Maximum Entropy
Inverse Reinforcement Learning

CS 6789: Foundations of Reinforcement Learning



Announcements

Project Presentation (Dec 8th and 10th):

Please sign up time slots
(see Piazza post for more details)
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Offline IL Setting:

Ground truth reward r(s, a) € [0,1] is unknown; assume expert is a near optimal policy 7*

We have a dataset @ = (s, a*)M | ~ ar

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)

M
7 = arg max 2 Inz(a|s7)
nell

i=1
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Hybrid IL Algorithm: Distribution Matching
(Statistically efficient, but not computationally)
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(Statistically efficient, but not computationally)

| M
7 :=argmin |max |E, _.f(s,a) — — * aX

#ell | feF
___—

1pPM (j—,’)



Today: Hybrid Setting

Algorithm: Maximum Entropy Inverse Reinforcement Learning
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Running Example: Human trajectory forecasting
[Kitani, et al, ECCV 12]

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible
paths and destinations from noisy vision-input

High-level assumptions:
(1) Experts may have some cost function regarding walking in their mind
@) Experts are (approximately) optimizing the cost function
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Setting
Finite horizon MDP ./ = {S,A,H, ¢, P, iy, ©*}

(1) Ground truth cost c(s, a) is unknown;

(2) assume expert is the optimal policy 7* of the cost ¢
(3) transition P is known

*

We have a dataset & = (s*,a*)¥, ~ d”

Key Assumption on cost: KG’{
c(s,a) = (0%, ¢(s,a)), linear w.r.t feature (s, a) =



Notation on Distributions

[P7(s, a)} probability of visiting (s, @) at time step / following 7

H-1
d"(s,a) = Z P, (s, a)/ H: average state-action visitation
— h=0

,/‘L"/SQ 50 o, 9‘ Q-+~ SH/‘)QH’J) Sal 3

p*(7) = po(so)n(ag | so)P(sy | s, ag)may | sy)...w(ag_; | Sg_ )Pyl Sy_1> ag_1):
A Likelihood of the trajectory 7 under



Running Example: Define feature map

Key Assumption on cost:
c(s,a) = (0%, ¢(s, a)), linear wrt feature ¢(s, a)

birds-eye view building car

grass pavement person sidewalk

Fig. 4. Classifier feature response maps. Top left is the original image.
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Running Example: Define feature map

Key Assumption on cost:

c(s,a) = (0%, ¢(s, a)), linear wrt feature ¢(s, a)

State s: pixel or a group of

birds-eye view building car

(s, a) =

grass pavement person sidewalk

neighboring pixels in image)

P(pixels being grass)
P(pixels being sidewalk)
P(pixels being car)

Maybe colliding with cars or
Fig. 4. Classifier feature response maps. Top left is the original image. buildings has high cost, but

walking on sideway or grass

has low cost

| P(pixels being building) |
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Detour: Principle of Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal to y, 2,
but there are infinitely many such distributions...

Principle of Maximum Entropy:
Entropy Maximization subject to Moment Matching constraints

max _entropy(Q), s.t., E olxl=p, E, olxx'1=Z+puu’
QeAX)

N @7“7( g wod W %rwy

Solution: O* = A (u, X)
(proof: use Lagrange multiplier)
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Maximum Entropy Inverse RL:

Q: we want to find a policy z such that E; ,_..¢(s,a) = E , (s, a)

(Note linear cost assumption implies 7 is as good as )
But there are potentially many such policies...

Find a 7 whose p” has the largest entropy,
subject to expected feature matching

[Es,a~dﬂ¢(5, a) = [Es,a,vdn*gb(s, a)

max entropy[p”]
T

S by ggp(s,a) = Eg g p(s, a)
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Let’s simplify the objective max entropy[p”]:
T

Recall the definition of trajectory distribution:
p"(7) = u(sp)n(ay | s))P(sy | 59, ag)m(ay | sy). ..

H-1
entropy(p™) = — Y p"(@In(p™(1)) = = Y p™(z) [ DI P(sye |53 @) + In2(ay | 5)

T h=0

H-1
Z In 7(ay, | s;,)

arg max entroy(p”) = arg max — Z p(7) [
d d T h=0




Maximum Entropy Inverse RL:

Let’s simplify the objective max entropy[p”]:
T

Recall the definition of trajectory distribution:
p"(7) = u(sp)n(ay | s))P(sy | 59, ag)m(ay | sy). ..

H-1
entropy(p™) = — Y p"(@In(p™(1)) = = Y p™(z) [ D 0 P(syy1 |8, @) + In7(ay, | sh)]

T h=0

H-1
arg max entroy(p”) = arg max — Z p(7) [ Z In 7(ay, | sh)]
g g T h=0
ES
= arg max — 2 Es g Innlals)
d A =0



Maximum Entropy Inverse RL:

Reformulating the optimization program:

E _clso)
min [E_V#Ndﬂ@ Sard™ A

dlgbj’mm —“m ﬁVA":‘é_

s 8By ggnh(s,a) = Eg g b (s, a)K



Maximum Entropy Inverse RL:
Reformulating the optimization program:

minkE . Inn(als)
T

d
&
s.LE (s, a) = B gmp(s, a) ¢ @ R

Using Lagrange formulation (Lagrange multipliel:aH), we get:

minkE, , ;. Inn(als)+ max ([EY wed® (s a) —E 0T (s, a))
T 0 -
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Maximum Entropy Inverse RL:

Reformulating the optimization program:

minkE . Inn(als)
T

[Es,arvd”qﬁ(s’ Cl) - Es,a~d”*¢(s’ Cl)

PERYSIC)

Using Lagrange formulation (Lagrange multiplier 6), we get:

min [ aNd,, Ingz(a|s) + max ([E8 wedD (s, a) — . E, gm0 (s, a))

)V";r'ﬂ ~a"” ,Ea‘l‘rbry(-r(( s)) + C@f’\)

Using minimax theorenT (John von Neumann), we camswap the order of min-max:

max min [[Es,aNd,[ Inn(als) + E,, z0 (s, a) — E,, 0" (s, a)] <
0 T '



Maximum Entropy Inverse RL: Final Algorithm

We get the final formulation:

max min [[ES wedD P a) — B, 0T h(s,a) + E, s Inn(al s)]
9 71- 9 ] b
Raém[q,ﬁ»‘é\/\_
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Algorithm: gradient ascent on @ (w/ fixed 7),
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Maximum Entropy Inverse RL: Final Algorithm

We get the final formulation:

max min [[ES wgi P(s,a) — B O (s,a) + E, s Inm(al s)]
0 T ' 7 ’

Algorithm: gradient ascent on @ (w/ fixed 7),
and exact computation (e.g, planning, VI) for 7 (w/ fixed 0

Initializing 6,: S [
Fort=0,..., oot aasfw&-?o B
M\"V\
m, = argmax E, , 4. [0 P(s,a) + n(a] 9)|
01+1 = Ht +7n ([Es,a~d”t¢(s’ a) — [Es,a~d"*¢(s’ a))

L/)/—\f
Return 6, Gradllowe o 8 V7€ e
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We get the final formulation:

max min [[ES wgi P(s,a) — B O (s,a) + E, s Inm(al s)]
0 T ' 7 ’

Algorithm: gradient ascent on @ (w/ fixed 7),
and exact computation (e.g, planning, VI) for 7 (w/ fixed 0
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(Maximum Entropy RL)
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Maximum Entropy Inverse RL: Final Algorithm

We get the final formulation:

max min [[ES wgi P(s,a) — B O (s,a) + E, s Inm(al s)]
0 T ' 7 ’

Algorithm: gradient ascent on @ (w/ fixed 7),
and exact computation (e.g, planning, VI) for 7 (w/ fixed 0

Initializing 6,; ;o ko= pr P (plarss)

Fort=0,..., (Maximum Entropy RL)

m=argmax By, [@T ¢(s,a) + n(a| s)] g 4;( 5"v:a 7 A/
4 |

)
9[+1 = Ht + n (Es,a~dﬂt¢(s’ (1) - S,aNdn*d)(Sa ))
(Gradient eq o the difference of expected features)

Return 6;
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Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax E; - [c(s, a) w
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Maximum Entropy RL: Soft Policy Iteration
Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax kg . [c(s, a)+ n(a| s)]

Valus,
Soft Bafﬁéy Iteration:



Maximum Entropy RL: Soft Policy Iteration

Maximum Entropy RL: what we do when our “cost” depends on policy 7?
"
arg mjx Ey gmar [c(s, a) +n(a| s)] » in g"'(' e )

A 1A (5> 70/243/);

Soft Policy Iteration:

Qp_(s,a) = c(s,a) ( mj;_,(als) «x exp (—Qg_l(s a)) x exp(—A}_ (s, a))

E sa) + JnTl '7)J

1
Viaq 20 = ﬂ,s)

. M
""‘:“,\"’ \/H’[ (9)



Maximum Entropy RL: Soft Policy Iteration
Maximum Entropy RL: what we do when our “cost” depends on policy 7?
argmax Ey - [c(s, a) + n(a| s)]

Soft Policy Iteration:

Q;_(s,a) =c(s,a) m;_,(als) o« exp —Q7 (s, a) x exp(—A}_(s,a))

1) = Egey g [In 751 (@19) + Off (s, @) QE exp (—Qf_(5.))
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Maximum Entropy RL: Soft Policy Iteration
Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax Ey - [c(s, a) + n(a| s)]

Soft Policy Iteration:

Qp_(s,a) =c(s,a) =;_,(als) xexp (—Qg_l(s, a)) x exp(—A}_ (s, a))
V() = Eomrr als) [ln w5 (als) + O (s, a)] =—1In ( 2 exp (—Q;_l(s, a)))

Q]:((S’ a) = C(S9 a) + I]Es’NP(|S’a)V]:+1(SI)
—_——
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Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax Ey - [c(s, a) + n(a| s)]

Soft Policy Iteration:
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Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax Ey - [c(s, a) + n(a| s)]

Soft Policy Iteration:

Qp_(s,a) =c(s,a) =;_,(als) xexp (—Qg_l(s, a)) x exp(—A}_ (s, a))
V1) = Epore e [I775_ (@] 9) + OF_(s,0)] = —1In ( 2 exp (-0} (s, a)))

Q}T(S, a) =c(s,a) + [ES/NP(.|S,a)V;T+1(S/)

m(als) « exp(—Qx(s —AX(s,a))

Vis)=—1In ( 2 exp(—Q; (s, a))




Maximum Entropy RL: Soft Policy Iteration
Maximum Entropy RL: what we do when our “cost” depends on policy 7?

argmax Ey - [c(s, a) + n(a| s)]

Soft Policy Iteration:

Qp_(s,a) = c(s,a) (m];_,(als) & exp (—Qg_l(s, a)) x exp(—A}_ (s, a))
V() = Eomrr als) [ln w5 (als) + O (s, a)] =—1In ( 2 exp (—Q;_l(s, a)))

Q}T(S, a) =c(s,a) + [ES’NP(.|S,a)V;T+1(S/)

@oc exp(— 0} (s, @) & exp(—A(s, @)

Vi(s)=—In ( 2 exp(— 0y (s, a))) Derivation: DP!



o Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing 6,

Fort=0,...,

m,=argmax kg, [Q,T ¢(s,a) + n(a| s)]

9[+1 = 01‘ + n (ES,aNd”t¢(s’ Cl) - [Es,aNd”*¢(s’ Cl))

Ret@
gr:{soft 7 (QYTQ’)(S, a))

7,(als) « exp (—Q}:‘ (s, a; 61‘))

N
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Maximum Entropy RL: Calculate Trajectory Likelihood

Initializing 6,
Fort=0,...,

T, = atg max Esanae |07 ¢(s, @) + 7(a] 9)] Given a trajectory T = {5q, dgs ..., Sy_1> Agy_1 }

Oer =041 ([ES’“Nd”’d)(s’ D = Eyaam (s, a)) What’s the likelihood of 7 being generated by expert?
Return 0,

7 = soft P (97T¢(s, a))

7,(als) « exp <—Ql:‘ (s,a; 31‘))



Maximum Entropy RL: Calculate Trajectory Likelihood

Initializing 6,
Fort=0,...,
T, = atg max Eyamar |07 P(s. @) + 2(al s)] Given a trajectory 7 = {5y, dg, ---» Sy_1, Agy_1 }
Ot = O+ 11 (B anir (5, @) = By 4 g 5.0)) What's the likelihood of 7 being generated by expert?
Return 0, R H-1
R In (p”(r)) = 2 [ln P(syyi | sy ap) +1n 7(ay, | sh)]
7 = soft P (97T¢(s, a)) h=0 \’;\//—v’ N
A

7,(als) « exp (—Qh* (s,a; 31‘))



o Maximum Entropy RL: Calculate Trajectory Likelihood
Initializing 6,

Fort=0,...,
m,=argmax kg, [Q,T ¢(s,a) + n(a| s)]

9[+1 = 01‘ + n (ES,aNd”t¢(s’ Cl) - Es,a~d”*¢(s’ a))

Given a trajectory T = {5q, dgs ..., Sy_1> Agy_1 }

What’s the likelihood of 7 being generated by expert?

Return 0 R Al
R r In (p”(r)) = 2 [In P(syy 1 |54, @) + In 7(ay, | s)]
= soft\HL(QYng’)(s, a)) h=0
Zhals) o« exp (‘Qh* (s, a; QT)> Special case: (?ee;i;n;ienri;t(i:c; 2{[I.DP and state-
min ﬂ[C(Sa-)] & NP
« Sa~d

i qufwj ¥ /&7‘7’0}’7@ ))



Maximum Entropy RL: Calculate Trajectory Likelihood

Initializing 6,
Fort=0,...,
T, = atg max Esamar [0 d(s @) + n(a] 9)] Given a trajectory T = {5q, dgs ..., Sy_1> Agy_1 }
1 = O+ 1 (B nanh(s, @) = By g TS, ) What'’s the likelihood of 7 being generated by expert?
Return 0, R A=l R
R In (p”(r)) = 2 [ln P(syyi | sy ap) +1n 7(ay, | sh)]
7 = soft Pl (6;4’)(3, a)) h=0

pecial case: deterministic MDP and state-

#(al ) < exp (~0f (s.a:6) ) dependent cost: 9”’%/5)

6+ () For a state trajectory, we have:

L) oxexpl =Y O1o(s
W oxexp| - Zh‘, Fh(s)

L/-’/,

P*(Sgs 81 - -




Running Example: Human Trajectory Forecasting

State space: grid, We predict that we are more likely to use
action space: 4 actions sidewalk

yr
?u} = 05905 4
() e ep(— & "W)
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