X, and 1.

* Due to that xy = Ax + Bu + wy_, we have:
Oy (x,u) = E[(Ax + Bu + wy_;) O(Ax + Bu + WH_I)] +x'Ox+u'Ru

= (Ax + Bu) ' Q(Ax + Bu) + ¢°Trace(Q) + x'Ox + u ' Ru



Proof: optimal controlat h = H — 1

 Bellman equations = there is an optimal policy which is deterministic + only a
function of X, and 1.

* Due to that xy = Ax + Bu + wy_, we have:
Oy (x,u) = E[(Ax + Bu + WH_l)TQ(Ax + Bu + WH_I)] +x'Ox+u'Ru
= (Ax + Bu)'O(Ax + Bu) + o°Trace(Q) + x ' Ox + u'Ru
* This is a quadratic function of u. Solving for the optimal control at x, gives:
ﬂ;]‘_l(x) = —(B'OB + R)_lBTQAx = — Kg_lx,

where the last step uses that /7, := (.
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Proof: optimal valueat h = H — 1

+ (shorthand K7;_, = K). using the optimal control at:
Vi () = Qy_(x, — KJ;_,x)
=x'(A—BK)'OA — BK)x + x"Ox + x' K'RKx — 6°Trace(Q)



Proof: optimal valueat h = H — 1

« (shorthand Kg_l = K). using the optimal control at:
Vi) = Oy_1(x, — KJ_,x)
=x'(A—BK)'OA — BK)x + x"Ox + x'K'RKx — 6*Trace(Q)

* Continuing

V¥ (x) — 6*Trace(Q) = x ((A _BK)"O(A—BK)+ O+ K RK)x

x! (AQA +0-2K'B'"OA+ K" (B'OB + R)K)x

X7 (AQA +0-2KT(BTOB + R)K + KT(BTOB + R)K)x

= xT (AQA +0-K"(BTOB + R)K)x
=x'Py_x.

where the fourth step uses our expression for K = K};_;.
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Proof: wrapping up...

 This implies that:

Q]j-]k_Z(xa I/l) — E[V*_I(Ax + Bu + WH—Z)] + XTQX + MTRM

= (Ax + Bu)TPH_l(Ax + Bu) + az(Trace(PH_l) + Trace(Q)) +x"Ox+u'Ru.



Proof: wrapping up...

 This implies that:
Q;}_Q(x, i) = E[V*_I(Ax + Bu + wy_,)] + x"Ox + u'Ru

= (Ax + Bu)TPH_l(Ax + Bu) + 02<Trace(PH_1) + Trace(Q)) +x"Ox+u'Ru.

* The remainder of the proof follows from a recursive argument, which can be verified along
identical lines tothe t = H — 1 case.
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Infinite horizon case

Suppose that the optimal average cost is finite.

Let P be a solution to the following algebraic Riccati equation:
P=A"PA+Q—-A"PB(B'PB+R)"'B'PA.

(Note that P is a positive definite matrix).

We have that the optimal policy is:

m*(x) = — K*x
where the optimal control gain is:
K*¥=—(B'"PB+ R) 'B'PA

We have that P is unique and that



Semidefinite Programs to find P



The Primal SDP:

(for the infinite horizon LQR)

* The primal optimization problem is given as:
maximize o“Trace(P)

T N T
subject to ATPA+Q—=1 A PB >0, P>0

B'PA B'PB+R|
where the optimization variable is P.
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This SDP has a unique solution, P*, which implies:

 P* satisfies the Ricatti equations.

. The optimal average cost of the infinite horizon LQR is o Trace(P*)

. The optimal policy use the gain matrix: K* = — (B’ PB + R)"'B' PA



The Primal SDP:

(for the infinite horizon LQR)

The primal optimization problem is given as:
maximize o“Trace(P)

T B T
subject to ATPA+Q—=1 A PB >0, P>0

B'PA B'PB+R|
where the optimization variable is P.

This SDP has a unique solution, P*, which implies:

 P* satisfies the Ricatti equations.

. The optimal average cost of the infinite horizon LQR is o Trace(P*)

. The optimal policy use the gain matrix: K* = — (B’ PB + R)"'B' PA

Proof idea: Following from the Ricatti equation,
we have the relaxation that for all matrices K, the matrix P must satisfy:

P>(A—-BK)'P(A-BK)+ QO —-K'RK.



The Dual SDP:

* The dual optimization problem is:

minimize Trace (Z- [Q O])
0O R

subjectto 2. =(A B)X(A B) + o’l, >0
where the optimization variable is 2, a (d + k) X (d + k) matrix, with the block structure:

[Zxx qu]
D =

2 2

Ux Uuu
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The interpretation of X is that it is the covariance matrix of the stationary distribution.
This analogous to state-action visitation distributions (the dual variables in the MDP LP).



The Dual SDP:

* The dual optimization problem is:
0 01

minimize Tracel| X -
o

subjectto 2., =(A B)2X(A B) + o’l, >0
where the optimization variable is 2, a (d + k) X (d + k) matrix, with the block structure:

Z Zxx ZXM
B DY)

Ux Uuu

* The interpretation of X is that it is the covariance matrix of the stationary distribution.
This analogous to state-action visitation distributions (the dual variables in the MDP LP).

» This SDP has a unique solution, say X*. The optimal gain matrix is then given by:
K* = — ZDTX(Z;(X)_l



