Optimal Control Theory and Linear Quadratic Regulators

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Today

- Recap:
- LQR model + Ricatti equations
- Today: LQRs
- Infinite horizon model + SDP formulations
- (convex) SLS parameterization

Recap

Robotics and Controls

Dexterous Robotic Hand Manipulation
OpenAI, 2019

Optimal Control

- f_{t} maps a state $x_{t} \in R^{d}$, a control (the action) $u_{t} \in R^{k}$, and a disturbance w_{t}, to the next state $x_{t+1} \in R^{d}$, starting from an initial state x_{0}.

$$
x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)
$$

- The objective is to find the control policy π which minimizes the long term cost,
minimize

$$
E_{\pi}\left[\sum_{t=0}^{H-1} c_{t}\left(x_{t}, u_{t}\right)\right]
$$

such that

$$
x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)
$$

where H is the time horizon (which can be finite or infinite)

- often solved by considering the linearized control (sub-)problem where the dynamics are approximated by

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+w_{t},
$$

with the matrices A_{t} and B_{t} are derivatives of the dynamics f (around some trajectory) and where the costs are approximated by a quadratic function in x_{t} and u_{t}.

The Linear Quadratic Regulator (LQR)

(finite horizon case)

- Let's suppose this local approximation to a non-linear model is globally valid. (clearly false but this is an effective approach once when we 'close').
- The finite horizon LQR problem is given by
minimize $E\left[x_{H}^{\top} Q x_{H}+\sum_{t=0}^{H-1}\left(x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}\right)\right]$
such that $\quad x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+w_{t}, \quad x_{0} \sim D, w_{t} \sim N\left(0, \sigma^{2} I\right)$,
where initial state $x_{0} \sim D$ is randomly distributed according D;
the disturbance $w_{t} \in R^{d}$ is multi-variate normal, with covariance $\sigma^{2} I$;
$A_{t} \in R^{d \times d}$ and $B_{t} \in R^{d \times k}$ are referred to as system (or transition) matrices;
$Q \in R^{d \times d}$ and $R \in R^{k \times k}$ are psd matrices that parameterize the quadratic costs.
- Note that this model is a finite horizon MDP, where the $S=R^{d}$ and $A=R^{k}$.

Same defs (but for costs)

- define the value function $V_{h}^{\pi}: R^{d} \rightarrow R$ as

$$
V_{h}^{\pi}(x)=E\left[x_{H}^{\top} Q x_{H}+\sum_{t=h}^{H-1}\left(x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}\right) \mid \pi, x_{h}=x\right],
$$

- and the state-action value $Q_{h}^{\pi}: R^{d} \times R^{k} \rightarrow R$ as:

$$
Q_{h}^{\pi}(x, u)=E\left[x_{H}^{\top} Q x_{H}+\sum_{t=h}^{H-1}\left(x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}\right) \mid \pi, x_{h}=x, u_{h}=u\right],
$$

Value Iteration and the Ricatti Equations

Theorem: (for the finite horizon case, with time homogenous $A_{t}=A, B_{t}=B$)
The optimal policy is a linear controller specified by:

$$
\pi^{\star}\left(x_{t}\right)=-K_{t}^{\star} x_{t} \text { where } K_{t}^{\star}=\left(B^{\top} P_{t+1} B+R\right)^{-1} B^{\top} P_{t+1} A
$$

where P_{t} can be computed iteratively, in a backwards manner, using the following algebraic Ricatti equations, where for $t \in[H]$,

$$
\begin{aligned}
P_{t} & =A^{\top} P_{t+1} A+Q-A^{\top} P_{t+1} B\left(B^{\top} P_{t+1} B+R\right)^{-1} B^{\top} P_{t+1} A \\
& =A^{\top} P_{t+1} A+Q-\left(K_{t+1}^{\star}\right)^{\top}\left(B^{\top} P_{t+1} B+R\right) K_{t+1}^{\star}
\end{aligned}
$$

and where $P_{H}=Q$.
The above equation is simply the value iteration algorithm. Furthermore, for $t \in[H]$, we have that:

$$
V_{t}^{\star}(x)=x^{\top} P_{t} x+\sigma^{2} \sum_{h=t+1}^{H} \operatorname{Trace}\left(P_{h}\right)
$$

Proof: optimal control at $h=H-1$

- Bellman equations \Rightarrow there is an optimal policy which is deterministic + only a function of x_{t} and t.
- Due to that $x_{H}=A x+B u+w_{H-1}$, we have:

$$
\begin{aligned}
Q_{H-1}(x, u) & =E\left[\left(A x+B u+w_{H-1}\right)^{\top} Q\left(A x+B u+w_{H-1}\right)\right]+x^{\top} Q x+u^{\top} R u \\
& =(A x+B u)^{\top} Q(A x+B u)+\sigma^{2} \operatorname{Trace}(Q)+x^{\top} Q x+u^{\top} R u
\end{aligned}
$$

- This is a quadratic function of u. Solving for the optimal control at x, gives:
$\pi_{H-1}^{\star}(x)=-\left(B^{\top} Q B+R\right)^{-1} B^{\top} Q A x=-K_{H-1}^{\star} x$,
where the last step uses that $P_{H}:=Q$.

Proof: optimal value at $h=H-1$

- (shorthand $K_{H-1}^{\star}=K$). using the optimal control at:

$$
\begin{aligned}
V_{H-1}^{\star}(x) & =Q_{H-1}\left(x,-K_{H-1}^{\star} x\right) \\
& =x^{\top}(A-B K)^{\top} Q(A-B K) x+x^{\top} Q x+x^{\top} K^{\top} R K x-\sigma^{2} \operatorname{Trace}(Q)
\end{aligned}
$$

- Continuing

$$
\begin{aligned}
V_{H-1}^{\star}(x)-\sigma^{2} \operatorname{Trace}(Q) & =x^{\top}\left((A-B K)^{\top} Q(A-B K)+Q+K^{\top} R K\right) x \\
& =x^{\top}\left(A Q A+Q-2 K^{\top} B^{\top} Q A+K^{\top}\left(B^{\top} Q B+R\right) K\right) x \\
& =x^{\top}\left(A Q A+Q-2 K^{\top}\left(B^{\top} Q B+R\right) K+K^{\top}\left(B^{\top} Q B+R\right) K\right) x \\
& =x^{\top}\left(A Q A+Q-K^{\top}\left(B^{\top} Q B+R\right) K\right) x \\
& =x^{\top} P_{H-1} x .
\end{aligned}
$$

where the fourth step uses our expression for $K=K_{H-1}^{\star}$.

Proof: wrapping up...

- This implies that:

$$
\begin{aligned}
Q_{H-2}^{\star}(x, u) & =E\left[V_{H-1}^{\star}\left(A x+B u+w_{H-2}\right)\right]+x^{\top} Q x+u^{\top} R u \\
& =(A x+B u)^{\top} P_{H-1}(A x+B u)+\sigma^{2}\left(\operatorname{Trace}\left(P_{H-1}\right)+\operatorname{Trace}(Q)\right)+x^{\top} Q x+u^{\top} R u .
\end{aligned}
$$

- The remainder of the proof follows from a recursive argument, which can be verified along identical lines to the $t=H-1$ case.

Today

The Linear Quadratic Regulator (LQR) (infinite horizon case)

- The infinite horizon LQR problem is given by
minimize $\lim _{H \rightarrow \infty} \frac{1}{H} E\left[\sum_{t=0}^{H}\left(x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}\right)\right]$
such that $\quad x_{t+1}=A x_{t}+B u_{t}+w_{t}, \quad x_{0} \sim D, w_{t} \sim N\left(0, \sigma^{2} I\right)$.
where A and B are time homogenous.
- Studied often in theory, but less relevant in practice (?) (largely due to that time homogenous, globally linear models are rarely good approximations)
- Discounted case never studied. (discounting doesn't necessarily make costs finite)
- Note that we can have 'unbounded' average cost.

Infinite horizon case

Theorem:

Suppose that the optimal average cost is finite.
Let P be a solution to the following algebraic Riccati equation:

$$
P=A^{T} P A+Q-A^{T} P B\left(B^{T} P B+R\right)^{-1} B^{T} P A .
$$

(Note that P is a positive definite matrix).

Infinite horizon case

Theorem:

Suppose that the optimal average cost is finite.
Let P be a solution to the following algebraic Riccati equation:

$$
P=A^{T} P A+Q-A^{T} P B\left(B^{T} P B+R\right)^{-1} B^{T} P A
$$

(Note that P is a positive definite matrix).
We have that the optimal policy is:

$$
\pi^{\star}(x)=-K^{\star} x
$$

where the optimal control gain is:

$$
K^{*}=-\left(B^{T} P B+R\right)^{-1} B^{T} P A
$$

We have that P is unique and that the optimal average cost is $\sigma^{2} \operatorname{Trace}(P)$.

Semidefinite Programs to find P

The Primal SDP:

(for the infinite horizon LQR)

- The primal optimization problem is given as:

$$
\begin{array}{ll}
\text { maximize } & \sigma^{2} \operatorname{Trace}(P) \\
\text { subject to } & {\left[\begin{array}{rl}
A^{T} P A+Q-I & A^{\top} P B \\
B^{T} P A & B^{\top} P B+R
\end{array}\right] \geq 0, \quad P \geq 0}
\end{array}
$$

where the optimization variable is P.

The Primal SDP:

(for the infinite horizon LQR)

- The primal optimization problem is given as:

$$
\begin{array}{ll}
\text { maximize } & \sigma^{2} \operatorname{Trace}(P) \\
\text { subject to } & {\left[\begin{array}{rl}
A^{T} P A+Q-I & A^{\top} P B \\
B^{T} P A & B^{\top} P B+R
\end{array}\right] \geq 0, \quad P \geq 0}
\end{array}
$$

where the optimization variable is P.

- This SDP has a unique solution, P^{\star}, which implies:
- P^{\star} satisfies the Ricatti equations.
- The optimal average cost of the infinite horizon LQR is $\sigma^{2} \operatorname{Trace}\left(P^{\star}\right)$
- The optimal policy use the gain matrix: $K^{*}=-\left(B^{T} P B+R\right)^{-1} B^{T} P A$

The Primal SDP:

(for the infinite horizon LQR)

- The primal optimization problem is given as:

$$
\begin{array}{ll}
\text { maximize } & \sigma^{2} \operatorname{Trace}(P) \\
\text { subject to } & {\left[\begin{array}{rl}
A^{T} P A+Q-I & A^{\top} P B \\
B^{T} P A & B^{\top} P B+R
\end{array}\right] \geq 0, \quad P \geq 0}
\end{array}
$$

where the optimization variable is P.

- This SDP has a unique solution, P^{\star}, which implies:
- P^{\star} satisfies the Ricatti equations.
- The optimal average cost of the infinite horizon LQR is $\sigma^{2} \operatorname{Trace}\left(P^{\star}\right)$
- The optimal policy use the gain matrix: $K^{*}=-\left(B^{T} P B+R\right)^{-1} B^{T} P A$
- Proof idea: Following from the Ricatti equation, we have the relaxation that for all matrices K, the matrix P must satisfy:

$$
P \geq A^{T} P A+Q-A^{T} P B\left(B^{T} P B+R\right)^{-1} B^{T} P A
$$

The Dual SDP:

- The dual optimization problem is:

$$
\begin{array}{ll}
\text { minimize } & \operatorname{Trace}\left(\Sigma \cdot\left[\begin{array}{ll}
Q & 0 \\
0 & R
\end{array}\right]\right) \\
\text { subject to } & \Sigma_{x x}=\left(\begin{array}{ll}
A & B
\end{array}\right) \Sigma\left(\begin{array}{ll}
A & B
\end{array}\right)^{\top}+\sigma^{2} I,
\end{array} \quad \Sigma \geq 0
$$

where the optimization variable is Σ, a $(d+k) \times(d+k)$ matrix, with the block structure:

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x u} \\
\Sigma_{u x} & \Sigma_{u u}
\end{array}\right]
$$

The Dual SDP:

- The dual optimization problem is:

$$
\begin{array}{ll}
\text { minimize } & \operatorname{Trace}\left(\Sigma \cdot\left[\begin{array}{ll}
Q & 0 \\
0 & R
\end{array}\right]\right) \\
\text { subject to } & \Sigma_{x x}=\left(\begin{array}{ll}
A & B
\end{array}\right) \Sigma\left(\begin{array}{ll}
A & B
\end{array}\right)^{\top}+\sigma^{2} I,
\end{array} \quad \Sigma \geq 0
$$

where the optimization variable is Σ, a $(d+k) \times(d+k)$ matrix, with the block structure:

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x u} \\
\Sigma_{u x} & \Sigma_{u u}
\end{array}\right]
$$

- The interpretation of \sum is that it is the covariance matrix of the stationary distribution. This analogous to state-action visitation distributions (the dual variables in the MDP LP).

The Dual SDP:

- The dual optimization problem is:

$$
\begin{aligned}
\text { minimize } & \text { Trace }\left(\Sigma \cdot\left[\begin{array}{cc}
Q & 0 \\
0 & R
\end{array}\right]\right) \\
\text { subject to } & \Sigma_{x x}=\left(\begin{array}{ll}
A & B
\end{array}\right) \Sigma\left(\begin{array}{ll}
A & B
\end{array}\right)^{\top}+\sigma^{2} I, \quad \Sigma \geq 0
\end{aligned}
$$

where the optimization variable is Σ, a $(d+k) \times(d+k)$ matrix, with the block structure:

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x u} \\
\Sigma_{u x} & \Sigma_{u u}
\end{array}\right]
$$

- The interpretation of Σ is that it is the covariance matrix of the stationary distribution. This analogous to state-action visitation distributions (the dual variables in the MDP LP).
- This SDP has a unique solution, say Σ^{\star}. The optimal gain matrix is then given by: $K^{\star}=-\sum_{u x}^{\star}\left(\Sigma_{x x}^{\star}\right)^{-1}$

