Lecture 5: Multi-Armed Bandits (MAB)

Guest Lecturer

Thodoris Lykouris
(Microsoft Research NYC)
Learning objective: Intro to exploration

Previously on CS 6789

- **Planning via Bellman equations:** known underlying MDP known
- **Generative model:** ability to reset from anywhere
Learning objective: Intro to exploration

Previously on CS 6789

- **Planning via Bellman equations:** known underlying MDP known
- **Generative model:** ability to reset from anywhere

Today: Exploration

- **Maximize expected reward** w/o known underlying MDP or ability to reset!
Learning objective: Intro to exploration

Previously on CS 6789
• Planning via Bellman equations: known underlying MDP known
• Generative model: ability to reset from anywhere

Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits
• Simplest setting capturing *explore-exploit* trade-off
• Key ideas extend to richer RL settings
Multi-Armed-Bandits: High-level picture

Setting

• Set of alternatives (arms)
• Each arm has a reward distribution

• Learner adaptively selects arms
• Challenge: Distributions not known
Multi-Armed-Bandits: High-level picture

Setting
• Set of alternatives (arms)
• Each arm has a reward distribution
• Learner adaptively selects arms
• Challenge: Distributions not known

Application: Online advertising
• Arms are advertisers
• Each arm has click-through-rate (CTR) probability of getting clicked
• Platform adaptively selects ads
• Challenge: CTRs are not known
MAB Protocol

Arm $a \in [k]$ has **distribution** $F(a)$ **with mean** $\mu(a)$ and support $[0,1]$

At round $t = 1 \ldots T$:
1. Learner selects arm a^t (possibly in randomized manner)
2. Reward for arm a: $r^t(a) \sim F(a)$
3. Learner earns (and only observes) reward $r^t(a^t)$
Probabilistic Approximate Correct (PAC)

Benchmark: Best arm had we known the distributions: \(a^* = \max_a \mu(a) \)

Fix \(\epsilon, \delta > 0 \)

How many samples to identify an \(\epsilon \)-optimal arm \(a \) w.p. \(1 - \delta \)?

\(\mu(a^*) - \mu(a) < \epsilon \)
Regret Objective

Explore-exploit version:

Average cumulative mean: \(\text{ALG} = \frac{1}{T} \sum_t \mu(a^t) \)

Benchmark (no exploration):

Mean of best arm: \(\text{OPT} = \mu(a^*) \)

Regret = \(\text{OPT} - \text{ALG} \)
Greedy algorithm

Pick each arm once; then highest empirical mean
Greedy algorithm

Pick each arm once; then highest empirical mean

Action 1:
Reward is always 0.4

Actual reward means
0.4

Action 2:
Reward is Bernoulli
1 w.p. 60% and 0 else
Greedy algorithm

Pick each arm once; then highest empirical mean

Action 1: Reward is always 0.4
Actual reward means 0.6, 0.4, 0

Action 2: Reward is Bernoulli 1 w.p. 60% and 0 else

ε < 0.4, δ < 0.2: Greedy does not achieve PAC
Greedy algorithm

Pick each arm once; then highest empirical mean

- **Action 1:**
 - Reward is always 0.4
 - Actual reward means 0.6

- **Action 2:**
 - Reward is Bernoulli
 - 1 w.p. 60% and 0 else

$\epsilon < 0.4, \delta < 0.2$:
Greedy does not achieve PAC

Regret

$$\text{Regret} = 0.4 \cdot 0.2 \cdot T = 0.08 \cdot T$$

Regret linear in time-horizon
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{\log \left(\frac{kT}{\delta}\right)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(\alpha)$
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{\log(kT/\delta)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4\log(k/\delta)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

Hoeffding inequality:

X_1, X_2, \ldots, X_n r.v. in $[0,1]$ with mean μ

$$Pr \left[\left| \frac{1}{n} \sum_{i} X_i - \mu \right| \geq \rho \right] \leq 2 \cdot \exp(-2n\rho^2)$$

Actual reward means
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4\log (k/\delta)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

By Hoeffding, $\forall a \in [k]$ after $N(\epsilon)$ plays of a, with probability $\geq 1 - \delta/k$, it holds:

$$|\tilde{\mu}(a) - \mu(a)| \leq \epsilon/2$$
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4 \log \left(\frac{k}{\delta}\right)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

By Hoeffding, $\forall a \in [k]$ after $N(\epsilon)$ plays of a, with probability $\geq 1 - \delta/k$, it holds:

$$|\tilde{\mu}(a) - \mu(a)| \leq \epsilon/2$$

By union bound, after $N(\epsilon)$ plays of every arm, with probability $\geq 1 - \delta$, it holds $\forall a \in [k]$:

$$|\tilde{\mu}(a) - \mu(a)| \leq \epsilon/2$$

$\text{UCB} = \tilde{\mu}(a_2) + \epsilon/2$

$\text{LCB} = \tilde{\mu}(a_2) - \epsilon/2$

Actual reward means
Explore-Then-Commit (ETC)

Pick each arm \(N(\varepsilon) = \frac{4\log(k/\delta)}{\varepsilon^2} \) times; then highest empirical mean \(\tilde{\mu}(a) \)

PAC bound: \(k \cdot N(\varepsilon) = k \cdot \frac{4\log(k/\delta)}{\varepsilon^2} \)

\[
UCB = \tilde{\mu}(a_2) + \varepsilon/2
\]

\[
LCB = \tilde{\mu}(a_2) - \varepsilon/2
\]

Actual reward means
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4\log \left(\frac{k}{\delta} \right)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

PAC bound: $k \cdot N(\epsilon) = k \cdot \frac{4\log \left(\frac{k}{\delta} \right)}{\epsilon^2}$

Proof: For selected arm $a : \tilde{\mu}(a) \geq \tilde{\mu}(a^*)$ and

$$\mu(a^*) - \mu(a) \leq \left(\tilde{\mu}(a^*) + \frac{\epsilon}{2} \right) - \left(\tilde{\mu}(a) - \frac{\epsilon}{2} \right)$$
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4\log \left(\frac{k}{\delta} \right)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

PAC bound: $k \cdot N(\epsilon) = k \cdot \frac{4\log \left(\frac{k}{\delta} \right)}{\epsilon^2}$

Regret bound: $k \cdot \frac{4\log \left(\frac{k}{\delta} \right)}{\epsilon^2} + \epsilon \cdot T + \delta \cdot T$

$UCB = \tilde{\mu}(a_2) + \frac{\epsilon}{2}$

$LCB = \tilde{\mu}(a_2) - \frac{\epsilon}{2}$

Actual reward means
Explore-Then-Commit (ETC)

Pick each arm $N(\epsilon) = \frac{4\log{(k/\delta)}}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

PAC bound: $k \cdot N(\epsilon) = k \cdot \frac{4\log{(k/\delta)}}{\epsilon^2}$

Regret bound: $k \cdot \frac{4 \log(k/\delta)}{\epsilon^2} + \epsilon \cdot T + \delta \cdot T$

Setting $\epsilon = (k \cdot 4 \log(kT/\delta))^{1/3} \cdot T^{-1/3}$ and $\delta = 1/T$

Regret = $O \left(\left(k \cdot \log (kT) \right)^{1/3} \cdot T^{2/3} \right)$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

$$LCB^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t

2. Play round-robin across arms in A^t

3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

$$LCB^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

By Hoeffding and union bound, with probability $\geq 1 - \delta$, it holds $\forall a \in [k], t \in [T]$: $

\mu(a) \in [LCB^t(a), UCB^t(a)]$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

\[
UCB^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}
\]

\[
LCB^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}
\]

Claim A: If confidence intervals hold, i.e. \(\forall a, t: \mu(a) \in [LCB^t(a), UCB^t(a)] \), the best arm is never eliminated, i.e., \(\forall t: a^* \in A^t \)
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Claim A: If confidence intervals hold, i.e. $\forall a, t: \mu(a) \in [LCB^t(a), UCB^t(a)]$, the best arm is never eliminated, i.e., $\forall t: a^* \in A^t$

Proof:

$\forall a \neq a^*: UCB^t(a^*) \geq \mu(a^*) \geq \mu(a) \geq LCB(a)$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Claim B: In that event, arm a: $\mu(a^*) - \mu(a) = \epsilon(a)$ is eliminated after $N(a) = \frac{2 \log(2kT/\delta)}{(\epsilon(a))^2}$ plays.
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^t(a) = \bar{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

$$LCB^t(a) = \bar{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

Claim B: In that event, arm a: $\mu(a^*) - \mu(a) = \epsilon(a)$ is eliminated after $N(a) = \frac{2 \log(2kT/\delta)}{(\epsilon(a))^2}$ plays.

Proof: Let $\tau(a)$ be that time. By Claim A: $a^* \in A^{\tau(a)}$.

$$UCB^{\tau(a)}(a) \leq \mu(a) + \frac{\epsilon(a)}{2}$$

$$LCB^{\tau(a)}(a^*) \geq \mu(a^*) - \frac{\epsilon(a)}{2}$$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

$$LCB^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

Claim B: In that event, arm a: $\mu(a^*) - \mu(a) = \epsilon(a)$ is eliminated after $N(a) = \frac{2 \log(2kT/\delta)}{(\epsilon(a))^2}$ plays

PAC bound

$$\sum_{a: \epsilon(a) > \epsilon} N(a)$$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB_t(a) < \max_{a' \in A^{t-1}} LCB_t(a')$

$$UCB_t(a) = \mu_t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n_t(a)}}$$
$$LCB_t(a) = \mu_t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n_t(a)}}$$

Claim B: In that event, arm a: $\mu(a^*) - \mu_a = \epsilon(a)$ is eliminated after $N(a) = \frac{2 \log(2kT/\delta)}{(\epsilon(a))^2}$ plays

PAC bound
$$\sum_{a: \epsilon(a) > \epsilon} N(a)$$

Regret bound:
$$\sum_a \min(N(a), T) \cdot \epsilon(a) + \delta \cdot T$$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Setting $\delta = 1/T$

Regret bound: $\sum_a \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right) + 1$

$\mu(a^*) - \mu(a) = \epsilon(a)$
Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
2. Play round-robin across arms in A^t
3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Setting $\delta = 1/T$

Regret bound: $\sum_a \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right) + 1$

For worst-case choice of $\epsilon(a) = \sqrt{\frac{k \cdot \log(kT)}{T}}$:

Regret = $O \left(\sqrt{k \cdot T \cdot \log(kT)} \right)$
Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

\[UCB^t(\alpha) = \tilde{\mu}^t(\alpha) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(\alpha)}} \]

\[LCB^t(\alpha) = \tilde{\mu}^t(\alpha) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(\alpha)}} \]
Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability $\geq 1 - \delta$, it holds $\forall a \in [k], t \in [T]$:

$$\mu(a) \in [L_{CB}^t(a), U_{CB}^t(a)]$$

$$U_{CB}^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

$$L_{CB}^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$$

Actual reward means
Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability \(\geq 1 - \delta \), it holds \(\forall a \in [k], t \in [T] \):

\[
\mu(a) \in [LCB^t(a), UCB^t(a)]
\]

Claim: In the event that all confidence intervals confidence intervals hold, the regret is at most

\[
\sum_t (UCB^t(a^t) - LCB^t(a^t)) + \delta \cdot T
\]
Upper Confidence Bound (UCB)

Pick arm with highest **Upper Confidence Bound**

\[UCB_t^t(a) = \bar{\mu}_t^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n_t^t(a)}} \]

\[LCB_t^t(a) = \bar{\mu}_t^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n_t^t(a)}} \]

By Hoeffding and union bound, with probability \(\geq 1 - \delta \), it holds \(\forall a \in [k], t \in [T] \):

\[\mu(a) \in [LCB_t^t(a), UCB_t^t(a)] \]

Claim: In the event that all confidence intervals hold, the regret is at most

\[\sum_t (UCB_t^t(a^*) - LCB_t^t(a^*)) + \delta \cdot T \]

Proof:

\[Reg^t = \mu(a^*) - \mu(a_t) \leq UCB_t^t(a^*) - LCB_t^t(a_t) \]

\[\leq UCB_t^t(a_t) - LCB_t^t(a_t) \]
Upper Confidence Bound (UCB)

\[UCB^t(a) = \hat{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}} \]

\[LCB^t(a) = \hat{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}} \]

Claim: In the event that all confidence intervals hold, the regret is at most

\[\sum_t (UCB^t(a^t) - LCB^t(a^t)) + \delta \cdot T \]
Upper Confidence Bound (UCB)

\[
UCB^t(a) = \bar{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}} \quad \quad LCB^t(a) = \bar{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}
\]

Claim: In the event that all confidence intervals hold, the regret is at most
\[
\sum_t (UCB^t(a^t) - LCB^t(a^t)) + \delta \cdot T
\]

Regret bound by confidence sum

\[
\sum_t (UCB^t(a^t) - LCB^t(a^t)) \leq 2 \cdot \sum_t \sqrt{\frac{\log(2kT)}{2n^t(a^t)}} = \sum_a \sum_{j=1}^{N(a)} \sqrt{\frac{\log(2kT)}{2 \cdot j}}
\]

\[
\leq \sum_a \sum_{j=1}^{\frac{T}{k}} \sqrt{\frac{\log(2kT)}{2 \cdot j}} \leq k \cdot \sqrt{\log(2kT) \cdot \frac{T}{k}} = O\left(\sqrt{T \cdot k \cdot \log\left(\frac{kT}{\delta}\right)}\right)
\]
Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:
1. Extends to RL (see next lecture)
2. Gap-dependent guarantees
 • Small modification in analysis
3. Allows for anytime guarantees (unknown horizon)
 • Small modification in confidence bounds
Stochastic MAB Protocol

Arm $a \in [k]$ has distribution $F(a)$ with mean $\mu(a)$ and support $[0, 1]$

At round $t = 1 \ldots T$:

1. Learner commits to a distribution p^t across arms

2. **Reward for arm a:** $r^t(a) \sim F(a)$

3. Learner draws arm $a^t \sim p^t$

4. Learner earns (and only observes) reward $r^t(a^t)$
Adversarial MAB Protocol

At round $t = 1 \ldots T$:

1. Learner commits to a distribution p^t across arms

2. **Reward for arm a:** $r^t(a) \in [0, 1]$ adversarially selected

3. Learner draws arm $a^t \sim p^t$

4. Learner earns (and only observes) reward $r^t(a^t)$
Stochastic and Adversarial worlds

Stochastic world

- If arms have a gap in their means, i.e., \(\mu(a^*) - \mu(a) = \epsilon(a) \) then regret of the order of:

 \[
 \sum_a \min \left(\frac{4 \log(kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right)
 \]

- If not then regret of the order of \(\sqrt{kT} \)

- **If rewards are not stochastic,** stochastic MAB algs: linear regret
Stochastic and Adversarial worlds

Stochastic world
- If arms have a gap in their means, i.e., \(\mu(a^*) - \mu(a) = \epsilon(a) \) then regret of the order of:
 \[
 \sum_a \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right)
 \]
- If not then regret of the order of \(\sqrt{kT} \)
- If rewards are not stochastic, stochastic MAB algs: linear regret

Adversarial world
- Regret of the order of \(\sqrt{kT} \) without assuming stochasticity (e.g., EXP3)
- If rewards are stochastic, adversarial MAB algs: no enhanced bounds
Stochastic and Adversarial worlds

Stochastic world
- If arms have a gap in their means, i.e., $\mu(a^*) - \mu(a) = \epsilon(a)$ then regret of the order of:
 $$\sum_a \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right)$$
- If not then regret of the order of \sqrt{kT}
- If rewards are not stochastic, stochastic MAB algs: linear regret

Adversarial world
- Regret of the order of \sqrt{kT} without assuming stochasticity (e.g., EXP3)
- If rewards are stochastic, adversarial MAB algs: no enhanced bounds

Question: Best of both worlds?
- Single algorithm with logarithmic guarantee when input *stochastic* and square-root when input *adversarial*!

[Bubeck, Slivkins, COLT ’12]
Best of both worlds

Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT ’12]
Best of both worlds

Question: Best of both worlds?

- Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT ’12]

 Answer: Yes!

- Approach 1: Start from AAE and test for non-consistency; if identified then switch to EXP3 [Bubeck, Slivkins, COLT ’12] [Auer, Chiang, ICML’ 16]

- Approach 2: Start from adversarial with aggressive “learning rate”; adapt it over time [Seldin, Slivkins, ICML’14] [Seldin, Lugosi, COLT ’17] [Wei, Luo, COLT ’18] [Zimmert, Seldin, AISTATS ’19]
Best of both worlds

Question: Best of both worlds?

- Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT ’12]

 Answer: Yes!

- Approach 1: Start from AAE and test for non-consistency; if identified then switch to EXP3 [Bubeck, Slivkins, COLT ’12] [Auer, Chiang, ICML’ 16]

- Approach 2: Start from adversarial with aggressive “learning rate”; adapt it over time [Seldin, Slivkins, ICML’14] [Seldin, Lugosi, COLT ’17] [Wei, Luo, COLT ’18] [Zimmert, Seldin, AISTATS ’19]

RL: Only very preliminary results for known transitions [Jin, Luo, working’ 20]
Corrupted MAB

Arm $a \in [k]$ has distribution $F(a)$ with mean $\mu(a)$ and support $[0, 1]$

At round $t = 1 \ldots T$:

1. Learner commits to a distribution p^t across arms

2. Reward for arm a: $r^t(a) \sim F(a)$

3. Adversary corrupts rewards $r^t(a)$ (total corruption budget of C)

4. Learner draws arm $a^t \sim p^t$

5. Learner earns uncorrupted (or corrupted) reward & observes only corrupted
Corrupted MAB

Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]
Corrupted MAB

Question

- Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]

Answer:

- Initial algorithm based on a multi-layering version of AAE and lower bound for high-probability [Lykouris, Mirrokni, Paes Leme, STOC ’18]

- Improved algorithm using a phase scheme and the Improved-UCB algorithm of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]

- For expectations and corrupted: Between both worlds [Zimmert, Seldin ’20]
Corrupted MAB

Question

- Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget
 [Lykouris, Mirrokni, Paes Leme, STOC ’18]

Answer:

- Initial algorithm based on a multi-layering version of AAE and lower bound for high-probability
 [Lykouris, Mirrokni, Paes Leme, STOC ’18]

- Improved algorithm using a phase scheme and the Improved-UCB algorithm of Otner and Auer’10
 [Gupta, Koren, Talwar, COLT ’19]

- For expectations and corrupted: Between both worlds [Zimmert, Seldin ’20]

RL: Multi-layering version of UCBVI enhanced with appropriate active sets
[Lykouris, Simchowitz, Slivkins, Sun’ 19]
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings
1. MAB with feedback graphs (captures side-information)
 [Dann, Mansour, Mohri, Sekhari, Sridharan ’20]
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)
 [Dann, Mansour, Mohri, Sekhari, Sridharan ’20]

2. MAB with constraints
 [Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun ’20]
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)
 [Dann, Mansour, Mohri, Sekhari, Sridharan ’20]

2. MAB with constraints
 [Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun ’20]

3. MAB with continuous actions
 [Sinclair, Banerjee, Lee Yu, POMACS ’20]
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)
 [Dann, Mansour, Mohri, Sekhari, Sridharan ’20]

2. MAB with constraints
 [Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun ’20]

3. MAB with continuous actions
 [Sinclair, Banerjee, Lee Yu, POMACS ’20]

Typically poses interesting complications requiring RL advancement
From MAB to episodic RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)
 [Dann, Mansour, Mohri, Sekhari, Sridharan ’20]

2. MAB with constraints
 [Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun ’20]

3. MAB with continuous actions
 [Sinclair, Banerjee, Lee Yu, POMACS ’20]

Typically poses interesting complications requiring RL advancement
Today: Exploration

• Maximize expected reward w/o known underlying MDP or ability to reset!
Today: Exploration

- Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits

- Simplest setting capturing explore-exploit trade-off
- Key ideas extend to richer RL & tackle complexities not understood in RL
Summary

Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits
• Simplest setting capturing *explore-exploit* trade-off
• Key ideas extend to richer RL & tackle complexities not understood in RL

Algorithms
• Greedy: Not PAC / Linear regret
• Explore-Then-Commit: Regret of $T^{2/3}$
• Active Arm Elimination: Regret logarithmic for arms separated and \sqrt{T} else
• Upper Confidence Bound: Same regret; analysis extends to RL