
Maximum Entropy 
Inverse Reinforcement Learning 

 
Sham Kakade and Wen Sun 

CS 6789: Foundations of Reinforcement Learning



Announcements

Project Presentation (Dec 8th and 10th): 


Please sign up time slots 

(see Piazza post for more details)



Recap 

Offline IL Setting:



Recap 

Offline IL Setting:

Ground truth reward  is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆



Recap 

Offline IL Setting:

Ground truth reward  is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆



Recap 

Offline IL Setting:

Ground truth reward  is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)



Recap 

Offline IL Setting:

Ground truth reward  is unknown; assume expert is a near optimal policy r(s, a) ∈ [0,1] π⋆

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)

̂π = arg max
π∈Π

M

∑
i=1

ln π(a⋆
i |s⋆

i )



Hybrid IL Setting:

Recap 



Hybrid IL Setting:

Recap 

We have a dataset  and access to transition 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆ P( ⋅ |s, a), ∀s, a



Hybrid IL Setting:

Recap 

We have a dataset  and access to transition 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆ P( ⋅ |s, a), ∀s, a

Hybrid IL Algorithm: Distribution Matching 
(Statistically efficient, but not computationally)



Hybrid IL Setting:

Recap 

We have a dataset  and access to transition 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆ P( ⋅ |s, a), ∀s, a

Hybrid IL Algorithm: Distribution Matching 
(Statistically efficient, but not computationally)

̂π := arg min
π∈Π

max
f∈ℱ̃ [𝔼s,a∼dπ f(s, a) −

1
M

M

∑
i=1

f(s⋆
i , a⋆

i )]



Today: Hybrid Setting

Algorithm: Maximum Entropy Inverse Reinforcement Learning



Running Example: Human trajectory forecasting
[Kitani, et al, ECCV 12]



Running Example: Human trajectory forecasting
[Kitani, et al, ECCV 12]

High-level assumptions: 

(1) Experts may have some cost function regarding walking in their mind 

(2) Experts are (approximately) optimizing the cost function



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ0, π⋆}



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ0, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ0, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆



Setting

Finite horizon MDP ℳ = {S, A, H, c, P, μ0, π⋆}

(1) Ground truth cost  is unknown; 

(2) assume expert is the optimal policy  of the cost 


(3) transition P is known

c(s, a)
π⋆ c

We have a dataset 𝒟 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Key Assumption on cost:  
, linear w.r.t feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)



Notation on Distributions

: probability of visiting  at time step  following ℙπ
h(s, a) (s, a) h π

: average state-action visitationdπ(s, a) =
H−1

∑
h=0

ℙπ
h(s, a)/H

: 

Likelihood of the trajectory  under 

ρπ(τ) := μ0(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…π(aH−1 |sH−1)P(sH |sH−1, aH−1)
τ π



Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)



Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s



Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…



Running Example: Define feature map

Key Assumption on cost:  
, linear wrt feature c(s, a) = ⟨θ⋆, ϕ(s, a)⟩ ϕ(s, a)

State : pixel or a group of 
neighboring pixels in image)

s

ϕ(s, a) =

ℙ(pixels being building)
ℙ(pixels being grass)

ℙ(pixels being sidewalk)
ℙ(pixels being car)

…

Maybe colliding with cars or 
buildings has high cost, but 
walking on sideway or grass 

has low cost 



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy: 

Entropy Maximization subject to Moment Matching constraints



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy: 

Entropy Maximization subject to Moment Matching constraints

max
Q∈Δ(X)

entropy(Q), s.t., 𝔼x∼Q[x] = μ, 𝔼x∼Q[xx⊤] = Σ + μμ⊤



Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to , 
but there are infinitely many such distributions…

μ, Σ

Principle of Maximum Entropy: 

Entropy Maximization subject to Moment Matching constraints

max
Q∈Δ(X)

entropy(Q), s.t., 𝔼x∼Q[x] = μ, 𝔼x∼Q[xx⊤] = Σ + μμ⊤

Solution:  

(proof: use Lagrange multiplier)

Q⋆ = 𝒩(μ, Σ)



Maximum Entropy Inverse RL:



Maximum Entropy Inverse RL:

Q: we want to find a policy  such that  

(Note linear cost assumption implies  is as good as )


But there are potentially many such policies…

π 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)
π π⋆



Maximum Entropy Inverse RL:

Find a  whose  has the largest entropy, 

subject to expected feature matching 

π ρπ

𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)

Q: we want to find a policy  such that  

(Note linear cost assumption implies  is as good as )


But there are potentially many such policies…

π 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)
π π⋆



Maximum Entropy Inverse RL:

Find a  whose  has the largest entropy, 

subject to expected feature matching 

π ρπ

𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)

max
π

entropy[ρπ]

s . t, 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)

Q: we want to find a policy  such that  

(Note linear cost assumption implies  is as good as )


But there are potentially many such policies…

π 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)
π π⋆



Maximum Entropy Inverse RL:

Let’s simplify the objective :max
π

entropy[ρπ]



Maximum Entropy Inverse RL:

Recall the definition of trajectory distribution: 

ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…

Let’s simplify the objective :max
π

entropy[ρπ]



Maximum Entropy Inverse RL:

Recall the definition of trajectory distribution: 

ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…

entropy(ρπ) = − ∑
τ

ρπ(τ)ln(ρπ(τ)) = − ∑
τ

ρπ(τ)[
H−1

∑
h=0

ln P(sh+1 |sh, ah) + ln π(ah |sh)]

Let’s simplify the objective :max
π

entropy[ρπ]



Maximum Entropy Inverse RL:

Recall the definition of trajectory distribution: 

ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…

entropy(ρπ) = − ∑
τ

ρπ(τ)ln(ρπ(τ)) = − ∑
τ

ρπ(τ)[
H−1

∑
h=0

ln P(sh+1 |sh, ah) + ln π(ah |sh)]
arg max

π
entroy(ρπ) = arg max

π
− ∑

τ

ρπ(τ)[
H−1

∑
h=0

ln π(ah |sh)]

Let’s simplify the objective :max
π

entropy[ρπ]



Maximum Entropy Inverse RL:

Recall the definition of trajectory distribution: 

ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)…

entropy(ρπ) = − ∑
τ

ρπ(τ)ln(ρπ(τ)) = − ∑
τ

ρπ(τ)[
H−1

∑
h=0

ln P(sh+1 |sh, ah) + ln π(ah |sh)]
arg max

π
entroy(ρπ) = arg max

π
− ∑

τ

ρπ(τ)[
H−1

∑
h=0

ln π(ah |sh)]

Let’s simplify the objective :max
π

entropy[ρπ]

= arg max
π

−
H−1

∑
h=0

𝔼s,a∼dπ
h

ln π(a |s)



Maximum Entropy Inverse RL:

Reformulating the optimization program:

min
π

𝔼s,a∼dπ ln π(a |s)

s . t, 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)



Maximum Entropy Inverse RL:

Reformulating the optimization program:

min
π

𝔼s,a∼dπ ln π(a |s)

s . t, 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)

Using Lagrange formulation (Lagrange multiplier ), we get:θ

min
π

𝔼s,a∼dπ ln π(a |s) + max
θ

(𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a))



Maximum Entropy Inverse RL:

Reformulating the optimization program:

min
π

𝔼s,a∼dπ ln π(a |s)

s . t, 𝔼s,a∼dπϕ(s, a) = 𝔼s,a∼dπ⋆ϕ(s, a)

Using Lagrange formulation (Lagrange multiplier ), we get:θ

min
π

𝔼s,a∼dπ ln π(a |s) + max
θ

(𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a))

Using minimax theorem (John von Neumann), we can swap the order of min-max:

max
θ

min
π

[𝔼s,a∼dπ ln π(a |s) + 𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a)]



Maximum Entropy Inverse RL: Final Algorithm

max
θ

min
π

[𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a) + 𝔼s,a∼dπ ln π(a |s)]

We get the final formulation:



Maximum Entropy Inverse RL: Final Algorithm

max
θ

min
π

[𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a) + 𝔼s,a∼dπ ln π(a |s)]

We get the final formulation:

Algorithm: gradient ascent on  (w/ fixed ), 

and exact computation (e.g, planning, VI) for  (w/ fixed )

θ π
π θ



Maximum Entropy Inverse RL: Final Algorithm

max
θ

min
π

[𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a) + 𝔼s,a∼dπ ln π(a |s)]

We get the final formulation:

Algorithm: gradient ascent on  (w/ fixed ), 

and exact computation (e.g, planning, VI) for  (w/ fixed )

θ π
π θ

Initializing : θ0

For t = 0,…,

πt = arg min
π

𝔼s,a∼dπ [θ⊤
t ϕ(s, a) + ln π(a |s)]

θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))
Return θT



Maximum Entropy Inverse RL: Final Algorithm

max
θ

min
π

[𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a) + 𝔼s,a∼dπ ln π(a |s)]

We get the final formulation:

Algorithm: gradient ascent on  (w/ fixed ), 

and exact computation (e.g, planning, VI) for  (w/ fixed )

θ π
π θ

(Maximum Entropy RL)

Initializing : θ0

For t = 0,…,

πt = arg min
π

𝔼s,a∼dπ [θ⊤
t ϕ(s, a) + ln π(a |s)]

θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))
Return θT



Maximum Entropy Inverse RL: Final Algorithm

max
θ

min
π

[𝔼s,a∼dπθ⊤ϕ(s, a) − 𝔼s,a∼dπ⋆θ⊤ϕ(s, a) + 𝔼s,a∼dπ ln π(a |s)]

We get the final formulation:

Algorithm: gradient ascent on  (w/ fixed ), 

and exact computation (e.g, planning, VI) for  (w/ fixed )

θ π
π θ

(Maximum Entropy RL)

(Gradient equal to the difference of expected features)

Initializing : θ0

For t = 0,…,

πt = arg min
π

𝔼s,a∼dπ [θ⊤
t ϕ(s, a) + ln π(a |s)]

θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))
Return θT



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

V⋆
H−1(s) = 𝔼a∼π⋆

H−1(a|s) [ln π⋆
H−1(a |s) + Q⋆

H−1(s, a)] = − ln (∑
a

exp (−Q⋆
H−1(s, a)))

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

V⋆
H−1(s) = 𝔼a∼π⋆

H−1(a|s) [ln π⋆
H−1(a |s) + Q⋆

H−1(s, a)] = − ln (∑
a

exp (−Q⋆
H−1(s, a)))

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))

Q⋆
h (s, a) = c(s, a) + 𝔼s′ ∼P(⋅|s,a)V⋆

h+1(s′ )



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

V⋆
H−1(s) = 𝔼a∼π⋆

H−1(a|s) [ln π⋆
H−1(a |s) + Q⋆

H−1(s, a)] = − ln (∑
a

exp (−Q⋆
H−1(s, a)))

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))

Q⋆
h (s, a) = c(s, a) + 𝔼s′ ∼P(⋅|s,a)V⋆

h+1(s′ )

π⋆
h (a |s) ∝ exp(−Q⋆

h (s, a)) ∝ exp(−A⋆
h (s, a))



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

V⋆
H−1(s) = 𝔼a∼π⋆

H−1(a|s) [ln π⋆
H−1(a |s) + Q⋆

H−1(s, a)] = − ln (∑
a

exp (−Q⋆
H−1(s, a)))

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))

Q⋆
h (s, a) = c(s, a) + 𝔼s′ ∼P(⋅|s,a)V⋆

h+1(s′ )

π⋆
h (a |s) ∝ exp(−Q⋆

h (s, a)) ∝ exp(−A⋆
h (s, a))

V⋆
h (s) = − ln (∑

a

exp(−Q⋆
h (s, a)))



Maximum Entropy RL: Soft Value Iteration

arg max
π

𝔼s,a∼dπ [c(s, a) + ln π(a |s)]

Maximum Entropy RL: what we do when our “cost” depends on policy ?π

Soft Value Iteration:

V⋆
H−1(s) = 𝔼a∼π⋆

H−1(a|s) [ln π⋆
H−1(a |s) + Q⋆

H−1(s, a)] = − ln (∑
a

exp (−Q⋆
H−1(s, a)))

Q⋆
H−1(s, a) = c(s, a) π⋆

H−1(a |s) ∝ exp (−Q⋆
H−1(s, a)) ∝ exp(−A⋆

H−1(s, a))

Q⋆
h (s, a) = c(s, a) + 𝔼s′ ∼P(⋅|s,a)V⋆

h+1(s′ )

π⋆
h (a |s) ∝ exp(−Q⋆

h (s, a)) ∝ exp(−A⋆
h (s, a))

V⋆
h (s) = − ln (∑

a

exp(−Q⋆
h (s, a))) Derivation: DP!



Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing : θ0

For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))

Return θT

̂π := soft VI (θ⊤
T ϕ(s, a))

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT))



Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing : θ0

For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))

Return θT

̂π := soft VI (θ⊤
T ϕ(s, a))

Given a trajectory τ = {s0, a0, …, sH−1, aH−1}

What’s the likelihood of  being generated by expert?τ

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT))



Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing : θ0

For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))

Return θT

̂π := soft VI (θ⊤
T ϕ(s, a))

Given a trajectory τ = {s0, a0, …, sH−1, aH−1}

What’s the likelihood of  being generated by expert?τ

ln (ρ ̂π (τ)) =
H−1

∑
h=0

[ln P(sh+1 |sh, ah) + ln ̂π (ah |sh)]

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT))



Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing : θ0

For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))

Return θT

̂π := soft VI (θ⊤
T ϕ(s, a))

Given a trajectory τ = {s0, a0, …, sH−1, aH−1}

What’s the likelihood of  being generated by expert?τ

ln (ρ ̂π (τ)) =
H−1

∑
h=0

[ln P(sh+1 |sh, ah) + ln ̂π (ah |sh)]

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT)) Special case: deterministic MDP and state-

dependent cost:



Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing : θ0

For t = 0,…,
πt = arg min

π
𝔼s,a∼dπ [θ⊤

t ϕ(s, a) + ln π(a |s)]
θt+1 = θt + η (𝔼s,a∼dπtϕ(s, a) − 𝔼s,a∼dπ⋆ϕ(s, a))

Return θT

̂π := soft VI (θ⊤
T ϕ(s, a))

Given a trajectory τ = {s0, a0, …, sH−1, aH−1}

What’s the likelihood of  being generated by expert?τ

ln (ρ ̂π (τ)) =
H−1

∑
h=0

[ln P(sh+1 |sh, ah) + ln ̂π (ah |sh)]

̂π h(a |s) ∝ exp (−Q⋆
h (s, a; θT)) Special case: deterministic MDP and state-

dependent cost:

For a state trajectory, we have:


ρπ(s0, s1, …, sH) ∝ exp (−∑
h

θ⊤
T ϕ(sh))



Running Example: Human Trajectory Forecasting

State space: grid, 

action space: 4 actions

We predict that we are more likely to use 
sidewalk 


