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Learning objective: Intro to exploration

Previously on CS 6789
* Planning via Bellman equations: ~ known underlying MDP known
* Generative model: ability to reset from anywhere

Today: Exploration

* Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits
» Simplest setting capturing explore-exploit trade-off

* Key ideas extend to richer RL settings



Multi-Armed-Bandits: High-level picture

Setting
* Set of alternatives (arms)

e Each arm has a reward distribution

* Learner adaptively selects arms
e Challenge: Distributions not known

Images from:

ttttt ://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804




Multi-Armed-Bandits: High-level picture

Setting Application: Online advertising
* Set of alternatives (arms) * Arms are advertisers
e Each arm has a reward distribution * Each arm has click-through-rate (CTR)
probability of getting clicked
* Learner adaptively selects arms  Platform adaptively selects ads
* Challenge: Distributions not known * Challenge: CTRs are not known

4

Images from:
https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804
https: .agusagtechnologies.com/wp-content/uploads/2017/04/Online-advertising.jpef




MAB Protocol

Arm a € [k] has distribution F(a) with mean p(a) and support [0,1]

Atroundt =1..T:

1. Learner selects arm at (possibly in randomized manner)

2. Reward forarm a: rt(a) ~ F(a)

3. Learner earns (and only observes) reward r*(at)



Probabilistic Approximate Correct (PAC)

Benchmark: Best arm had we known the distributions: a* = max u(a)
a

Fixe,d >0

@any sa@to identify an e-optimal arm a w.p. 1 — 6°?
[ )




Regret Objective Py

Explore-exploit version: Average cumulative mean:(ALG = %Ztu(at)

Benchmark (no exploration): Mean of best arm: OPT = u(a*)

Regret = OPT — ALG




Greedy algorithm

Pick each arm once; then highest empirical mean
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Greedy algorithm

Pick each arm once; then highest empirical mean

Action 2:
Reward is Bernoulli
1 w.p. 60% and 0 else

— Action 1: -
ward is always 0.4

Actual reward
L means

€<0.4,6<0.2:
Greedy does not achieve PAC

Regret =0.4-0.2-T=0.08-T
Regret linear in time-horizon
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log (kT/&)

Pick each arm N(e) = — times; then highest empirical mean ji(a)
1
0.6 o
0.4 ®.
Actual reward
0 —— means




Pick each arm N(¢)

[

Actual reward
means

Pr

L times; then highest empirical mean ji(a)

Hoeffding inequality:
X1, X5, .., X, tv.in [0,1] with mean p

lzx
ni i~ H

> p] < Q : exp(—an2)>
k



Explore-Then-Commit (ETC)
Pick each arm&e) M

imes; then highest empirical mean fi(a)

y—
By Hoeffding, Va € [k] after N(¢) plays of a,
with probability > 1 — 6 /k, it holds:
li(a) — p(a)| < €/2
0.6 -
0.4—— .
Actual \reward
0 means




Explore-Then-Commit (ETC)

4log (k/&)

Pick each arm N(¢) = — 5 times; then highest empirical mean fi(a)
[
By Hoeffding, Va € [k] after N(¢) plays of a,
with probability > 1 — 6 /k, it holds:
UCB = fi(ay) + €/2 (@ — p(@)] < €/2
-/_
0.6——
By union bound, after N(¢) plays of every arm,
LCB = ji(a,) — €/2 with probability > 1 — §, it holds Va € [k]:
0.4—— — -
E j A@ - r@I < /2
Actual ‘reward
0 means




Explore-Then-Commit (ETC)

Pick each arm N(¢) = M times; then highest empirical mean fi(a)

[

PACbound: k-N(e) =k- M

UCB =ji(ay) + €/2

0.6 f

ol E LCB = fi(az) - €/2

Actual reward
() J—— means




Explore-Then-Commit (ETC)

Pick each arm N(¢) = M fimes; then highest empirical mean fi(a)
[ —
PAC bound: \k - N(e) = k - M
UCB = ji(az) + €/2 Proof: For selected arm a : ji(a) = fi(a™) and
0.6 ) ]
i@ = p(@) < (A +5) - (@ = e,
el LCB = fi(a,) — €/2 - VY — P
| UBGE) Lcbisy
Actua/\reward
0 —— means




Explore-Then-Commit (ETC)

Pick each arm N(¢) = M imes; then highest empirical mean fi(a)

[ 2

~  PACbound: ((k - N(e =k-w

|
UCB =ji(ay) + €/2

7
0.6 4100(%
f Regret bound: ({—i@+ @E«S - 2’:

i J MBS e
oL Acnatreas hegret < Née) A — 2oy



T knswn 12 advance & L log(kTL8) Lin mw&("%,

Pick each armyN(e) =

1 —

_eommit (ETC) ¢

M mes; then highest empirical mean fi(a)

PAC bound: k-N(e) =k- 4logeg‘k/6)

p(az) + €/ w@
4 log
I Regret bound @ T

E LCB = fi(a;) — €/2 Ae)=k
inge — (k. 410g(k§/\5))1/3 1/3 and § = 1/T

e ret— ((k log (kT))1/3®

Actual reward
means



Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At
3. Remove a from At if UCB*(a) < max LCB!(a")
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1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At
3. Remove a from At if UCB*(a) < max LCB!(a")

a'eat—1
B log(2kT/5)
-IJ.: log(2kT/&
E K T Em- J OgZ(nt(ag )
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Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A®
Play round-robin across arms in At
Remove a from At if UCB? (a) < max_ LCBt(a")

Y a'eat— Hoeffding inequality:
X1,X5, ..., X rv.in [0,1] with mean u
_ lo (2](@/6)
UCB!(a) = fit(a) + P Pr 12)(,-—;; >pl <2 exp(—2np?
2nt(a) nL
ACY
By Hoeffding and union bound, with protability
log(2kT /&) >1-—20,1i :
LCBt(a)zﬁt(a)—\/ gz : / > 1—4§,itholdsVa € [k],t € [T
ma - Lu(a) € [LCB'(a), UCB' ()]

Actual reward

means



Keep adaptive Upper/Lower Confidence Bounds and active set

Active Arm Elimination (AAE) Q

Play round-robin across arms in At
Remove a from At if UCB? (a) < max_ LCBt(a")

a’eAt-
log(2kT/6) Claim A: If confidence intervals hold, i.e.
t _ ~t =LAt
UCB (@) = (@) + |— 55— va,t: p(a) € [LCBY(a), UCB'(a)], the best

arm is never eliminated, i.e., Vt:a* € 4

—

2nt(a)

(f LCBt%— (@) log(ZkT/6)

Actua/ reward
means



Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A®
Play round-robin across arms in At

Remove a from At if‘UCBt(a) < max LCBt(a’?j&
/e -

. o, log(2kT/6) Claim A: If confidence intervals hold, i.e.
UCB'(@) = (@) + |— 55— va,t: p(a) € [LCBY(a), UCB'(a)], the best
arm is never eliminated, i.e., Vt: a* € At

o log(2kT/8)  Proof:
-J‘: LCBt(a) - Ilt(a) _\/ 2nt(a) Va £ a*: UCBt(a*) > ‘u(\a*) > u(a) > LCB(a)

Actual reward
means



Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At
3. Remove a from At if UCB*(a) < max LCB!(a") %\e

a’eAt-1 /

log(2KT/8) fpain R T —
UCB! — it Claim B: In that event, arm a: j(a™) — u(a) = €(
(a) = ' (a) + j 2mta) @ k(@

f is eliminated after N(a) = (@)’ plays
€

(@)
log(2kT/6)
2nt(a)

E LCB!(a) = fi*(a) —

Actual reward
means



1.
2. Pla

Active Arm Elimination (AAE)

Keep adaptive Upper/Lower Confidence Bounds and active set A®

ross arms in At

3. Remove mAt if UCB(a) < max LCB'(a")

Actual reward

means U66 C&-] -'LCK (Aﬁg w(a) - (Of) + é(’d)é @)

a'eAat—1

UCB'(a) = ji(a) + log(2KkT /&) Claim B: In that event, arm a: u(a*) — u(a) = e(a)
@ =pla (@) 2 log (2KT7
n-a is eliminated after IV (a) = plays

e@)

¢ (
log(2kT /&) Proof: Let 7(a) be that time. By Claim A: E* € AT(“)>.

LCB!(a) = i*(a) -
2n'(a) UCB™ @ (a) < pu(a) + (Za)

LEO@) 2 p(a) - S




Coa(E%)
ETC: k22~
Active Arm Elimination (AAE) —
1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At
3. Remove a from At if UCBt(a) < max LCBt(a")
ol ents
UCB(a) = fit(a) + \/log(ZkT/é‘) Claim B: In that event, arm a(u(a ) —u(a) = e(a!
f 2n'(a) is eliminated after N(a) = %plays
LCBY(a) = fi'(a) —\/Og( - /%) j L_Qﬁ(_)
/ 2n(a) Za:e(a)>eN (a) “' o €M) e <t
N\ d
Actual reward € C—"")

means



| o | o o fe]rd: N(o,)é@\)
Active Arm Elimination (AAE) . zelé(w/&)

1. Keep adaptive Upper/Lower Confidence Bounds and active set At eCoJ

2. Play round-robin across arms in At
3. Remove a from At if UCB*(a) < max LCB!(a")

UCB!(a) = jit(a) + \/log(ZkT/é‘) Claim B: In that event, arm a: u(a*) — u(a) = e€(a)

Zn'(@) s eliminated after N(a) = M plays
f (e(a)
log(2kT /&) PAC bound
LCB(a) = jit(a) — j
E 2n'(a) Za:e(a)>eN(a) + -
Actual reward Regret bound: Yomin (N(a),T) - €(a) +6-T
means




Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At

3. Remove a from At if UCBt(a) < max LCBt(a")
iy

Setting 6 = 1/T
Regret bound: YgMm

n (4 log (kT) e(a) - ) p(a*) —u(a) = e(a)




Active Arm Elimination (AAE)

1. Keep adaptive Upper/Lower Confidence Bounds and active set At
2. Play round-robin across arms in At

3. Remove a from At if UCBt(a) < max LCBt(a")
iy

Setting§ = 1/T A (g) @Ca ) )
Regret bound: Y, min (4 log ("T) e(a) - ) u(a*) — u(a) = e(a)

. v >
For worst-case choice of e(a) = kl%(kﬂ: ha A\
) A

~
Regret = 0 (\/k : @'/’log(kT))




Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

log(2kT /&
UCB{% SR \/ OgZ(nt(ag )
t — log(2kT/ &)
i LCBY(@) = H'(@) — |— 5

Actual reward
means



Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound
By Hoeffding and union bound, with probability
y,

> 1 — &, it holds ]@

u(a) € [LCB'(a), UCB(a)]

log(2kT /&
. f . log(2kT/6)
E LCBY(@) = H'(@) — |— 5

Actual reward
means



Upper Confidence Bound (UCB)

Pick arm with highest Upper Confidence Bound

By Hoeffding and union bound, with probability
> 1—§,itholdsVa € [k],t € [T]:

u(a) € [LCB'(a), UCB(a)]

log(2kT/6)
UCB(a) = i'(a) + j e
2n*(a) Claim : In the event that all confidence intervals

]: confidence inter, s hold, the.regret is at most
_ log(2kT /&) Zt(UCBt — LCBY(a®Y)+46-T
I LCB!(a) = fi*(a) _\/ 2nt(a) T




Upper Confidence Bound (UCB)

S
%ck arm with highest Upper Confidence W

By Hoeffding and union bound, with probability

> 1—§,itholdsVa € [k],t € [T]:

2 k(@) € [LCB (@), UCB (@) )
log(2kT/6)

UCB'(a) = it(a) + j

2n'(a) Claim : In the event that all confidence intervals
confidence intervals hold, the regret is at most
. e log(2kT/6) Y.(UCB (at) = LCB*(a*))+6-T
LCB!(a) = i'(a) = |— =

< UCB'(a*) — LCB'(a")

Actual reward ( < UCB'(a") — LCBt(aD

means




Upper Confidence Bound (UCB)

log(2kT /&) log(2kT/&)

o ECmY — Tl —
UCB!(a) = iit(a) +\/ () LCB*(a) = i*(a) \/ 2nt (@)

Claim : In the event that all confidence intervals confidence intervals hold, the
regret is at most Y+(UCBt (at) — LCB%(al)) +ﬁ6 - T



i r—— IT/U)/TJJ /W/
Upper Confidence Bound (UCB)

\/log(ZkT/é‘)

. i log(2kT/6)
2nt(a) LCB (a) = i (a) \/ 2nt(a)

Claim : In the event that all confidence intervals confidence intervals hold, the
regret is at most Y:(UCB (a®) = LCB*(a’)) + +6 - T
Cortccz rQ

UCB*(a) = fi*(a)

Regret bound by confidence sum

2kT og 2kT
Z(UCBt(at) LCB(at)) <2 - z nt (at) z f




Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:
1. Extends to RL (see next lecture)

2. Gap-dependent guarantees
* Small modification in analysis

3. Allows for arantees (unknown horizon)
 Small modification in confidence bounds



Stochastic MAB Protocol

Arm a € [k] has distribution F(a) with mean u(a) and support [0, 1]

Atroundt =1 ..T:

1. Learner commits to a distribution pt across arms

2. Reward for arm a:@ ~ F(a)

3. Learner draws arm at ~ pt

4. Learner earns (and only observes) reward rt(at)



Adversarial MAB Protocol

Atroundt =1 ..T:

. Learner commits to a distribution p* across arms

e

2. Reward for arm a: r'(a) € [0, 1] adversarially selected
//7%. Learner draws arm at ~ pt
4

. Learner earns (and only observes) reward rt(at)



Stochastic and Adversarial worlds

Stochastic world

* |f arms have a gap in their means, i.e.,
u(a*) — u(a) = e(a) then regret of
the order of:

2 min (4 log (kT) ,€(a) - T)

€(a)
* If not then regret of the order of VKT

* If rewards are not stochastic,
stochastic MAB algs: linear regret



Stochastic and Adversarial worlds

Stochastic world Adversarial world

* If arms have a gap in their means, i.e., « Regret of the order of VkT without
p(a*) — u(a) = e(a) then regret of assuming stochasticity (e.g., EXP3)
the order of:

~ /4log (kT) * If rewards are stochastic, adversarial
2 min ( ,€(a) - T) MAB algs: no enhanced bounds
a

€(a)
* If not then regret of the order of VKT

* If rewards are not stochastic,
stochastic MAB algs: linear regret



Stochastic and Adversarial worlds

Stochastic world Adversarial world

. If arms have a gap in their means, i.e., « Regret of the order of VKT without
p(a*) — u(a) = e(a) then regret of assuming stochasticity (e.g., EXP3)
the order of:

* If rewards are stochastic, adversarial

(4 log (kT)
2 min ( @ ,€(a) - T) MAB algs: no enhanced bounds
a

* If not then regret of the order of VKT

* If rewards are not stochastic,
stochastic MAB algs: linear regret

Question: Best of both worlds?

* Single algorithm with logarithmic
guarantee when input stochastic and
square-root when input adversarial!

[Bubeck,Slivkins, COLT "12]
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Question: Best of both worlds?

* Single algorithm with logarithmic guarantee when input stochastic and
square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

* Approach 1: Start from AAE and test for non-consistency; if identified then
switch to EXP3 [Bubeck, Slivkins, COLT '12] [Auer, Chiang, ICML’ 16]

* Approach 2: Start from adversarial with aggressive “learning rate”; adapt it
over time [Seldin, Slivkins, ICML’14] [Seldin, Lugosi, COLT ’17]
[Wei, Luo, COLT ‘18] [Zimmert, Seldin, AISTATS ’'19]



Best of both worlds

Question: Best of both worlds?

* Single algorithm with logarithmic guarantee when input stochastic and
square-root when input adversarial! [Bubeck, Slivkins, COLT '12]

Answer: Yes!

* Approach 1: Start from AAE and test for non-consistency; if identified then
switch to EXP3 [Bubeck, Slivkins, COLT '12] [Auer, Chiang, ICML’ 16]

* Approach 2: Start from adversarial with aggressive “learning rate”; adapt it
over time [Seldin, Slivkins, ICML’14] [Seldin, Lugosi, COLT ’17]
[Wei, Luo, COLT ‘18] [Zimmert, Seldin, AISTATS ’'19]

RL: Only very preliminary results for known transitions
[Jin, Luo, working’ 20]




Corrupted MAB

Arm a € [k] has distribution F(a) with mean u(a) and support [0, 1]

Atroundt =1 ..T:

1.

2.

Learner commits to a distribution p® across arms

Reward for arm a: rt(a) ~ F(a)

. Adversary corrupts rewards rt(a) (total corruption budget of C)

Learner draws arm at ~ pt

Learner earns uncorrupted (or corrupted) reward & observes only corrupted



Corrupted MAB
Question

 Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC '18]



Corrupted MAB

Question
 Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC "18]
Answer:
* Initial algorithm based on a multi-layering version of AAE and lower bound for
high-probability [Lykouris, Mirrokni, Paes Leme, STOC '18]
* Improved algorithm using a phase scheme and the Improved-UCB algorithm
of Otner and Auer’10 [Gupta, Koren, Talwar, COLT '19]

* For expectations and corrupted: Between both wolds [Zimmert, Seldin "20]



Corrupted MAB

Question
 Algorithm with logarithmic guarantee when stochastic and gracefully degrades
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC "18]
Answer:
* Initial algorithm based on a multi-layering version of AAE and lower bound for
high-probability [Lykouris, Mirrokni, Paes Leme, STOC '18]
* Improved algorithm using a phase scheme and the Improved-UCB algorithm
of Otner and Auer’10 [Gupta, Koren, Talwar, COLT "19]

* For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]

RL: Multi-layering version of UCBVI enhanced with appropriate
active sets [Lykouris, Simchowitz, Slivkins, Sun’ 19]
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Summary
Today: Exploration

* Maximize expected reward w/o known underlying MDP or ability to reset!
Focus: Multi-Armed Bandits

 Simplest setting capturing explore-exploit trade-off

» Key ideas extend to richer RL & tackle complexities not understood in RL
Algorithms

» Greedy: Not PAC / Linear regret

* Explore-Then-Commit: Regret of T2/3

« Active Arm Elimination: Regret logarithmic for arms separated and VT else
» Upper Confidence Bound: Same regret; analysis extends to RL



