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• Infinite horizon model + SDP formulations
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Optimal Control
•  maps a state , a control (the action) , and a disturbance ,  

to the next state , starting from an initial state .  
 

• The objective is to find the control policy  which minimizes the long term cost,    

 

where  is the time horizon (which can be finite or infinite)

• often solved by considering the linearized control (sub-)problem where 

the dynamics are approximated by  
 

with the matrices  and  are derivatives of the dynamics  (around some 
trajectory) and where the costs are approximated by a quadratic function in  and .   

ft xt ∈ Rd ut ∈ Rk wt
xt+1 ∈ Rd x0

xt+1 = ft(xt, ut, wt)

π

minimize Eπ[
H−1

∑
t=0

ct(xt, ut)]
such that xt+1 = ft(xt, ut, wt)

H

xt+1 = Atxt + Btut + wt,
At Bt f

xt ut



The Linear Quadratic Regulator (LQR) 
(finite horizon case)

• Let’s suppose this local approximation to a non-linear model is globally valid.  
(clearly false but this is an effective approach once when we ‘close’). 

• The finite horizon LQR problem is given by 

 

where initial state  is randomly distributed according ;   
the disturbance  is multi-variate normal, with covariance ;  

 and  are referred to as system (or transition) matrices; 
 and  are psd matrices that parameterize the quadratic costs.   

• Note that this model is  a finite horizon MDP, where the  and .

minimize E [x⊤
HQxH +

H−1

∑
t=0

(x⊤
t Qxt + u⊤

t Rut)]
such that xt+1 = Atxt + Btut + wt , x0 ∼ D, wt ∼ N(0,σ2I) ,

x0 ∼ D D
wt ∈ Rd σ2I

At ∈ Rd×d Bt ∈ Rd×k

Q ∈ Rd×d R ∈ Rk×k

S = Rd A = Rk



Same defs (but for costs)

• define the value function  as 




• and the state-action value  as: 

Vπ
h : Rd → R

Vπ
h (x) = E[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x],

Qπ
h : Rd × Rk → R

Qπ
h (x, u) = E[x⊤

HQxH +
H−1

∑
t=h

(x⊤
t Qxt + u⊤

t Rut) π, xh = x, uh = u],



Value Iteration and the Ricatti Equations
Theorem: (for the finite horizon case, with time homogenous ) 
The optimal policy is a linear controller specified by:  
	  where 

where  can be computed iteratively, in a backwards manner, using the following 
algebraic Ricatti equations, where for , 

	  

and where . 

The above equation is simply the value iteration algorithm.

Furthermore, for , we have that: 

	

At = A, Bt = B

π⋆(xt) = − K⋆
t xt K⋆

t = (B⊤Pt+1B + R)−1B⊤Pt+1A
Pt

t ∈ [H]
Pt = A⊤Pt+1A + Q − A⊤Pt+1B(B⊤Pt+1B + R)−1B⊤Pt+1A

= A⊤Pt+1A + Q − (K⋆
t+1)

⊤(B⊤Pt+1B + R)K⋆
t+1

PH = Q

t ∈ [H]

V⋆
t (x) = x⊤Ptx + σ2

H

∑
h=t+1

Trace(Ph)



Proof: optimal control at h = H − 1

• Bellman equations  there is an optimal policy which is deterministic + only a 
function of  and .


• Due to that , we have: 




• This is a quadratic function of . Solving for the optimal control at , gives: 
 

where the last step uses that . 

⇒
xt t
xH = Ax + Bu + wH−1

QH−1(x, u) = E[(Ax + Bu + wH−1)⊤Q(Ax + Bu + wH−1)] + x⊤Qx + u⊤Ru

= (Ax + Bu)⊤Q(Ax + Bu) + σ2Trace(Q) + x⊤Qx + u⊤Ru
u x

π⋆
H−1(x) = − (B⊤QB + R)−1B⊤QAx = − K⋆

H−1x,
PH := Q



Proof: optimal value at h = H − 1
• (shorthand ). using the optimal control at: 




• Continuing 

 

where the fourth step uses our expression for .

K⋆
H−1 = K

V⋆
H−1(x) = QH−1(x, − K⋆

H−1x)

= x⊤(A − BK)⊤Q(A − BK)x + x⊤Qx + x⊤K⊤RKx − σ2Trace(Q)

V⋆
H−1(x) − σ2Trace(Q) = x⊤((A − BK)⊤Q(A − BK) + Q + K⊤RK)x

= x⊤(AQA + Q − 2K⊤B⊤QA + K⊤(B⊤QB + R)K)x

= x⊤(AQA + Q − 2K⊤(B⊤QB + R)K + K⊤(B⊤QB + R)K)x

= x⊤(AQA + Q − K⊤(B⊤QB + R)K)x

= x⊤PH−1x .

K = K⋆
H−1



Proof: wrapping up…

• This implies that: 

 


• The remainder of the proof follows from a recursive argument, which can be verified along 
identical lines to the  case.

Q⋆
H−2(x, u) = E[V⋆

H−1(Ax + Bu + wH−2)] + x⊤Qx + u⊤Ru

= (Ax + Bu)⊤PH−1(Ax + Bu) + σ2(Trace(PH−1) + Trace(Q)) + x⊤Qx + u⊤Ru .

t = H − 1



Today



The Linear Quadratic Regulator (LQR) 
(infinite horizon case)

• The infinite horizon LQR problem is given by 

 

where  and  are time homogenous. 

• Studied often in theory, but less relevant in practice (?) 
(largely due to that time homogenous, globally linear models are rarely good 
approximations)


• Discounted case never studied. 
(discounting doesn’t necessarily make costs finite)


• Note that we can have ‘unbounded’ average cost.

minimize lim
H→∞

1
H

E [
H

∑
t=0

(x⊤
t Qxt + u⊤

t Rut)]
such that xt+1 = Axt + But + wt , x0 ∼ D, wt ∼ N(0,σ2I) .

A B



Infinite horizon case

Theorem:  
Suppose that the optimal average cost is finite. 
Let  be a solution to the following algebraic Riccati equation: 
	  
(Note that  is a positive definite matrix).

P
P = ATPA + Q − ATPB(BTPB + R)−1BTPA .
P



Infinite horizon case

Theorem:  
Suppose that the optimal average cost is finite. 
Let  be a solution to the following algebraic Riccati equation: 
	  
(Note that  is a positive definite matrix).

P
P = ATPA + Q − ATPB(BTPB + R)−1BTPA .
P

We have that the optimal policy is:  
	  
where the optimal control gain is: 
	  
 
We have that  is unique and that the optimal average cost is . 

π⋆(x) = − K⋆x

K* = − (BTPB + R)−1BTPA

P σ2Trace(P)



Semidefinite Programs to find P



The Primal SDP: 

(for the infinite horizon LQR)

• The primal optimization problem is given as: 

	  

where the optimization variable is .  

maximize σ2Trace(P)

subject to [ATPA + Q − I A⊤PB
BTPA B⊤PB + R] ⪰ 0, P ⪰ 0

P



The Primal SDP: 

(for the infinite horizon LQR)

• The primal optimization problem is given as: 

	  

where the optimization variable is .  

maximize σ2Trace(P)

subject to [ATPA + Q − I A⊤PB
BTPA B⊤PB + R] ⪰ 0, P ⪰ 0

P

• This SDP has a unique solution, ,  which implies: 

•  satisfies the Ricatti equations.

• The optimal average cost of the infinite horizon LQR is 

• The optimal policy use the gain matrix:  

P⋆

P⋆

σ2Trace(P⋆)
K* = − (BTPB + R)−1BTPA



The Primal SDP: 

(for the infinite horizon LQR)

• The primal optimization problem is given as: 

	  

where the optimization variable is .  

maximize σ2Trace(P)

subject to [ATPA + Q − I A⊤PB
BTPA B⊤PB + R] ⪰ 0, P ⪰ 0

P

• This SDP has a unique solution, ,  which implies: 

•  satisfies the Ricatti equations.

• The optimal average cost of the infinite horizon LQR is 

• The optimal policy use the gain matrix:  

P⋆

P⋆

σ2Trace(P⋆)
K* = − (BTPB + R)−1BTPA

• Proof idea: Following from the Ricatti equation,  
we have the relaxation that for all matrices , the matrix  must satisfy: 
	

K P
P ⪰ ATPA + Q − ATPB(BTPB + R)−1BTPA



The Dual SDP: 
• The dual optimization problem is: 

	 	  

where the optimization variable is , a  matrix, with the block structure: 

	 	  

minimize Trace (Σ ⋅ [Q 0
0 R])

subject to Σxx = (A B)Σ(A B)⊤ + σ2I, Σ ⪰ 0
Σ (d + k) × (d + k)

Σ = [Σxx Σxu

Σux Σuu]



The Dual SDP: 
• The dual optimization problem is: 

	 	  

where the optimization variable is , a  matrix, with the block structure: 

	 	  

minimize Trace (Σ ⋅ [Q 0
0 R])

subject to Σxx = (A B)Σ(A B)⊤ + σ2I, Σ ⪰ 0
Σ (d + k) × (d + k)

Σ = [Σxx Σxu

Σux Σuu]
• The interpretation of  is that it is the covariance matrix of the stationary distribution.  

This analogous to state-action visitation distributions (the dual variables in the MDP LP). 
Σ



The Dual SDP: 
• The dual optimization problem is: 

	 	  

where the optimization variable is , a  matrix, with the block structure: 

	 	  

minimize Trace (Σ ⋅ [Q 0
0 R])

subject to Σxx = (A B)Σ(A B)⊤ + σ2I, Σ ⪰ 0
Σ (d + k) × (d + k)

Σ = [Σxx Σxu

Σux Σuu]
• The interpretation of  is that it is the covariance matrix of the stationary distribution.  

This analogous to state-action visitation distributions (the dual variables in the MDP LP). 
Σ

• This SDP has a unique solution, say . The optimal gain matrix is then given by: Σ⋆

K⋆ = − Σ⋆
ux(Σ⋆

xx)−1


