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We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆
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We have a dataset  and access to transition 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆ P( ⋅ |s, a), ∀s, a

Hybrid IL Algorithm: Distribution Matching 
(Statistically efficient, but not computationally)

̂π := arg min
π∈Π

max
f∈ℱ̃ [𝔼s,a∼dπ f(s, a) −

1
M
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∑
i=1

f(s⋆
i , a⋆
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Today: Hybrid Setting

Algorithm: Maximum Entropy Inverse Reinforcement Learning
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Running Example: Human trajectory forecasting
[Kitani, et al, ECCV 12]

High-level assumptions: 

(1) Experts may have some cost function regarding walking in their mind 

(2) Experts are (approximately) optimizing the cost function
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Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ0, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Key Assumption on cost:  
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)



Notation on Distributions

: probability of visiting  at time step  following ℙπ
h(s, a) (s, a) h π

: average state-action visitationdπ(s, a) =
H−1

∑
h=0

ℙπ
h(s, a)/H

: 

Likelihood of the trajectory  under 

ρπ(τ) := μ0(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…π(aH−1 |sH−1)P(sH |sH−1, aH−1)
τ π
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Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Maybe colliding with cars or 
buildings has high cost, but 
walking on sideway or grass 

has low cost 
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Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy: 

Entropy Maximization subject to Moment Matching constraints

max
Q∈Δ(X)

entropy(Q), s.t., 𝔼x∼Q[x] = μ, 𝔼x∼Q[xx⊤] = Σ + μμ⊤

Solution:  

(proof: use Lagrange multiplier)

Q⋆ = 𝒩(μ, Σ)
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Recall the definition of trajectory distribution: 

ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…

entropy(ρπ) = − ∑
τ

ρπ(τ)ln(ρπ(τ)) = − ∑
τ

ρπ(τ)[
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∑
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τ

ρπ(τ)[
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∑
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ln π(ah |sh)]

Let’s simplify the objective :max
π

entropy[ρπ]

= arg max
π

−
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∑
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𝔼s,a∼dπ
h

ln π(a |s)
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θ

min
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(Gradient equal to the difference of expected features)

Initializing : θ0

For t = 0,…,
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For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
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Return θT
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What’s the likelihood of  being generated by expert?τ

ln (ρ ̂π (τ)) =
H−1

∑
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[ln P(sh+1 |sh, ah) + ln ̂π (ah |sh)]

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT)) Special case: deterministic MDP and state-

dependent cost:

For a state trajectory, we have:


ρπ(s0, s1, …, sH) ∝ exp (−∑
h

θ⊤
T ϕ(sh))



Running Example: Human Trajectory Forecasting

State space: grid, 

action space: 4 actions

We predict that we are more likely to use 
sidewalk 


