Lecture 5: Multi-Armed Bandits (MAB)

Guest Lecturer

Thodoris Lykouris (Microsoft Research NYC)

Learning objective: Intro to exploration

Previously on CS 6789

- Planning via Bellman equations:
- Generative model:

known underlying MDP known ability to reset from anywhere

Learning objective: Intro to exploration

Previously on CS 6789

- Planning via Bellman equations:
- Generative model:

known underlying MDP known ability to reset from anywhere

Today: Exploration

• Maximize expected reward w/o known underlying MDP or ability to reset!

Learning objective: Intro to exploration

Previously on CS 6789

- Planning via Bellman equations:
- Generative model:

known underlying MDP known ability to reset from anywhere

Today: Exploration

• Maximize expected reward w/o known underlying MDP or ability to reset!

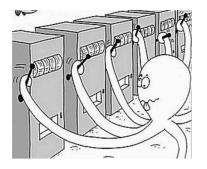
Focus: Multi-Armed Bandits

- Simplest setting capturing *explore-exploit* trade-off
- Key ideas extend to richer RL settings

Multi-Armed-Bandits: High-level picture

Setting

- Set of alternatives (arms)
- Each arm has a reward distribution
- Learner adaptively selects arms
- Challenge: Distributions not known

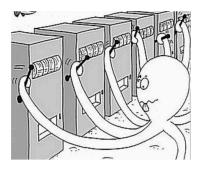


om:

Multi-Armed-Bandits: High-level picture

Setting

- Set of alternatives (arms)
- Each arm has a reward distribution
- Learner adaptively selects arms
- Challenge: Distributions not known



Application: Online advertising

- Arms are advertisers
- Each arm has click-through-rate (CTR) probability of getting clicked
- Platform adaptively selects ads
- Challenge: CTRs are not known

Images from:

https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804 https://www.aqusagtechnologies.com/wp-content/uploads/2017/04/Online-advertising.jpeg

MAB Protocol

Arm $a \in [k]$ has distribution F(a) with mean $\mu(a)$ and support [0,1]

At round $t = 1 \dots T$:

- 1. Learner selects arm a^t (possibly in randomized manner)
- 2. Reward for arm a: $r^t(a) \sim F(a)$
- 3. Learner earns (and only observes) reward $r^t(a^t)$

Probabilistic Approximate Correct (PAC)

<u>Benchmark</u>: Best arm had we known the distributions: $a^* = \max_a \mu(a)$

Fix
$$\epsilon, \delta > 0$$

How many samples to identify an ϵ -optimal arm a w.p. $1 - \delta$?
 $\mu(a^*) - \mu(a) < \epsilon$

Regret Objective

Explore-exploit version:

Average cumulative mean: $(ALG = \frac{1}{T} \sum_{t} \mu(a^{t}))$

Benchmark (no exploration): Mean of best arm:

OPT = $\mu(a^*)$

Regret = OPT - ALG

Greedy algorithm

Pick each arm once; then highest empirical mean

Greedy algorithm Pick each arm once; then highest empirical mean Action 2: Reward is Bernoulli 1 w.p. 60% and 0 else Action 1: Reward is always 0.4 Actual reward

0.6

0.4

means

Greedy algorithm

Pick each arm once; then highest empirical mean

Action 2: Reward is Bernoulli 1 w.p. 60% and 0 else 0.6 Action 1: Reward is always 0.4 0.4 Actual reward means

 $\epsilon < 0.4, \delta < 0.2$

Greedy does not achieve PAC

Greedy algorithm

Pick each arm once; then highest empirical mean

 $\epsilon < 0.4, \delta < 0.2$:

Greedy does not achieve PAC

 $\underline{Regret} = 0.4 \cdot 0.2 \cdot T = 0.08 \cdot T$

Regret linear in time-horizon

Action 2: Reward is Bernoulli 1 w.p. 60% and 0 else

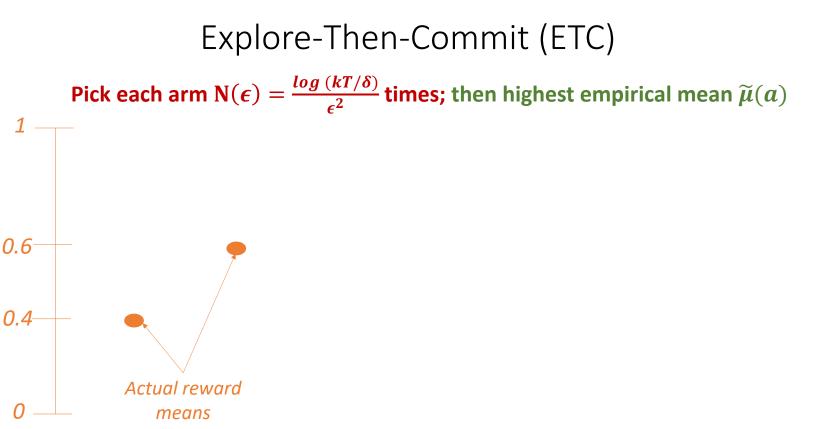
0.6 Action 1: Reward is always 0.4

> Actual reward means

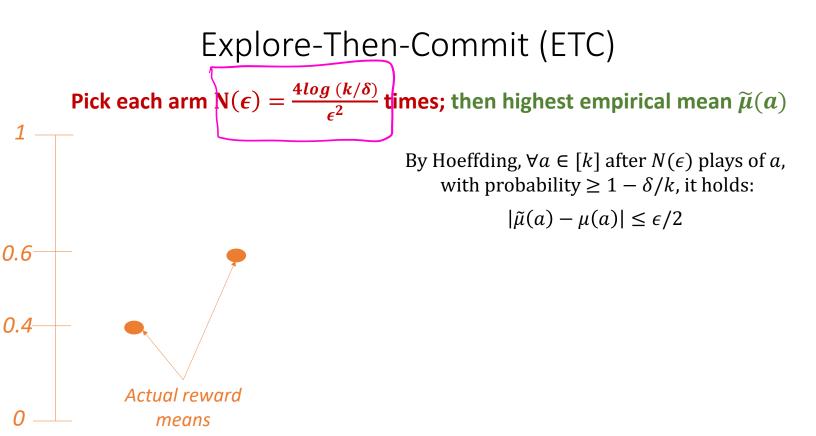
0.4

Explore-Then-Commit (ETC)

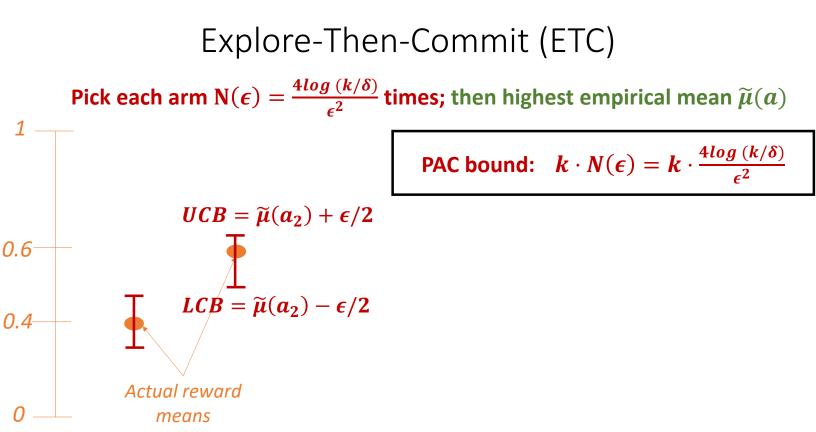
Pick each arm N(ϵ) = $\frac{\log (kT/\delta)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$

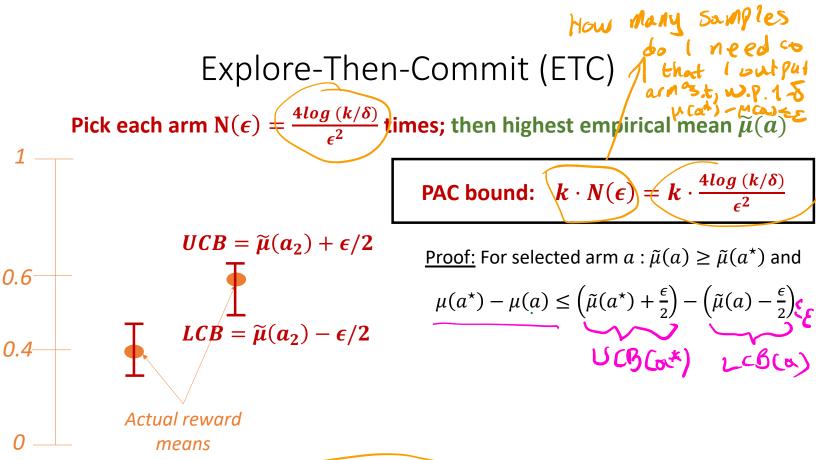


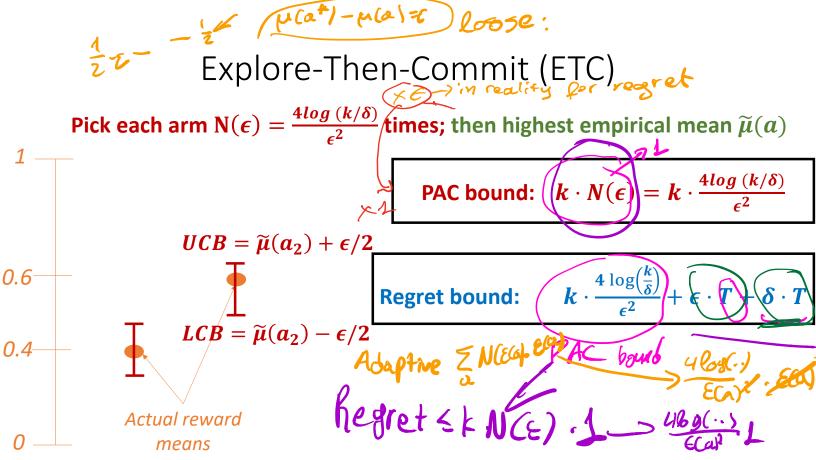
Explore-Then-Commit (ETC) Pick each arm N(ϵ) = $\frac{4\log(k/\delta)}{\epsilon^2}$ times; then highest empirical mean $\tilde{\mu}(a)$ Hoeffding inequality: X_1, X_2, \dots, X_n r.v. in [0,1] with mean μ $Pr\left[\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|\geq\rho\right|\leq 2\cdot exp(-2n\rho^{2})$ 0.6 0.4Actual reward means



Explore-Then-Commit (ETC) Pick each arm N(ϵ) = $\frac{4\log(k/\delta)}{c^2}$ times; then highest empirical mean $\tilde{\mu}(a)$ By Hoeffding, $\forall a \in [k]$ after $N(\epsilon)$ plays of a, with probability $\geq 1 - \delta/k$, it holds: $|\tilde{\mu}(a) - \mu(a)| \le \epsilon/2$ $UCB = \widetilde{\mu}(a_2) + \epsilon/2$ 0.6 By union bound, after $N(\epsilon)$ plays of every arm, $LCB = \widetilde{\mu}(a_2) - \epsilon/2$ with probability $\geq 1 - \delta$, it holds $\forall a \in [k]$: 0.4 $|\tilde{\mu}(a) - \mu(a)| \le \epsilon/2$ Actual reward means







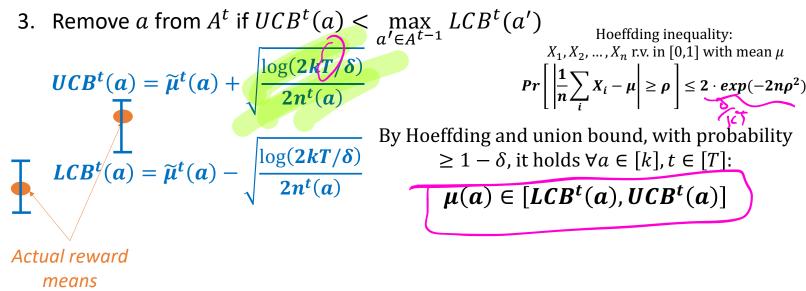
T known in advance
Explore-Then-Commit (ETC)
Pick each arm
$$N(\epsilon) = \frac{4\log(k/\delta)}{\epsilon^2}$$
 times; then highest empirical mean $\tilde{\mu}(a)$
1
PAC bound: $k \cdot N(\epsilon) = k \cdot \frac{4\log(k/\delta)}{\epsilon^2}$
UCB = $\tilde{\mu}(a_2) + \epsilon/2$
Regret bound: $k \cdot N(\epsilon) = k \cdot \frac{4\log(k/\delta)}{\epsilon^2}$
UCB = $\tilde{\mu}(a_2) - \epsilon/2$
Regret bound: $k \cdot \frac{4\log(k/\delta)}{\epsilon^2} + \epsilon \cdot T + \delta \cdot T$
LCB = $\tilde{\mu}(a_2) - \epsilon/2$
Regret bound: $k \cdot \frac{4\log(k/\delta)}{\epsilon^2} + \epsilon \cdot T + \delta \cdot T$
Setting $\epsilon = (k \cdot 4\log(kT/\delta))^{1/3} \cdot T^{-1/3}$ and $\delta = 1/T$
Regret = $O\left((k \cdot \log(kT))^{1/3} \cdot T^{2/3}\right)$

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$ $UCB^t(a) = \tilde{\mu}^t(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$ $LCB^t(a) = \tilde{\mu}^t(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^t(a)}}$

Actual reward means

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t



- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t

3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
$$LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

<u>Claim A</u>: If confidence intervals hold, i.e. $\forall a, t: \mu(a) \in [LCB^t(a), UCB^t(a)]$, the best arm is never eliminated, i.e., $\forall t: a^* \in A^t$

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

$$UCB^{t}(a) = \widetilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
$$LCB^{t}(a) = \widetilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

<u>Claim A</u>: If confidence intervals hold, i.e. $\forall a, t: \mu(a) \in [LCB^t(a), UCB^t(a)]$, the best arm is never eliminated, i.e., $\forall t: a^* \in A^t$

<u>Proof:</u>

 $\forall a \neq a^*$: UCB^t $(a^*) \ge \mu(a^*) \ge \mu(a) \ge LCB(a)$

Actual reward means

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^{t} if $UCB^{t}(a) < \max_{a' \in A^{t-1}} LCB^{t}(a')$ $UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}} \frac{Claim B}{2n^{t}(a)} \text{ In that event, arm } a : \mu(a^{*}) - \mu(a) = \epsilon(a)$ is eliminated after $N(a) = \frac{2\log(2kT/\delta)}{(\epsilon(a))^{2}}$ plays $LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$

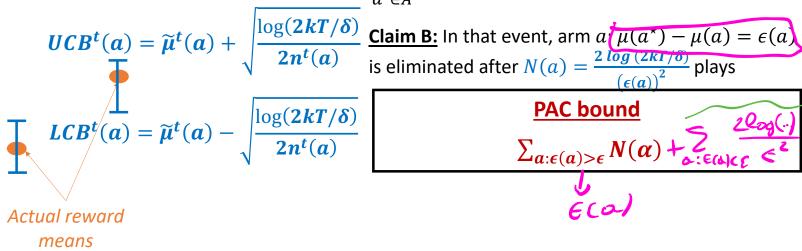
Actual reward means

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove *a* from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

 $UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}} \frac{\text{Claim B:}}{\text{is eliminated after } N(a)} = \frac{2\log(2kT/\delta)}{(\epsilon(a))^{2}} \text{ plays}$ $LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}} \xrightarrow{Proof: \text{Let } \tau(a) \text{ be that time. By Claim A: } a^{\star} \in A^{\tau(a)}}{UCB^{\tau(a)}(a) \le \mu(a) + \frac{\epsilon(a)}{2}}$ $LCB^{\tau(a)}(a^{*}) \geq \mu(a^{*}) - \frac{\epsilon(a)}{2}$ Actual reward means

ETC: k. Rog(ET)

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$



a on regret: NGa).EGY Active Arm Elimination (AAE) - 2009 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t 2. Play round-robin across arms in A^t 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$ $UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}} \frac{\text{Claim B:}}{\text{is eliminated after } N(a)} = \frac{2\log(2kT/\delta)}{(\epsilon(a))^{2}} \text{ plays}$ **PAC bound** $LCB^{t}(a) = \widetilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$ $\sum_{\alpha:\epsilon(\alpha)>\epsilon}N(\alpha)$ + · · · $\sum_{\alpha} \min(N(\alpha), T) \cdot \epsilon(\alpha) + \delta \cdot T$ **Regret bound:** Actual reward means

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t
- 3. Remove a from A^t if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Setting
$$\delta = 1/T$$

Regret bound: $\sum_{a} \min\left(\frac{4 \log(kT)}{\epsilon(a)}, \epsilon(a) \cdot T\right) + 1$

$$\mu(a^{\star}) - \mu(a) = \epsilon(a)$$

- 1. Keep adaptive Upper/Lower Confidence Bounds and active set A^t
- 2. Play round-robin across arms in A^t

3. Remove a from
$$A^t$$
 if $UCB^t(a) < \max_{a' \in A^{t-1}} LCB^t(a')$

Setting
$$\delta = 1/T$$

Regret bound: $\sum_{a} \min\left(\frac{4 \log(kT)}{\epsilon(a)}, \epsilon(a) \cdot T\right) + 1$
For worst-case choice of $\epsilon(a) = \sqrt{\frac{k \cdot \log(kT)}{T}}$:
Regret = 0 $\left(\sqrt{k \cdot T} \log(kT)\right)$
For worst-case choice of $\epsilon(a) = \sqrt{\frac{k \cdot \log(kT)}{T}}$:

Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

$$UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
$$LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
Actual reward

means

Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability $\geq 1 - \delta$, it holds $\forall a \in [k], t \in [T]$: $\mu(a) \in [LCB^t(a), UCB^t(a)]$

$$UCB^{t}(a) = \widetilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

$$LCB^{t}(a) = \widetilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
Actual reward

means

Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability $\geq 1 - \delta$, it holds $\forall a \in [k], t \in [T]$: $\mu(a) \in [LCB^t(a), UCB^t(a)]$

$$UCB^{t}(a) = \widetilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
$$LCB^{t}(a) = \widetilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

<u>Claim</u>: In the event that all confidence intervals confidence intervals hold, the regret is at most $\sum_{t} (UCB^{t}(a^{t}) - LCB^{t}(a^{t})) + \delta \cdot T$

Actual reward means

Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability $\geq 1 - \delta$, it holds $\forall a \in [k], t \in [T]$:

$$\mu(a) \in [LCB^t(a), UCB^t(a)]$$

$$UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
$$LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

Actual reward means

Upper Confidence Bound (UCB)

$$UCB^{t}(a) = \tilde{\mu}^{t}(a) + \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
 $LCB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$

<u>Claim</u>: In the event that all confidence intervals confidence intervals hold, the regret is at most $\sum_t (UCB^t(a^t) - LCB^t(a^t)) + 4\delta \cdot T$

$$UcB^{t}(a) = \tilde{\mu}^{t}(a) + \underbrace{\log(2kT/\delta)}_{2n^{t}(a)} \qquad LcB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$

$$UcB^{t}(a) = \tilde{\mu}^{t}(a) + \underbrace{\log(2kT/\delta)}_{2n^{t}(a)} \qquad LcB^{t}(a) = \tilde{\mu}^{t}(a) - \sqrt{\frac{\log(2kT/\delta)}{2n^{t}(a)}}$$
Claim : In the event that all confidence intervals confidence intervals hold, the regret is at most
$$\sum_{t} (UCB^{t}(a^{t}) - LCB^{t}(a^{t})) + \delta \cdot T$$
Regret bound by confidence sum
$$\sum_{t} (UCB^{t}(a^{t}) - LCB^{t}(a^{t})) \leq 2 \cdot \sum_{t} \sqrt{\frac{\log(\frac{2kT}{\delta})}{2n^{t}(a^{t})}} = \sum_{a} \sum_{j=1}^{b} \sqrt{\frac{\log(\frac{2kT}{\delta})}{2 \cdot j}}$$

$$\leq \sum_{a} \sum_{j=1}^{T} \sqrt{\frac{\log(\frac{2kT}{\delta})}{2 \cdot j}} \leq k \cdot \sqrt{\log(\frac{2kT}{\delta}) \cdot \frac{T}{k}} = O\left(\sqrt{T \cdot k \cdot \log(\frac{kT}{\delta})}\right)$$

Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:

- 1. Extends to RL (see next lecture)
- 2. Gap-dependent guarantees
 - Small modification in analysis
- 3. Allows for anytime guarantees (unknown horizon)
 - Small modification in confidence bounds

Stochastic MAB Protocol

Arm $a \in [k]$ has distribution F(a) with mean $\mu(a)$ and support [0, 1]

At round $t = 1 \dots T$:

- 1. Learner commits to a distribution p^t across arms 2. Reward for arm $a: r^t(a) \sim F(a)$
 - 3. Learner draws arm $a^t \sim p^t$

4. Learner earns (and only observes) reward $r^t(a^t)$

Adversarial MAB Protocol

At round $t = 1 \dots T$:

+**1**. Learner commits to a distribution p^t across arms

2. Reward for arm $a: r^t(a) \in [0, 1]$ adversarially selected

+3. Learner draws arm $a^t \sim p^t$

4. Learner earns (and only observes) reward $r^t(a^t)$

Stochastic and Adversarial worlds

Stochastic world

- If arms have a gap in their means, i.e., $\mu(a^*) - \mu(a) = \epsilon(a) \text{ then regret of}$ the order of: $\sum \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T\right)$
- If not then regret of the order of \sqrt{kT}
- If rewards are not stochastic, stochastic MAB algs: linear regret

Stochastic and Adversarial worlds

Stochastic world

• If arms have a gap in their means, i.e., $\mu(a^*) - \mu(a) = \epsilon(a)$ then regret of the order of:

$$\sum_{a} \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right)$$

- If not then regret of the order of \sqrt{kT}
- If rewards are not stochastic, stochastic MAB algs: linear regret

Adversarial world

- Regret of the order of \sqrt{kT} without assuming stochasticity (e.g., EXP3)
- If rewards are stochastic, adversarial MAB algs: no enhanced bounds

Stochastic and Adversarial worlds

Stochastic world

• If arms have a gap in their means, i.e., $\mu(a^*) - \mu(a) = \epsilon(a)$ then regret of the order of:

$$\sum_{a} \min \left(\frac{4 \log (kT)}{\epsilon(a)}, \epsilon(a) \cdot T \right)$$

- If not then regret of the order of \sqrt{kT}
- If rewards are not stochastic, stochastic MAB algs: linear regret

Adversarial world

- Regret of the order of \sqrt{kT} without assuming stochasticity (e.g., EXP3)
- If rewards are stochastic, adversarial MAB algs: no enhanced bounds

Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input *stochastic* and square-root when input *adversarial*!

[Bubeck,Slivkins, COLT '12]

Best of both worlds

Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Best of both worlds

Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

- Approach 1: Start from AAE and test for non-consistency; if identified then switch to EXP3 [Bubeck, Slivkins, COLT '12] [Auer, Chiang, ICML' 16]
- Approach 2: Start from adversarial with aggressive "learning rate"; adapt it over time [Seldin, Slivkins, ICML'14] [Seldin, Lugosi, COLT '17] [Wei, Luo, COLT '18] [Zimmert, Seldin, AISTATS '19]

Best of both worlds

Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

- Approach 1: Start from AAE and test for non-consistency; if identified then switch to EXP3 [Bubeck, Slivkins, COLT '12] [Auer, Chiang, ICML' 16]
- Approach 2: Start from adversarial with aggressive "learning rate"; adapt it over time [Seldin, Slivkins, ICML'14] [Seldin, Lugosi, COLT '17] [Wei, Luo, COLT '18] [Zimmert, Seldin, AISTATS '19]

RL: Only very preliminary results for known transitions [Jin, Luo, working' 20]

Arm $a \in [k]$ has distribution F(a) with mean $\mu(a)$ and support [0, 1]At round $t = 1 \dots T$:

- 1. Learner commits to a distribution p^t across arms
- **2.** Reward for arm a: $r^t(a) \sim F(a)$
- **3.** Adversary corrupts rewards $r^t(a)$

(total corruption budget of C)

- 4. Learner draws arm $a^t \sim p^t$
- 5. Learner earns uncorrupted (or corrupted) reward & observes only corrupted

Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]

Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]

Answer:

- Initial algorithm based on a multi-layering version of AAE and lower bound for high-probability [Lykouris, Mirrokni, Paes Leme, STOC '18]
- Improved algorithm using a phase scheme and the Improved-UCB algorithm of Otner and Auer'10 [Gupta, Koren, Talwar, COLT '19]
- For expectations and corrupted: Between both wolds [Zimmert, Seldin '20]

Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]

Answer:

- Initial algorithm based on a multi-layering version of AAE and lower bound for high-probability [Lykouris, Mirrokni, Paes Leme, STOC '18]
- Improved algorithm using a phase scheme and the Improved-UCB algorithm of Otner and Auer'10 [Gupta, Koren, Talwar, COLT '19]
- For expectations and corrupted: Between both wolds [Zimmert, Seldin '20]

RL: Multi-layering version of UCBVI enhanced with appropriate active sets [Lykouris, Simchowitz, Slivkins, Sun' 19]

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)

[Dann, Mansour, Mohri, Sekhari, Sridharan '20]

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)

[Dann, Mansour, Mohri, Sekhari, Sridharan '20]

2. MAB with constraints

[Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun '20]

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)

[Dann, Mansour, Mohri, Sekhari, Sridharan '20]

2. MAB with constraints

[Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun '20]

3. MAB with continuous actions

[Sinclair, Banerjee, Lee Yu, POMACS '20]

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)

[Dann, Mansour, Mohri, Sekhari, Sridharan '20]

2. MAB with constraints

[Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun '20]

3. MAB with continuous actions

[Sinclair, Banerjee, Lee Yu, POMACS '20]

Typically poses interesting complications requiring RL advancement

Best of both worlds and corrupted MAB: Examples of MAB informing RL

Other MAB-informing-RL settings

1. MAB with feedback graphs (captures side-information)

[Dann, Mansour, Mohri, Sekhari, Sridharan '20]

2. MAB with constraints

[Brantley, Dudik, Lykouris, Miryoosefi Simchowitz, Slivkins, Sun '20]

3. MAB with continuous actions

[Sinclair, Banerjee, Lee Yu, POMACS '20]

Typically poses interesting complications requiring RL advancement

Summary

Today: Exploration

• Maximize expected reward w/o known underlying MDP or ability to reset!

Summary

Today: Exploration

Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits

- Simplest setting capturing *explore-exploit* trade-off
- Key ideas extend to richer RL & tackle complexities not understood in RL

Summary

Today: Exploration

• Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits

- Simplest setting capturing *explore-exploit* trade-off
- Key ideas extend to richer RL & tackle complexities not understood in RL

<u>Algorithms</u>

- Greedy: Not PAC / Linear regret
- Explore-Then-Commit: Regret of $T^{2/3}$
- Active Arm Elimination: Regret logarithmic for arms separated and \sqrt{T} else
- Upper Confidence Bound: Same regret; analysis extends to RL