Maximum Entropy Inverse Reinforcement Learning

Sham Kakade and Wen Sun

CS 6789: Foundations of Reinforcement Learning

Announcements

Project Presentation (Dec 8th and 10th):

Please sign up time slots (see Piazza post for more details)

Offline IL Setting:

Offline IL Setting:

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

Offline IL Setting:

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Offline IL Setting:

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)

Offline IL Setting:

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; assume expert is a near optimal policy π^*

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Offline IL Algorithm: Behavior Cloning (Maximum Likelihood)

$$\widehat{\pi} = \arg \max_{\pi \in \Pi} \sum_{i=1}^{M} \ln \pi(a_i^{\star} | s_i^{\star})$$

Hybrid IL Setting:

Hybrid IL Setting:

We have a dataset $\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$ and access to transition $P(\cdot | s, a), \forall s, a$

Hybrid IL Setting:

We have a dataset $\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$ and access to transition $P(\cdot | s, a), \forall s, a$

Hybrid IL Algorithm: Distribution Matching (Statistically efficient, but not computationally)

Statt from $TV: F = \int f: \|f\|_{L^{\infty}} \leq 1$ $\forall \pi, \pi' \in T$ $f = argman} = f(sa) - E = f(sa)$ $f = \int_{x,\pi'} f(x) + f(x) + f(x)$ $f = \int_{x,\pi'} f(x) + f(x) + f(x) + f(x)$ $f = \int_{x,\pi'} f(x) + f(x) + f(x) + f(x) + f(x)$ Hybrid IL Setting: $f = \int_{x,\pi'} f(x) + f(x)$

Hybrid IL Algorithm: Distribution Matching (Statistically efficient, but not computationally)

$$\widehat{\pi} := \arg\min_{\pi \in \Pi} \left[\max_{f \in \widetilde{\mathcal{F}}} \left[\mathbb{E}_{s, a \sim d^{\pi}} f(s, a) - \frac{1}{M} \sum_{i=1}^{M} f(s_{i}^{\star}, a_{i}^{\star}) \right] \right]$$

$$IPM(\widetilde{\mathcal{F}})$$

Today: Hybrid Setting

Algorithm: Maximum Entropy Inverse Reinforcement Learning

Running Example: Human trajectory forecasting

[Kitani, et al, ECCV 12]

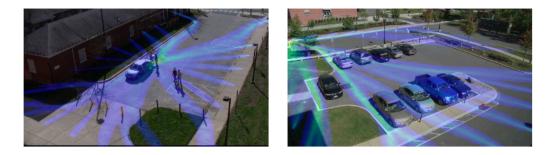


Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible paths and destinations from noisy vision-input

Running Example: Human trajectory forecasting

[Kitani, et al, ECCV 12]

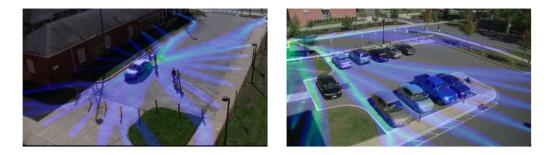


Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible paths and destinations from noisy vision-input

High-level assumptions:

(1) Experts may have some cost function regarding walking in their mind

(2) Experts are (approximately) optimizing the cost function

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu_0, \pi^*\}$$

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu_0, \pi^*\}$$

(1) Ground truth $\cos t c(s, a)$ is unknown; (2) assume expert is the optimal policy π^* of the cost c(3) transition P is known

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu_0, \pi^*\}$$

(1) Ground truth cost c(s, a) is unknown; (2) assume expert is the optimal policy π^* of the cost c(3) transition P is known by boold setting

We have a dataset
$$\mathscr{D} = (s_i^\star, a_i^\star)_{i=1}^M \sim d^{\pi^\star}$$

Finite horizon MDP
$$\mathcal{M} = \{S, A, H, c, P, \mu_0, \pi^*\}$$

(1) Ground truth cost c(s, a) is unknown;
(2) assume expert is the optimal policy π^{*} of the cost c
(3) transition P is known

We have a dataset
$$\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^M \sim d^{\pi^{\star}}$$

Key Assumption on cost: $c(s,a) = \langle \theta^*, \phi(s,a) \rangle$, linear w.r.t feature $\phi(s,a) \notin \mathbb{R}^d$

Notation on Distributions

 $\mathbb{P}_{h}^{\pi}(s, a)$ probability of visiting (s, a) at time step h following π

$$d^{\pi}(s,a) = \sum_{h=0}^{H-1} \mathbb{P}_{h}^{\pi}(s,a)/H: \text{ average state-action visitation}$$

$$\int \mathcal{T} = \begin{cases} s_{0} \circ s_{0} \circ s_{1} \circ a_{1} \cdots \circ s_{H}, a_{H-1}, s_{H} \end{cases}$$

$$\rho^{\pi}(\tau) := \mu_{0}(s_{0})\pi(a_{0} \mid s_{0})P(s_{1} \mid s_{0}, a_{0})\pi(a_{1} \mid s_{1})\dots\pi(a_{H-1} \mid s_{H-1})P(s_{H} \mid s_{H-1}, a_{H-1}):$$

$$\downarrow \text{ Likelihood of the trajectory } \tau \text{ under } \pi$$

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

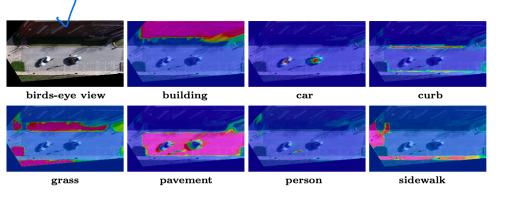


Fig. 4. Classifier feature response maps. Top left is the original image.

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

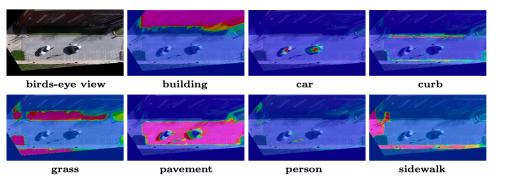


Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

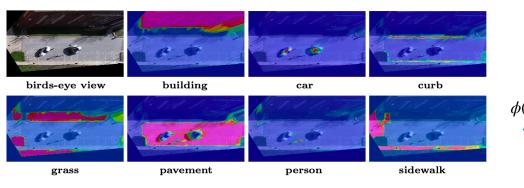


Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

 $\phi(s,a) = \begin{bmatrix} \mathbb{P}(\text{pixels being building}) \\ \mathbb{P}(\text{pixels being grass}) \\ \mathbb{P}(\text{pixels being sidewalk}) \\ \mathbb{P}(\text{pixels being car}) \end{bmatrix}$

Key Assumption on cost: $c(s, a) = \langle \theta^{\star}, \phi(s, a) \rangle$, linear wrt feature $\phi(s, a)$

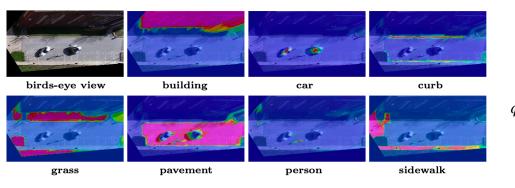


Fig. 4. Classifier feature response maps. Top left is the original image.

State *s*: pixel or a group of neighboring pixels in image)

 $\phi(s,a) = \begin{bmatrix} \mathbb{P}(\text{pixels being building}) \\ \mathbb{P}(\text{pixels being grass}) \\ \mathbb{P}(\text{pixels being sidewalk}) \\ \mathbb{P}(\text{pixels being car}) \\ \dots \end{bmatrix}$

Maybe colliding with cars or buildings has **high** cost, but walking on sideway or grass has **low** cost

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

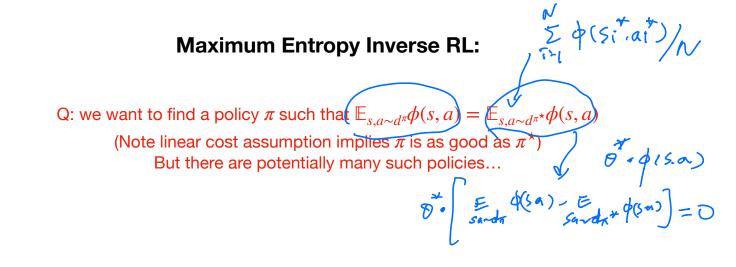
$$\max_{Q \in \Delta(X)} \operatorname{entropy}(Q), \quad \text{s.t.}, \quad \mathbb{E}_{x \sim Q}[x] = \mu, \quad \mathbb{E}_{x \sim Q}[xx^{\top}] = \Sigma + \mu \mu^{\top}$$

We want to find a distribution whose mean and covariance matrix equal to μ , Σ , but there are infinitely many such distributions...

Principle of Maximum Entropy: Entropy Maximization subject to Moment Matching constraints

$$\max_{Q \in \Delta(X)} \text{entropy}(Q), \quad \text{s.t.}, \quad \mathbb{E}_{x \sim Q}[x] = \mu, \quad \mathbb{E}_{x \sim Q}[xx^{\top}] = \Sigma + \mu\mu^{\top}$$

Solution: $Q^* = \mathcal{N}(\mu, \Sigma)$ exp(quad with form) (proof: use Lagrange multiplier)



Q: we want to find a policy π such that $\mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a)$ (Note linear cost assumption implies π is as good as π^{\star}) But there are potentially many such policies... $\downarrow^{\tau \circ \downarrow} - d^{\lambda \in t} rib = f^{\lambda \circ \infty}$ Find a π whose ρ^{π} has the largest entropy, subject to expected feature matching $\mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a)$

Q: we want to find a policy π such that $\mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi\star}}\phi(s,a)$ (Note linear cost assumption implies π is as good as π^{\star}) But there are potentially many such policies...

> Find a π whose ρ^{π} has the largest entropy, subject to expected feature matching $\mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi}}\phi(s,a)$

$$\max_{\pi} \operatorname{entropy}[\rho^{\pi}]^{\ell}$$

$$s \, . \, t, \mathbb{E}_{s, a \sim d^{\pi}} \phi(s, a) = \mathbb{E}_{s, a \sim d^{\pi}} \phi(s, a)$$

Let's simplify the objective $\max_{\pi} \operatorname{entropy}[\rho^{\pi}]$:

Let's simplify the objective $\max_{\pi} \operatorname{entropy}[\rho^{\pi}]$:

Recall the definition of trajectory distribution: $\rho^{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)...$

Let's simplify the objective $\max_{\pi} \operatorname{entropy}[\rho^{\pi}]$:

Recall the definition of trajectory distribution: $\rho^{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi(a_1 \mid s_1)\dots$ entropy(ρ^{π}) = $-\sum_{\tau} \rho^{\pi}(\tau)\ln(\rho^{\pi}(\tau)) = -\sum_{\tau} \rho^{\pi}(\tau)\left[\sum_{h=0}^{H-1} \ln P(s_{h+1} \mid s_h, a_h) + \ln \pi(a_h \mid s_h)\right]$

Let's simplify the objective $\max_{\pi} \operatorname{entropy}[\rho^{\pi}]$:

Recall the definition of trajectory distribution: $\rho^{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)...$

$$entropy(\rho^{\pi}) = -\sum_{\tau} \rho^{\pi}(\tau) \ln(\rho^{\pi}(\tau)) = -\sum_{\tau} \rho^{\pi}(\tau) \left[\sum_{h=0}^{H-1} \ln P(s_{h+1} | s_h, a_h) + \ln \pi(a_h | s_h) \right]$$

$$\arg\max_{\pi} \operatorname{entroy}(\rho^{\pi}) = \arg\max_{\pi} - \sum_{\tau} \rho^{\pi}(\tau) \left[\sum_{h=0}^{H-1} \ln \pi(a_h | s_h) \right]$$

Let's simplify the objective $\max_{\pi} \operatorname{entropy}[\rho^{\pi}]$:

Recall the definition of trajectory distribution: $\rho^{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\pi(a_1 | s_1)...$

$$entropy(\rho^{\pi}) = -\sum_{\tau} \rho^{\pi}(\tau) \ln(\rho^{\pi}(\tau)) = -\sum_{\tau} \rho^{\pi}(\tau) \left[\sum_{h=0}^{H-1} \ln P(s_{h+1} | s_h, a_h) + \ln \pi(a_h | s_h) \right]$$

$$\arg\max_{\pi} \operatorname{entroy}(\rho^{\pi}) = \arg\max_{\pi} - \sum_{\tau} \rho^{\pi}(\tau) \left[\sum_{h=0}^{H-1} \ln \pi(a_h | s_h) \right]$$
$$= \arg\max_{\pi} - \sum_{h=0}^{H-1} \mathbb{E}_{s,a \sim M^{\pi}} \ln \pi(a | s)$$

Maximum Entropy Inverse RL:

Reformulating the optimization program:

E C(S-a) Sand A $\min_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \ln \pi(a \mid s)$ $s.t, \mathbb{E}_{s,a \sim d^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d^{\pi}} \phi(s,a)$ feature - metching

Maximum Entropy Inverse RL:

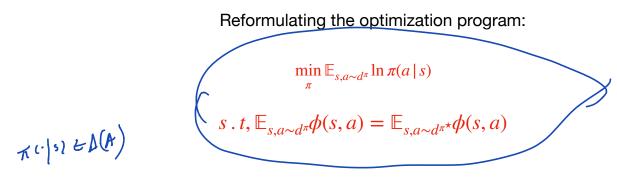
Reformulating the optimization program:

 $\min_{\pi} \mathbb{E}_{s,a\sim d^{\pi}} \ln \pi(a \mid s)$ s.t, $\mathbb{E}_{s,a\sim d^{\pi}} \phi(s,a) = \mathbb{E}_{s,a\sim d^{\pi}} \phi(s,a) \notin \theta \notin \mathbb{R}^{d}$

Using Lagrange formulation (Lagrange multiplier θ), we get:

$$\min_{\pi} \mathbb{E}_{s,a\sim d^{\pi}} \ln \pi(a \mid s) + \max_{\theta} \left(\mathbb{E}_{s,a\sim d^{\pi}} \theta^{\top} \phi(s,a) - \mathbb{E}_{s,a\sim d^{\pi}} \theta^{\top} \phi(s,a) \right)$$

Maximum Entropy Inverse RL:



Using Lagrange formulation (Lagrange multiplier θ), we get:

$$\min \mathbb{E}_{s,a\sim d^{\pi}} \ln \pi(a \mid s) + \max \left(\mathbb{E}_{s,a\sim d^{\pi}} \theta^{\top} \phi(s,a) - \mathbb{E}_{s,a\sim d^{\pi}} \theta^{\top} \phi(s,a) \right)$$

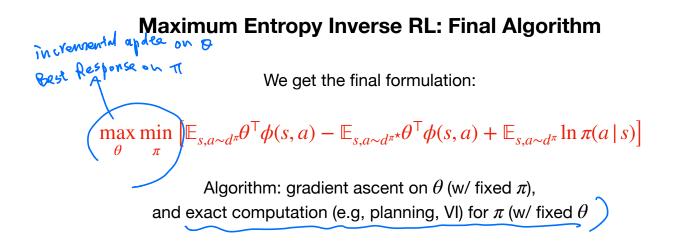
$$\underset{T}{\min} \sum_{s\sim d^{\pi}} \left(\frac{\theta}{\pi(\cdot \mid s)} + c(s,a) \right)$$

Using minimax theorem (John von Neumann), we can swap the order of min-max:

$$\max_{\theta} \min_{\pi} \left[\mathbb{E}_{s, a \sim d^{\pi}} \ln \pi(a \mid s) + \mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) \right] \checkmark$$

We get the final formulation:

 $\max_{\theta} \min_{\pi} \left[\mathbb{E}_{s,a \sim d^{\pi}} \theta^{\top} \phi(s,a) - \mathbb{E}_{s,a \sim d^{\pi}} \theta^{\top} \phi(s,a) + \mathbb{E}_{s,a \sim d^{\pi}} \ln \pi(a \mid s) \right]$ Fixe θ $\max_{\Pi} \sup_{sand^{\pi}} \theta^{\top} \phi(s,a) - \mathbb{E}_{s,a \sim d^{\pi}} \theta^{\top} \phi(s,a) + \mathbb{E}_{s,a \sim d^{\pi}} \ln \pi(a \mid s) \right]$ Regularized (1) < (2)for of @ = () (This optimal under of)



We get the final formulation:

 $\max_{\theta} \min_{\pi} \left[\mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) + \mathbb{E}_{s, a \sim d^{\pi}} \ln \pi(a \mid s) \right]$ Algorithm: gradient ascent on θ (w/ fixed π), Initializing θ_0 : For t = 0, ..., best despine to θ_t $\pi_t = \arg \max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_t^{T} \phi(s, a) + \pi(a \mid s) \right]$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s, a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi^*}} \phi(s, a) \right)$ eturn θ_T Gradiene of θ with π_t and exact computation (e.g, planning, VI) for π (w/ fixed θ

We get the final formulation:

 $\max_{\theta} \min_{\pi} \left[\mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) + \mathbb{E}_{s, a \sim d^{\pi}} \ln \pi(a \mid s) \right]$

Algorithm: gradient ascent on θ (w/ fixed π), and exact computation (e.g. planning, VI) for π (w/ fixed θ C hybrid setting: P is known) Initializing θ_0 : For t = 0,..., (Maximum Entropy RL) $\pi_t = \arg \max_{\pi} \mathbb{E}_{s,a \sim d^{\pi}} \left[\theta_t^{\mathsf{T}} \phi(s, a) + \pi(a | s) \right]$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s,a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s,a \sim d^{\pi^*}} \phi(s, a) \right)$

Return θ_T

We get the final formulation:

 $\max_{\theta} \min_{\pi} \left[\mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi}} \theta^{\top} \phi(s, a) + \mathbb{E}_{s, a \sim d^{\pi}} \ln \pi(a \mid s) \right]$

Algorithm: gradient ascent on θ (w/ fixed π), and exact computation (e.g, planning, VI) for π (w/ fixed θ

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

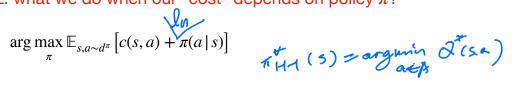
$$\arg\max_{\pi} \mathbb{E}_{s,a\sim d^{\pi}} \left[c(s,a) + \pi(a \mid s) \right]$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

arg max
$$\mathbb{E}_{s,a\sim d^{\pi}} \left[c(s,a) + \pi(a \mid s) \right]$$

Value
Soft Policy Iteration:

Maximum Entropy RL: what we do when our "cost" depends on policy π ?



$$Q_{H-1}^{\star}(s,a) = c(s,a) \left(\pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp\left(-A_{H-1}^{\star}(s,a)\right)$$

$$V_{H-1}^{\dagger}(s) = \bigoplus_{\substack{a \neq \pi(i \mid s) \\ a \neq \pi(i \mid s)}} \left[c(s) + l_{in}\pi(a \mid s) \right]$$

$$m_{in}^{\dagger} V_{H-1}^{\dagger}(s)$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

$$\arg\max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[c(s, a) + \pi(a \mid s) \right]$$

$$Q_{H-1}^{\star}(s,a) = c(s,a) \quad \pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp(-A_{H-1}^{\star}(s,a))$$

$$V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = \left[-\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)\right]$$

$$V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = \left[-\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)\right]$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

$$\arg\max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[c(s, a) + \pi(a \mid s) \right]$$

$$Q_{H-1}^{\star}(s,a) = c(s,a) \quad \pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp(-A_{H-1}^{\star}(s,a))$$
$$V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = -\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)$$
$$Q_{h}^{\star}(s,a) = c(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} V_{h+1}^{\star}(s')$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

$$\arg\max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[c(s, a) + \pi(a \mid s) \right]$$

$$Q_{H-1}^{\star}(s,a) = c(s,a) \quad \pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp(-A_{H-1}^{\star}(s,a))$$

$$V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = -\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)$$

$$Q_{h}^{\star}(s,a) = c(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} V_{h+1}^{\star}(s')$$

$$\pi_{h}^{\star}(a \mid s) \propto \exp(-Q_{h}^{\star}(s,a)) \propto \exp(-A_{h}^{\star}(s,a))$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

$$\arg\max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[c(s, a) + \pi(a \mid s) \right]$$

$$Q_{H-1}^{\star}(s,a) = c(s,a) \quad \pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp(-A_{H-1}^{\star}(s,a))$$

$$V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = -\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)$$

$$Q_{h}^{\star}(s,a) = c(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} V_{h+1}^{\star}(s')$$

$$\pi_{h}^{\star}(a \mid s) \propto \exp(-Q_{h}^{\star}(s,a)) \propto \exp(-A_{h}^{\star}(s,a))$$

$$V_{h}^{\star}(s) = -\ln\left(\sum_{a} \exp(-Q_{h}^{\star}(s,a))\right)$$

Maximum Entropy RL: what we do when our "cost" depends on policy π ?

$$\arg\max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[c(s, a) + \pi(a \mid s) \right]$$

Soft Policy Iteration: $Q_{H-1}^{\star}(s,a) = c(s,a) \quad \pi_{H-1}^{\star}(a \mid s) \propto \exp\left(-Q_{H-1}^{\star}(s,a)\right) \propto \exp(-A_{H-1}^{\star}(s,a))$ $V_{H-1}^{\star}(s) = \mathbb{E}_{a \sim \pi_{H-1}^{\star}(a \mid s)} \left[\ln \pi_{H-1}^{\star}(a \mid s) + Q_{H-1}^{\star}(s,a)\right] = -\ln\left(\sum_{a} \exp\left(-Q_{H-1}^{\star}(s,a)\right)\right)$ $Q_{h}^{\star}(s,a) = c(s,a) + \mathbb{E}_{s' \sim P(\cdot | s|a)} V_{h+1}^{\star}(s')$ $\pi_h^{\star}(a \mid s) \propto \exp(-Q_h^{\star}(s, a)) \propto \exp(-A_h^{\star}(s, a))$ $V_h^{\star}(s) = -\ln\left(\sum_{a} \exp(-Q_h^{\star}(s, a))\right)$ **Derivation: DP!**

Initializing θ_0 :

For t = 0, ..., $\pi_{t} = \arg \max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_{t}^{\top} \phi(s, a) + \pi(a \mid s) \right]$ $\theta_{t+1} = \theta_{t} + \eta \left(\mathbb{E}_{s, a \sim d^{\pi t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi \star}} \phi(s, a) \right)$ Return θ_T $\widehat{\pi} := \operatorname{soft} \operatorname{\mathsf{PI}} \left(\theta_T^\top \phi(s, a) \right)$ $\widehat{\pi}_{h}(a \mid s) \propto \exp\left(-Q_{h}^{\star}\left(s, a; \theta_{T}\right)\right)$ $C(s-n) = O_T \cdot \phi(s-n)$

Initializing θ_0 :

For t = 0, ..., $\pi_t = \arg \max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_t^{\mathsf{T}} \phi(s, a) + \pi(a \mid s) \right]$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s, a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi^\star}} \phi(s, a) \right)$ Return θ_T

Given a trajectory
$$\tau = \{s_0, a_0, \dots, s_{H-1}, a_{H-1}\}$$

What's the likelihood of τ being generated by expert?

 $\hat{\pi}_h(a \mid s) \propto \exp\left(-Q_h^{\star}\left(s, a; \theta_T\right)\right)$

 $\hat{\pi} := \text{soft} \operatorname{Pl} \left(\theta_T^{\mathsf{T}} \phi(s, a) \right)$

Initializing θ_0 :

For t = 0, ..., $\pi_t = \arg \max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_t^{\mathsf{T}} \phi(s, a) + \pi(a \mid s) \right]$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s, a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi^\star}} \phi(s, a) \right)$ Return θ_T $\widehat{\pi} := \text{soft Pl} \left(\theta_T^{\mathsf{T}} \phi(s, a) \right)$ $\widehat{\pi}_h(a \mid s) \propto \exp \left(-Q_h^{\star} \left(s, a; \theta_T \right) \right)$

Given a trajectory
$$\tau = \{s_0, a_0, ..., s_{H-1}, a_{H-1}\}$$

What's the likelihood of τ being generated by expert?

$$\ln\left(\rho^{\hat{\pi}}(\tau)\right) = \sum_{h=0}^{H-1} \left[\underbrace{\ln P(s_{h+1} \mid s_h, a_h)}_{\mathcal{A}} + \underbrace{\ln \hat{\pi}(a_h \mid s_h)}_{\mathcal{A}} \right]$$

Initializing θ_0 :

For t = 0, ..., $\pi_t = \arg \max_{\pi} \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_t^{\mathsf{T}} \phi(s, a) + \pi(a \mid s) \right]$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s, a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi^\star}} \phi(s, a) \right)$ Return θ_T $\widehat{\pi} := \operatorname{soft} \left[\theta_T^{\mathsf{T}} \phi(s, a) \right)$ $\widehat{\pi}_h(a \mid s) \propto \exp \left(-Q_h^{\star} \left(s, a; \theta_T \right) \right)$

Given a trajectory
$$\tau = \{s_0, a_0, ..., s_{H-1}, a_{H-1}\}$$

What's the likelihood of τ being generated by expert?

$$\ln\left(\rho^{\hat{\pi}}(\tau)\right) = \sum_{h=0}^{H-1} \left[\ln P(s_{h+1} | s_h, a_h) + \ln \hat{\pi}(a_h | s_h)\right]$$

Special case: deterministic MDP and statedependent cost:

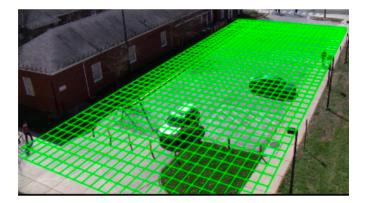
$$\min_{\pi} \mathop{\mathbb{E}}_{\text{sand}\pi} \left[c(sa) \right] \leq NPG$$

$$\min_{\pi} \mathop{\mathbb{E}}_{\text{sand}\pi} \left[c(sa) \right] + \underbrace{\mathbb{E}}_{B} \left(-\text{Retropy} \left(\rho^{\pi} \right) \right)$$

Initializing θ_0 :

For t = 0, ..., $\pi_t = \arg \max \mathbb{E}_{s, a \sim d^{\pi}} \left[\theta_t^{\mathsf{T}} \phi(s, a) + \pi(a \mid s) \right]$ Given a trajectory $\tau = \{s_0, a_0, ..., s_{H-1}, a_{H-1}\}$ $\theta_{t+1} = \theta_t + \eta \left(\mathbb{E}_{s, a \sim d^{\pi_t}} \phi(s, a) - \mathbb{E}_{s, a \sim d^{\pi^\star}} \phi(s, a) \right)$ What's the likelihood of τ being generated by expert? Return θ_T $\ln\left(\rho^{\hat{\pi}}(\tau)\right) = \sum_{h=1}^{H-1} \left[\ln P(s_{h+1} | s_h, a_h) + \ln \hat{\pi}(a_h | s_h)\right]$ $\hat{\pi} := \text{soft} \operatorname{Pl} \left(\theta_T^{\mathsf{T}} \phi(s, a) \right)$ $\hat{\pi}_h(a \mid s) \propto \exp\left(-Q_h^{\star}\left(s, a; \theta_T\right)\right)$ Special case: deterministic MDP and statedependent cost: $0_{7} \cdot 4(5)$ For a state trajectory, we have: $\rho^{\pi}(s_0, s_1, \dots, s_H) \propto \exp\left(-\frac{1}{4}\sum_h \theta_T^{\top} \phi(s_h)\right)$

Running Example: Human Trajectory Forecasting



State space: grid, action space: 4 actions

We predict that we are more likely to use sidewalk

MaxEnt-IRL man Entropy (pT) TI S-t E f(sa) = E E + f(La sand T f(sa) = Sand T + f(La Sofe VI, (SAC) $V_{h}(s) = -ln \left[\frac{Z \exp(-Q_{h}^{\dagger} csa)}{q} \right]$

 $\pi(a|s) \propto \exp(-Q_n(s,a))$

 $\frac{1}{5} = \frac{1}{5} \frac{\varphi(sa)}{sa-a\pi} = \frac{1}{5} \frac{\varphi(sa)}{z}$

 $F = \begin{cases} \sigma^T \cdot \phi(s_a) \in \sigma \in Unit-Ball \end{cases}$

