
Lecture 5: 
Multi-Armed Bandits (MAB)

Guest Lecturer

Thodoris Lykouris
(Microsoft Research NYC)

 



Learning objective: Intro to exploration

Previously on CS 6789
• Planning via Bellman equations: known underlying MDP known
• Generative model: ability to reset from anywhere



Learning objective: Intro to exploration

Previously on CS 6789
• Planning via Bellman equations: known underlying MDP known
• Generative model: ability to reset from anywhere

Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!



Learning objective: Intro to exploration

Previously on CS 6789
• Planning via Bellman equations: known underlying MDP known
• Generative model: ability to reset from anywhere

Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!

Focus: Multi-Armed Bandits
• Simplest setting capturing explore-exploit trade-off
• Key ideas extend to richer RL settings



Multi-Armed-Bandits: High-level picture
Setting

• Set of alternatives (arms)
• Each arm has a reward distribution

• Learner adaptively selects arms
• Challenge: Distributions not known
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Multi-Armed-Bandits: High-level picture
Setting

• Set of alternatives (arms)
• Each arm has a reward distribution

• Learner adaptively selects arms
• Challenge: Distributions not known

Application: Online advertising
• Arms are advertisers
• Each arm has click-through-rate (CTR)

probability of getting clicked
• Platform adaptively selects ads
• Challenge: CTRs are not known

Images from:
https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804

https://www.aqusagtechnologies.com/wp-content/uploads/2017/04/Online-advertising.jpeg



MAB Protocol

Arm ! ∈ [$] has distribution & ' with mean ( ' and support 0,1

At round , = 1…/:
1. Learner selects arm !! (possibly in randomized manner)

2. Reward for arm !:  1! ! ∼ 3 !

3. Learner earns (and only observes) reward 1!(!!)



Probabilistic Approximate Correct (PAC)

Fix 6, 7 > 0
How many samples to identify an !-optimal arm " w.p. 1 − δ?

& "⋆ − & " < !

Benchmark: Best arm had we known the distributions:  !⋆ = max" &(!)



Regret Objective

Benchmark (no exploration): Mean of best arm:  )*+ = , -⋆

Explore-exploit version: Average cumulative mean: 9:; = "
#∑$(('

$)

!"#$"% = '() − +,-



Greedy algorithm
Pick each arm once; then highest empirical mean
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Greedy algorithm

Action 1:
Reward is always 0.4

Actual reward 
means

0.6

0.4

0

1
Pick each arm once; then highest empirical mean

Action 2:
Reward is Bernoulli

1 w.p. 60% and 0 else 

= < ?. A, B < ?. C:
Greedy does not achieve PAC

DEFGEH = ?. A ⋅ ?. C ⋅ J = ?. ?K ⋅ J
Regret linear in time-horizon
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.! times; then highest empirical mean M((')

Actual reward 
means

0.6

0.4

0

1
By	Hoeffding,	∀S ∈ [U] after	V(W) plays	of	S,

with	probability	≥ 1 − [/U,	it	holds:
]> S − > S ≤ W/2

By	union	bound,	after	V(W) plays	of	every	arm,
with	probability	≥ 1 − [,	it	holds	∀S ∈ U :

]> S − > S ≤ W/2
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.! times; then highest empirical mean M((')

Actual reward 
means

0.6

0.4

0

1

!"# = %& '! + )/+

,"# = %& '! − )/+

PAC bound: N ⋅ O = = N ⋅ /%&' ()/,).!

Proof: For selected arm S : ]> S ≥ ]> S⋆ and

> S⋆ − > S ≤ ]> S⋆ + '
" − ]> S − '
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Explore-Then-Commit (ETC)
Pick each arm L = = /%&' ()/,)

.! times; then highest empirical mean M((')

Actual reward 
means

0.6

0.4

0

1

!"# = %& '! + )/+

,"# = %& '! − )/+

PAC bound: N ⋅ O = = N ⋅ /%&' ()/,).!

Regret bound: N ⋅ / 012
"
#

.! + = ⋅ J + B ⋅ J

Setting	W = U ⋅ 4 log Uc/[ !/) ⋅ c*!/) and [ = 1/c
DEFGEH = Q N ⋅ RSF NJ "/3 ⋅ J4/3



Active Arm Elimination (AAE)
1. Keep adaptive Upper/Lower Confidence Bounds and active set T!
2. Play round-robin across arms in T!
3. Remove ! from T! if UVW! ! < max

5$∈7%&'
[VW!(!8)
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2. Play round-robin across arms in T!
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By	Hoeffding and	union	bound,	with	probability	
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2. Play round-robin across arms in T!
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Claim A: If confidence intervals hold,  i.e. 
∀S, h: F g ∈ ijk+ g ,ljk+ g , the best 
arm is never eliminated, i.e., ∀h: S⋆ ∈ m[
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∀S ≠ S⋆: UCB\ S⋆ ≥ > S⋆ ≥ > S ≥ qrs(S)
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Active Arm Elimination (AAE)

Actual reward 
means

!"#" ' = %&" ' + log Jde/f
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1. Keep adaptive Upper/Lower Confidence Bounds and active set T!
2. Play round-robin across arms in T!
3. Remove ! from T! if UVW! ! < max

5$∈7%&'
[VW!(!8)

Claim B: In that event, arm S: > S⋆ − > S = W S
is eliminated after V S = % ]^_ (%`a/b)

c d ! plays

Proof: Let t(S) be that time. By Claim A: S⋆ ∈ me(f).

urse(f) S ≤ > S + W S2
qrse(f) S⋆ ≥ > S⋆ − W S2
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Active Arm Elimination (AAE)
1. Keep adaptive Upper/Lower Confidence Bounds and active set T!
2. Play round-robin across arms in T!
3. Remove ! from T! if UVW! ! < max

5$∈7%&'
[VW!(!8)

Setting 7 = 1//
Regret bound: ∑9min / %&' ()*)

. 9 , = ' ⋅ J + d e !⋆ − e ! = 6 !

For worst-case choice of 6 ! = =⋅012 =?
? :

DEFGEH = Q N ⋅ J ⋅ log NJ
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Upper Confidence Bound (UCB)
Pick arm with highest Upper Confidence Bound

Actual reward 
means

!"#" ' = %&" ' + log Jde/f
JB+ g

,"#" ' = %&" ' − log Jde/f
JB+ g

By	Hoeffding and	union	bound,	with	probability	
≥ 1 − [,	it	holds	∀S ∈ U , h ∈ c :
( ' ∈ \]^$ ' ,_]^$ '

Claim : In the event that all confidence intervals 
confidence intervals hold, the regret is at most 

∑[(urs[ S[ − qrs[(S[)) + [ ⋅ c
Proof: wxy[ = > S⋆ − > S[

≤ urs[ S⋆ − qrs[ S[
≤ urs[ S[ − qrs[ S[



Upper Confidence Bound (UCB)

!"#" ' = %&" ' + log Jde/f
JB+ g ,"#" ' = %&" ' − log Jde/f

JB+ g
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Upper Confidence Bound (UCB)

!"#" ' = %&" ' + log Jde/f
JB+ g ,"#" ' = %&" ' − log Jde/f

JB+ g
Claim : In the event that all confidence intervals confidence intervals hold, the 

regret is at most ∑[(urs[ S[ − qrs[(S[)) + +[ ⋅ c
Regret bound by confidence sum

#
!
(%&'! (! − *&'!((!)) ≤ 2 ⋅#

!

log 234
5

26" 7" =#
#
#
$%&

' # log 234
5

2 ⋅ 9

≤#
(
#
$%&

)
* log 234

5
2 ⋅ 9 ≤ : ⋅ log 234

5 ⋅ ;: = < 4 ⋅ 3 ⋅ log 34
5



Upper Confidence Bound (UCB)

Resulting guarantee similar to the one of AAE

Confidence sum analysis:
1. Extends to RL (see next lecture)
2. Gap-dependent guarantees
• Small modification in analysis

3. Allows for anytime guarantees (unknown horizon)
• Small modification in confidence bounds



Stochastic MAB Protocol

Arm ' ∈ [N] has distribution & ' with mean ( ' and support ?, d

At round , = 1…/:
1. Learner commits to a distribution j! across arms

2. Reward for arm ':  G$ ' ∼ & '

3. Learner draws arm !! ∼ j!

4. Learner earns (and only observes) reward 1!(!!)



Adversarial MAB Protocol

At round , = 1…/:
1. Learner commits to a distribution j! across arms

2. Reward for arm ':  G$ ' ∈ [?, d] adversarially selected

3. Learner draws arm !! ∼ j!

4. Learner earns (and only observes) reward 1!(!!)
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#
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Question: Best of both worlds?

• Single algorithm with logarithmic guarantee when input stochastic and 
square-root when input adversarial! [Bubeck, Slivkins, COLT ’12]

Answer: Yes!
• Approach 1: Start from AAE and test for non-consistency; if identified then 

switch to EXP3 [Bubeck, Slivkins, COLT ’12]  [Auer, Chiang, ICML’ 16]
• Approach 2: Start from adversarial with aggressive “learning rate”; adapt it 

over time [Seldin, Slivkins, ICML’14]   [Seldin, Lugosi, COLT ’17] 
[Wei, Luo, COLT ’18]   [Zimmert, Seldin, AISTATS ’19]

RL: Only very preliminary results for known transitions
[Jin, Luo, working’ 20]



Corrupted MAB

At round , = 1…/:
1. Learner commits to a distribution j! across arms

2. Reward for arm ':  G$ ' ∼ & '

3. Adversary corrupts rewards G$ ' (total corruption budget of ])

4. Learner draws arm !! ∼ j!

5. Learner earns uncorrupted (or corrupted) reward & observes only corrupted

Arm ' ∈ [N] has distribution & ' with mean ( ' and support ?, d
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Corrupted MAB
Question

• Algorithm with logarithmic guarantee when stochastic and gracefully degrades 
with corruption budget [Lykouris, Mirrokni, Paes Leme, STOC ’18]

Answer:
• Initial algorithm based on a multi-layering version of AAE and lower bound for 

high-probability    [Lykouris, Mirrokni, Paes Leme, STOC ’18]
• Improved algorithm using a phase scheme and the Improved-UCB algorithm 

of Otner and Auer’10 [Gupta, Koren, Talwar, COLT ’19]
• For expectations and corrupted: Between both wolds [Zimmert, Seldin ’20]

RL: Multi-layering version of UCBVI enhanced with appropriate 
active sets [Lykouris, Simchowitz, Slivkins, Sun’ 19]
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Summary
Today: Exploration
• Maximize expected reward w/o known underlying MDP or ability to reset!
Focus: Multi-Armed Bandits
• Simplest setting capturing explore-exploit trade-off
• Key ideas extend to richer RL  & tackle complexities not understood in RL
Algorithms
• Greedy: Not PAC / Linear regret
• Explore-Then-Commit: Regret of /@/A
• Active Arm Elimination: Regret logarithmic for arms separated and / else
• Upper Confidence Bound: Same regret; analysis extends to RL


