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Learning objective: Intro to exploration

Previously on CS 6789

* Planning via Bellman equations: =~ known underlying MDP known

* Generative model.: ability to reset from anywhere

Today: Exploration

* Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits

e Simplest setting capturing explore-exploit trade-off

* Key ideas extend to richer RL settings



Multi-Armed-Bandits: High-level picture

Setting
 Set of alternatives (arms)

e Each arm has a reward distribution

* Learner adaptively selects arms
* Challenge: Distributions not known
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Multi-Armed-Bandits: High-level picture

Setting Application: Online advertising
 Set of alternatives (arms)  Arms are advertisers
* Each arm has a reward distribution e Each arm has click-through-rate (CTR)
probability of getting clicked
* Learner adaptively selects arms  Platform adaptively selects ads
* Challenge: Distributions not known * Challenge: CTRs are not known
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MARB Protocol

Arm a € [k] has distribution F(a) with mean u(a) and support [0,1]

Atroundt =1...T:

1. Learner selects arm a' (possibly in randomized manner)

2. Reward forarm a: r¢(a) ~ F(a)

3. Learner earns (and only observes) reward r*(a%)



Probabilistic Approximate Correct (PAC)

Benchmark: Best arm had we known the distributions: a* = max u(a)
a

Fixe, 0 >0
How many samples to identify an e-optimal arm a w.p. 1 — 67?

pa™) —p(a) <e




Regret Objective

Explore-exploit version: Average cumulative mean: ALG = %Ztu(at)

Benchmark (no exploration): Mean of best arm: OPT = u(a”)

Regret = OPT — ALG




Greedy algorithm

Pick each arm once; then highest empirical mean
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Greedy algorithm

Pick each arm once; then highest empirical mean

Reward is Bernoulli
1 w.p. 60% and 0 else

— Action 1:
vard is always 0.4

Action 2:

Actual reward

o means

€<0.46<0.2:
Greedy does not achieve PAC

Regret =0.4-0.2-T=0.08-T

Regret linear in time-horizon
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Explore-Then-Commit (ETC)

Pick each arm N(e) = 4log€§k/ %)

11— Hoeffding inequality:
X1, X5, ..., X, rv.in [0,1] with mean u

12}(
nZ i — U
l

times; then highest empirical mean fi(a)

Pr >p|<2-exp(—2np?)
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Explore-Then-Commit (ETC)

. 41 k/d) .. . . . ~
Pick each arm N(e) = Ogeg /) times; then highest empirical mean fi(a)
1
By Hoeffding, Va € [k] after N (¢) plays of a,
with probability = 1 — 6 /k, it holds:
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Explore-Then-Commit (ETC)

: 4log (k/5) .. : . —
Pick each arm N(e) = logeg /9) times; then highest empirical mean fi(a)
By Hoeffding, Va € [k] after N (¢) plays of a,
with probability = 1 — 6 /k, it holds:
UCB = fi(a;) +€/2 fi(a) — p(a)| < €/2

1 By union bound, after N(¢) plays of every arm,
LCB = fi(ay) — €/2 with probability > 1 — §, it holds Va € |k]:

fi(a) — pa)| < €/2




Explore-Then-Commit (ETC)

4log (k/6)

Pick each arm N(e) = = times; then highest empirical mean Ji(a)
1
PACbound: k-N(e) =k- 4logE§k/ %)
UCB =ji(a,) + €/2
0.6
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|
UCB =ji(a,) + €/2

0.6
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Explore-Then-Commit (ETC)

means

times; then highest empirical mean fi(a)

PACbound: k- -N(e) = k- 4’0!162’(/5)

Proof: For selected arm a : fi(a) = ji(a™) and

u(@®) = p(a) < (At +5) - (aa) - <)
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Explore-Then-Commit (ETC)

times; then highest empirical mean fi(a)

. 4log (k/6)

PACbound: k- -N(e) =k 62

Regret bound:

means




Explore-Then-Commit (ETC)

4log (k/6)
€2

Pick each arm N(e) =

times; then highest empirical mean i(a)

UCB =ji(a,) + €/2

PACbound: k- -N(e) = k- 4log€gk/5)
tios(8)
Regretbound: k- —*+e-T+8-T

LCB =ji(a,) — €/2

Setting € = (k - 4log(kT/6))Y/3 - T3 and 6 = 1/T

Regret = 0 ((k -log (kT))l/3 . T?/3 )
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Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A°®
Play round-robin across arms in A®
Remove a from A* if UCB*(a) < max LCB'(a")

a'eat—1 Hoeffding inequality:
X1, X5, oo, Xy rvein [0,1] with mean u

IZX
nZ i — U
l

By Hoeffding and union bound, with probability
log(2kT /4) > 1 —§,itholds Va € [k],t € [T]:

| 2n'(a) pu(a) € [LCB(a), UCB!(a)]

; o, log(2kT/6)
UCB (_a_) =n'(a) + . i@ Pr

>p| <2 exp(—2np?)

LCBY(a) = jit(a) —
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Keep adaptive Upper/Lower Confidence Bounds and active set A°®

Play round-robin across arms in A®

Remove a from A* if UCB*(a) < max LCB'(a")

UCB'(a) = fi'(a) +

LCBY(a) = fit(a) —

N

log(2kT/6)

a'eAt—1

Claim A: If confidence intervals hold, i.e.
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Va, t: u(a) € [LCB'(a), UCB!(a)], the best
arm is never eliminated, i.e., Vt: a* € At



Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A°®
Play round-robin across arms in A®

Remove a from A* if UCB*(a) < max LCB'(a")

a’'eAt—1
log(2kT/6) Claim A: If confidence intervals hold, i.e.
t _ ~t
UCB' (@) = i) + |— oS va,t: pu(a) € [LCB (a), UCB'(a)], the best

N

arm is never eliminated, i.e., Vt: a* € At

log(2kT /&) Proof:
2nt(a) Va # a*: UCBY(a*) = u(a*) = u(a) = LCB(a)

LCBY(a) = jit(a) —
.
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Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A°®

Play round-robin across arms in A®
Remove a from A® if UCB®(a) < max LCB*(a’)

UCB'(a) = fi'(a) +

LCBY(a) = fit(a) —

N

a'eAt—1

log(ZZcT/S) Claim B: In that event, arm a: u(a*) — u(a) = €(a)
1 (a) 2log (2k§‘/6) olays
(e(@))

is eliminated after N(a) =

log(2kT /&) Proof: Let 7(a) be that time. By Claim A: a* € AT

2nt(a) e(a)

\

UCB™ ) (a) < u(a) + —= >
LCB™ @ (g*) > u(a*) — #



Active Arm Elimination (AAE)

. Keep adaptive Upper/Lower Confidence Bounds and active set At

2. Play round-robin across arms in At
3. Remove a from A if UCB*(a) < max LCB*(a')
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UCB!(a) = jit(a) + log(2kT/5) Claim B: In that event, arm a: u(a™) — u(a) = e(a)
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Active Arm Elimination (AAE)

. Keep adaptive Upper/Lower Confidence Bounds and active set At

UCB'(a) = fi'(a) +

LCBY(a) = fit(a) —

N

2. Play round-robin across arms in At
3. Remove a from A if UCB*(a) < max LCB*(a')

a'eAt—1

log(2kT/5) Claim B: In that event, arm a: u(a*) — u(a) = e(a)

\

2n'(a) is eliminated after N(a) = 210 (Zkf/‘” plays
(e(a))
log(ZkT/S) PAC bound
2n'(a) Za:e(a)>e N(a)

Regret bound: Yomin (N(a), T)-€(a) +6-T
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Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A°®

2. Play round-robin across arms in At

3. Remove a from A if UCB*(a) < max LCB*(a')

EAt—l

al

Setting 6 = 1/T
Regret bound:

). g min (

4 log (kT)

e(a)

,e(a)-T)+1

For worst-case choice of e(a) = \/

k-log(kT)

T

Regret = 0O (\/k - T - log(kT))

u(a®) —ula) = ea)



Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

N log(2kT/6)
UCB(a) = i’
(a) = p'(a) + |zt
L CB o log(2kT/6)
(@) = ' (a) - | znt@

Actual reward
means



Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability
> 1—6,itholds Va € |k],t € [T]:

pu(a) € [LCB'(a), UCB(a)]

log(2kT /&
UCB*(a) = [i*(a) + Og;(nt(ag )
\
— log(2kT/6)
LCB/(a) = " (a) — (@)
\

Actual reward
means



Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

UCB'(a) = fi'(a) +

LCBY(a) = jit(a) —

N

log(2kT/6)

2nt(a)
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By Hoeffding and union bound, with probability
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pu(a) € [LCB'(a), UCB(a)]

Claim : In the event that all confidence intervals

confidence intervals hold, the regret is at most
> (UCBt (a®) — LCB*(aY))+ 6T




Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability
> 1—6,itholds Va € |k],t € [T]:

pu(a) € [LCB'(a), UCB(a)]

log(2kT/6)
UCB!(a) = it(a) + |~2 21/
T N 2n*(a) Claim : In the event that all confidence intervals
confidence intervals hold, the regret is at most
- - log(2KkT/6) > (UCBt (a®) — LCB*(a®))+6-T
LCBY(a) = fi(a) — |25 |
N 4 (a) Proof: Regt = u(a*) — u(a?)

< UCB*(a*) — LCBt(a")
< UCB'(a) — LCB(a")



Upper Confidence Bound (UCB)

UCB'(a) = fi*(a) +

N

log(2kT/6)

2nt(a)

LCB'(a) = fi*(a) —

log(2kT/6)

N

2nt(a)

Claim : In the event that all confidence intervals confidence intervals hold, the
> (UCBt (a®) — LCB'(a®)) + +6 - T

regret is at most



Upper Confidence Bound (UCB)

log(2kT/6)
\ 2nt(a)

UCB'(a) = fi*(a) +

LCB'(a) = fi*(a) —

log(2kT/6)

N

2nt(a)

Claim : In the event that all confidence intervals confidence intervals hold, the
regret is at most > (UCBt (at) — LCB*(a®)) ++6 - T

Regret bound by confidence sum

ZkT
Z “(a*) = LCB'(a")) < 2 og(
t =~ \ 2n (a)
4 2kT
<33 sk () oo
Sy 2. B ) kT
a j=1\

(

>y el

\

N(a) ZkT)

a j=1N\

T.k.log(";)>



Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:
1. Extends to RL (see next lecture)

2. Gap-dependent guarantees
 Small modification in analysis

3. Allows for anytime guarantees (unknown horizon)
 Small modification in confidence bounds



Stochastic MAB Protocol

Arm a € [k] has distribution F(a) with mean u(a) and support [0, 1]

Atroundt =1...T:

1. Learner commits to a distribution p* across arms
2. Reward forarm a: rt(a) ~ F(a)
3. Learner draws arm a® ~ p°®

4. Learner earns (and only observes) reward r¢(a®)



Adversarial MAB Protocol

Atroundt =1...T:

1. Learner commits to a distribution p* across arms
2. Reward for arm a: r'(a) € [0, 1] adversarially selected
3. Learner draws arm a® ~ p°®

4. Learner earns (and only observes) reward r¢(a®)



Stochastic and Adversarial worlds

Stochastic world

* If arms have a gap in their means, i.e.,
u(a*) — u(a) = e(a) then regret of
the order of:

2 min (4 log (kT) ,e(a) - T)

e(a)
* If not then regret of the order of VKT

* |If rewards are not stochastic,
stochastic MAB algs: linear regret
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Stochastic world Adversarial world

* If arms have a gap in their means, i.e., « Regret of the order of VKT without
u(a*) — p(a) = e(a) then regret of assuming stochasticity (e.g., EXP3)
the order of:

/4 log (KT) * |If rewards are stochastic, adversarial
Z min ( ,e(a) - T) MAB algs: no enhanced bounds
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* If not then regret of the order of VKT

* |If rewards are not stochastic,
stochastic MAB algs: linear regret



Stochastic and Adversarial worlds

Stochastic world Adversarial world

* If arms have a gap in their means, i.e., « Regret of the order of VKT without
u(a*) — p(a) = e(a) then regret of assuming stochasticity (e.g., EXP3)
the order of:

* |If rewards are stochastic, adversarial

(4 log (KkT)
2 min ( (@ ,e(a) - T) MAB algs: no enhanced bounds

* If not then regret of the order of VKT

* |If rewards are not stochastic,
stochastic MAB algs: linear regret

Question: Best of both worlds?

* Single algorithm with logarithmic
guarantee when input stochastic and
square-root when input adversarial!

[Bubeck,Slivkins, COLT "12]
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Question: Best of both worlds?

* Single algorithm with logarithmic guarantee when input stochastic and
square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

* Approach 1: Start from AAE and test for non-consistency; if identified then
switch to EXP3 [Bubeck, Slivkins, COLT ’12] [Auer, Chiang, ICML’ 16]

* Approach 2: Start from adversarial with aggressive “learning rate”; adapt it
over time [Seldin, Slivkins, ICML14] [Seldin, Lugosi, COLT ’17]
[Wei, Luo, COLT ’18] [Zimmert, Seldin, AISTATS ’19]



Best of both worlds

Question: Best of both worlds?

* Single algorithm with logarithmic guarantee when input stochastic and
square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

* Approach 1: Start from AAE and test for non-consistency; if identified then
switch to EXP3 [Bubeck, Slivkins, COLT ’12] [Auer, Chiang, ICML’ 16]

* Approach 2: Start from adversarial with aggressive “learning rate”; adapt it
over time [Seldin, Slivkins, ICML14] [Seldin, Lugosi, COLT ’17]
[Wei, Luo, COLT ’18] [Zimmert, Seldin, AISTATS ’19]

RL: Only very preliminary results for known transitions

[Jin, Luo, working’ 20]



Corrupted MAB

Arm a € [k] has distribution F(a) with mean u(a) and support [0, 1]

Atroundt =1...T:

1.

2.

Learner commits to a distribution p* across arms

Reward for arm a: rt(a) ~ F(a)

Adversary corrupts rewards 1t (a) (total corruption budget of C)

Learner draws arm at ~ p?

Learner earns uncorrupted (or corrupted) reward & observes only corrupted



Corrupted MAB

Question

* Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]
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Question
* Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]
Answer:
* Initial algorithm based on a multi-layering version of AAE and lower bound for
high-probability [Lykouris, Mirrokni, Paes Leme, STOC "18]
* Improved algorithm using a phase scheme and the Improved-UCB algorithm
of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]

* For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]



Corrupted MAB

Question
* Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]
Answer:
* Initial algorithm based on a multi-layering version of AAE and lower bound for
high-probability [Lykouris, Mirrokni, Paes Leme, STOC "18]
* Improved algorithm using a phase scheme and the Improved-UCB algorithm
of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]

* For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]

RL: Multi-layering version of UCBVI enhanced with appropriate

active sets [Lykouris, Simchowitz, Slivkins, Sun’ 19]
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summary
Today: Exploration

* Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits

e Simplest setting capturing explore-exploit trade-off

* Key ideas extend to richer RL & tackle complexities not understood in RL
Algorithms

* Greedy: Not PAC / Linear regret

e Explore-Then-Commit: Regret of T2/3

» Active Arm Elimination: Regret logarithmic for arms separated and VT else
* Upper Confidence Bound: Same regret; analysis extends to RL



