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Learning objective: Intro to exploration

Previously on CS 6789
• Planning via Bellman equations: known underlying MDP known
• Generative model: ability to reset from anywhere

Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits
• Simplest setting capturing explore-exploit trade-off
• Key ideas extend to richer RL settings



Multi-Armed-Bandits: High-level picture
Setting

• Set of alternatives (arms)
• Each arm has a reward distribution

• Learner adaptively selects arms
• Challenge: Distributions not known
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Multi-Armed-Bandits: High-level picture
Setting

• Set of alternatives (arms)
• Each arm has a reward distribution

• Learner adaptively selects arms
• Challenge: Distributions not known

Application: Online advertising
• Arms are advertisers
• Each arm has click-through-rate (CTR)

probability of getting clicked
• Platform adaptively selects ads
• Challenge: CTRs are not known
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MAB Protocol

Arm 𝑎 ∈ [𝑘] has distribution 𝑭 𝒂 with mean 𝝁 𝒂 and support 0,1

At round 𝑡 = 1…𝑇:

1. Learner selects arm 𝑎! (possibly in randomized manner)

2. Reward for arm 𝑎:  𝑟! 𝑎 ∼ 𝐹 𝑎

3. Learner earns (and only observes) reward 𝑟!(𝑎!)



Probabilistic Approximate Correct (PAC)

Fix 𝜖, 𝛿 > 0
How many samples to identify an 𝝐-optimal arm 𝒂 w.p. 1 − δ?

𝝁 𝒂⋆ − 𝝁 𝒂 < 𝝐

Benchmark: Best arm had we known the distributions:  𝑎⋆ = max
"

𝜇(𝑎)



Regret Objective

Benchmark (no exploration): Mean of best arm:  𝐎𝐏𝐓 = 𝝁 𝒂⋆

Explore-exploit version: Average cumulative mean: 𝐀𝐋𝐆 = 𝟏
𝐓
∑𝒕𝝁(𝒂𝒕)

𝑹𝒆𝒈𝒓𝒆𝒕 = 𝑶𝑷𝑻 − 𝑨𝑳𝑮



Greedy algorithm
Pick each arm once; then highest empirical mean
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Action 1:
Reward is always 0.4

Actual reward 
means

0.6

0.4

0

1
Pick each arm once; then highest empirical mean

Action 2:
Reward is Bernoulli

1 w.p. 60% and 0 else 

𝝐 < 𝟎. 𝟒, 𝜹 < 𝟎. 𝟐:
Greedy does not achieve PAC

𝑹𝒆𝒈𝒓𝒆𝒕 = 𝟎. 𝟒 ⋅ 𝟎. 𝟐 ⋅ 𝑻 = 𝟎. 𝟎𝟖 ⋅ 𝑻
Regret linear in time-horizon
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Setting	𝜖 = 𝑘 ⋅ 4 log 𝑘𝑇/𝛿 !/) ⋅ 𝑇*!/) and 𝛿 = 1/𝑇

𝑹𝒆𝒈𝒓𝒆𝒕 = 𝑶 𝒌 ⋅ 𝒍𝒐𝒈 𝒌𝑻
𝟏/𝟑
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Active Arm Elimination (AAE)
1. Keep adaptive Upper/Lower Confidence Bounds and active set 𝐴!

2. Play round-robin across arms in 𝐴!

3. Remove 𝑎 from 𝐴! if 𝑈𝐶𝐵! 𝑎 < max
5$∈7%&'

𝐿𝐶𝐵!(𝑎8)
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2
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2
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𝜇 𝑎⋆ − 𝜇 𝑎 = 𝜖 𝑎
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2. Play round-robin across arms in 𝐴!

3. Remove 𝑎 from 𝐴! if 𝑈𝐶𝐵! 𝑎 < max
5$∈7%&'

𝐿𝐶𝐵!(𝑎8)

Setting 𝛿 = 1/𝑇
Regret bound: ∑𝒂min

𝟒 𝒍𝒐𝒈 (𝒌𝑻)
𝝐 𝒂

, 𝝐 𝒂 ⋅ 𝑻 + 𝟏
𝜇 𝑎⋆ − 𝜇 𝑎 = 𝜖 𝑎

For worst-case choice of 𝜖 𝑎 = =⋅012 =?
?

:

𝑹𝒆𝒈𝒓𝒆𝒕 = 𝑶 𝒌 ⋅ 𝑻 ⋅ log 𝒌𝑻
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Actual reward 
means

𝑼𝑪𝑩𝒕 𝒂 = %𝝁𝒕 𝒂 +
log 𝟐𝒌𝑻/𝜹
𝟐𝒏𝒕 𝒂

𝑳𝑪𝑩𝒕 𝒂 = %𝝁𝒕 𝒂 −
log 𝟐𝒌𝑻/𝜹
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Proof: 𝑅𝑒𝑔[ = 𝜇 𝑎⋆ − 𝜇 𝑎[
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Regret bound by confidence sum

#
!

(𝑈𝐶𝐵! 𝑎! − 𝐿𝐶𝐵!(𝑎!)) ≤ 2 ⋅#
!

log 𝟐𝒌𝑻
𝜹

𝟐𝒏𝒕 𝒂𝒕
=#

𝒂

#
𝒋%𝟏

𝑵 𝒂 log 𝟐𝒌𝑻
𝜹

𝟐 ⋅ 𝒋

≤#
(

#
𝒋%𝟏

𝑻
𝒌 log 𝟐𝒌𝑻

𝜹
𝟐 ⋅ 𝒋

≤ 𝑘 ⋅ log
𝟐𝒌𝑻
𝜹

⋅
𝑇
𝑘
= 𝑶 𝑻 ⋅ 𝒌 ⋅ log

𝒌𝑻
𝜹



Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:
1. Extends to RL (see next lecture)

2. Gap-dependent guarantees
• Small modification in analysis

3. Allows for anytime guarantees (unknown horizon)
• Small modification in confidence bounds



Stochastic MAB Protocol

Arm 𝒂 ∈ [𝒌] has distribution 𝑭 𝒂 with mean 𝝁 𝒂 and support 𝟎, 𝟏

At round 𝑡 = 1…𝑇:

1. Learner commits to a distribution 𝑝! across arms

2. Reward for arm 𝒂:  𝒓𝒕 𝒂 ∼ 𝑭 𝒂

3. Learner draws arm 𝑎! ∼ 𝑝!

4. Learner earns (and only observes) reward 𝑟!(𝑎!)



Adversarial MAB Protocol

At round 𝑡 = 1…𝑇:

1. Learner commits to a distribution 𝑝! across arms

2. Reward for arm 𝒂:  𝒓𝒕 𝒂 ∈ [𝟎, 𝟏] adversarially selected

3. Learner draws arm 𝑎! ∼ 𝑝!

4. Learner earns (and only observes) reward 𝑟!(𝑎!)



Stochastic and Adversarial worlds

Stochastic world
• If arms have a gap in their means, i.e., 
𝜇 𝑎⋆ − 𝜇 𝑎 = 𝜖 𝑎 then regret of 
the order of:

.
𝒂

min
𝟒 𝒍𝒐𝒈 (𝒌𝑻)

𝝐 𝒂
, 𝝐 𝒂 ⋅ 𝑻

• If not then regret of the order of 𝒌𝑻
• If rewards are not stochastic, 

stochastic MAB algs: linear regret
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assuming stochasticity (e.g., EXP3)
• If rewards are stochastic, adversarial 

MAB algs: no enhanced bounds
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• Single algorithm with logarithmic 

guarantee when input stochastic and 
square-root when input adversarial!

[Bubeck,Slivkins, COLT ’12]
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Answer: Yes!
• Approach 1: Start from AAE and test for non-consistency; if identified then 

switch to EXP3 [Bubeck, Slivkins, COLT ’12]  [Auer, Chiang, ICML’ 16]
• Approach 2: Start from adversarial with aggressive “learning rate”; adapt it 

over time [Seldin, Slivkins, ICML’14]   [Seldin, Lugosi, COLT ’17] 
[Wei, Luo, COLT ’18]   [Zimmert, Seldin, AISTATS ’19]
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Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and 
square-root when input adversarial! [Bubeck, Slivkins, COLT ’12]

Answer: Yes!
• Approach 1: Start from AAE and test for non-consistency; if identified then 

switch to EXP3 [Bubeck, Slivkins, COLT ’12]  [Auer, Chiang, ICML’ 16]
• Approach 2: Start from adversarial with aggressive “learning rate”; adapt it 

over time [Seldin, Slivkins, ICML’14]   [Seldin, Lugosi, COLT ’17] 
[Wei, Luo, COLT ’18]   [Zimmert, Seldin, AISTATS ’19]

RL: Only very preliminary results for known transitions
[Jin, Luo, working’ 20]



Corrupted MAB

At round 𝑡 = 1…𝑇:

1. Learner commits to a distribution 𝑝! across arms

2. Reward for arm 𝒂:  𝒓𝒕 𝒂 ∼ 𝑭 𝒂

3. Adversary corrupts rewards 𝒓𝒕 𝒂 (total corruption budget of 𝑪)

4. Learner draws arm 𝑎! ∼ 𝑝!

5. Learner earns uncorrupted (or corrupted) reward & observes only corrupted

Arm 𝒂 ∈ [𝒌] has distribution 𝑭 𝒂 with mean 𝝁 𝒂 and support 𝟎, 𝟏



Corrupted MAB
Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades 
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]
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• Algorithm with logarithmic guarantee when stochastic and gracefully degrades 
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]

Answer:
• Initial algorithm based on a multi-layering version of AAE and lower bound for 

high-probability    [Lykouris, Mirrokni, Paes Leme, STOC ’18]
• Improved algorithm using a phase scheme and the Improved-UCB algorithm 

of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]
• For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]



Corrupted MAB
Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades 
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]

Answer:
• Initial algorithm based on a multi-layering version of AAE and lower bound for 

high-probability    [Lykouris, Mirrokni, Paes Leme, STOC ’18]
• Improved algorithm using a phase scheme and the Improved-UCB algorithm 

of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]
• For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]

RL: Multi-layering version of UCBVI enhanced with appropriate 
active sets [Lykouris, Simchowitz, Slivkins, Sun’ 19]
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Summary
Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!
Focus: Multi-Armed Bandits
• Simplest setting capturing explore-exploit trade-off
• Key ideas extend to richer RL  & tackle complexities not understood in RL
Algorithms
• Greedy: Not PAC / Linear regret
• Explore-Then-Commit: Regret of 𝑇@/A

• Active Arm Elimination: Regret logarithmic for arms separated and 𝑇 else
• Upper Confidence Bound: Same regret; analysis extends to RL


