Policy Gradients:
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Today: Policy Gradient Deriviation

e.g., Reinforce, Natural Policy Gradient, TRPO, PPO:

(Williams 92, Kakade 02, Schulman et al 15, 17)

roals) =n(als;0)  J(m) =E, lZ yhrh]
h=0

Ht+1 — Hl‘ + ]| V@J(ﬂ'@) ‘9:@

Main question for today’s lecture:
how to compute the gradient?

1
Vol (0) := ——E, 4y | Voln my(a| $)Q(s, a)|




Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for
Tabular MDPs:

0, €ER,Vs,ae §XA
exp(d; ,)

my(a | 5) =

Z q’ CXP (Hs,a’)

2. Softmax linear Policy
(e.g., for linear MDPs):

3. Neural Policy:

Neural network
fo: S XA R

Feature vector ¢(s, a) € R?, and
parameter 8 € R?

exp(8' P(s, a)) exp(fy(s,a))

my(a | 5) =

' me(a|s) =

> exp(@T(s, a) > exp(fils, @)



Non-Convex Optimization
(review? Or new?)



Convergence to Stationary Points

J(my) is non-convex (see example in the AJKS)
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Convergence to Stationary Points

J(my) is non-convex (see example in the AJKS)

 Def of a f-smooth function F:
[VoEF(0) = Vo (Op)ll, < 10 = 6l

which implies:

F(0) — F(6y) — VoF(6,) (6 — 6p) gHﬁ Ooll3

 Proposition: (stationary point convergence) Assume F(60) is [-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), withn = 1/(2/). Then:

23 max, F(0) — F(6,)
min HVQF(HI)H2 ( ’ ’ )

t<T T




Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
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Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), with n = 1/(2f). Then:

2B(F(0*) — F(6,)
rtgi;lHVeF(@)His ( . 0)

p

F(9t+1) o F(Ht) o VHF(‘Qt)T(HtH o t) < 5”6’t+1 o t”z




Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), with n = 1/(2f). Then:

2B(F(0*) — F(6,)
rtgi;lHVeF(@)His ( . 0)

p

< =160, =0l
2 +1 5

p
< Eﬂz\\V(gF(@)Hz

| F(O1) = F(6) = VoF(6)" (0,41 — 6)

> | F(0,) = F(0) =V F(0)TVF(6)




Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), with n = 1/(2f). Then:

2B(F(0*) — F(6,)
rtgi;lHVeF(@)H%s ( . 0)

p

< =160, =0l
2 +1 5

p
< Eﬂz\\V(gF(@)Hz

| F(O1) = F(6) = VoF(6)" (0,41 — 6)

> | F(0,) = F(0) =V F(0)TVF(6)

= nllVoFO)I* < F(6,,1) — F(0) + Eﬂz\\VgF(@)H%



Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), with n = 1/(2f). Then:

28(F(0*) — F(0,)
min [|V,FO)l; < ( = )

p

|F(0,1) = FO) = VoF0) 01~ 0)| <T10,.1 =0,

= |F(‘9t+1) — F(6) —nVoF(6,)" V,F(8) g NV F @117

S IV FO)I? < F@,.,) — F©) + {j 21V, F )12

1 5y
—HVQF(@)Hz < F(0,.) — F(O) using 7 < —

2p ﬂ



Convergence to Stationary Point

Proposition: (stationary point convergence) Assume F(0) is f-smooth.
Suppose we run gradient ascent: 0, = 0, + n V,F(0,), with n = 1/(2f). Then:

2B(F(0*) — F(6,)
I}E?HVQF(H;)H%S ( . 0)

p

< =160, =0l
2 +1 5

p
< Eﬂz\\V(gF(@)Hz

| F(O1) = F(6) = VoF(6)" (0,41 — 6)

> | F(0,) = F(0) =V F(0)TVF(6)

= nllVoFO)I* < F(6,,1) — F(0) + 57/2”%1’(@)”%
1

1
= —||V,F(O)||* < F(O — F(0 ' < —
ZﬁH 0 (t)H = (t+1) (6, usmgn_ﬂ

| 1 2B(F(0*) — F(6,)
= min [|V,FO)|> < — Z IV, F(6)]% < 2 (F(0,,)) — F(8)) < L

I

t<T



Today (+future):

When does small gradients imply a performance bound in RL?



Why are PG methods successful?

* Do they converge?
 How do they deal with approximation? (e.g. neural policies?)
 How they compare to approximate value function methods??



When do PG methods find an optimal solution?
(remember: we have non-convex opt problem)

 Let’s focus on “complete” parameterizations (e.g. the “tabular” case)
I1 contains all stochastic policies (e.g. softmax)

* today: When do PG methods converge?
* |andscape of the problem
 what about “exploration”?

* do small gradients imply good performance?
* |et’s consider using exact gradients!



Vanishing Gradients and Saddle Points

4 a4




Vanishing Gradients and Saddle Points

a4 4
as
a2
o« o < SH
a1 a1

Sety = H/(H + 1). Policy param:
for a = al, az, CZB, 7[6)(61 ‘ S) — HS,CZ’ and 7[6)(614 ‘ S) — 1 — QS
(this a “direct” param, which is valid inside the simplex)

0

a1 S,y 8,3



Vanishing Gradients and Saddle Points

a4 4
as
a9
o« o o < SH
ai aq

Sety = H/(H + 1). Policy param:
for a = al, az, ag, 7[6)(61 ‘ S) — HS,CZ’ and 7[6)(614 ‘ S) — 1 — Qs,al — HS,CIZ — HS,CZ3
(this a “direct” param, which is valid inside the simplex)

Theorem: For 0 < 8 < 1 (componentwise) and Hs,al < 1/4 (for all states s).

For all k < O(H/log(H)), we have that
IV V(s < (1/3)H%

(Where HV’;V’ZH(SO)H is the operator norm of the tensor VgV”Q(SO).
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Staring state distribution with “coverage”

» Given our a starting distribution p over states, recall our objective is:

max V"*(p) .
0c®

where {7,|0 € © C R4} is some class of parametric policies.



Staring state distribution with “coverage”

» Given our a starting distribution p over states, recall our objective is:

max V"*(p) .
0c®

where {7,|0 € © C R4} is some class of parametric policies.

* While we are interested in good performance under p, it is helpful to optimize
under a different measure /.. Specifically, consider optimizing:V"(11), i.e.

max V*(u),
UG,

even though our ultimate goal is performance under V*(p).



“Vanilla” PG for the Softmax



notation (+ overloading)

Today: we will use d;f) for a state distribution measure.
(it should be clear from context how we use it).

di(s) = (1=7) ), 7"P(s, = 5150, )
h=0

dr(s,a) = (1 =) ), y"P(s, = s,a, = a| s, )
h=0

Advantage function: A”*(s,a) = Q”"(s,a) — V*(s)



The Softmax Policy Class



The Softmax Policy Class

exp(&’saa)
Zaf eXp(HS,a’) |

(where the number of parameters is SA).

. ng(a\s) —



The Softmax Policy Class

exp(&’saa)
Zaf eXp(HS,a’) |

(where the number of parameters is SA).

. ng(a\s) —

e We have that:

aloigg(d\s) _ lls — S'] (lla = a'] B ”H(a,‘s))

s’.a’
where 1] - | is the indicator function.



The Softmax Policy Class

exp(é’s,a)
Z a’ CXP (Hs,a’) |

(where the number of parameters is SA).

. ﬂe(a‘s) —

e We have that:

aloigg(a\s) _ llS — S'] (lla = a'] B ”H(a,‘s))

S,,CZ,

where 1] - | is the indicator function.

 |emma: For the softmax policy class, we have:

aVﬂe(/ft) _ d]l'@(s)ﬂ_ (Cl ‘ S)A”Q(S Cl)
a0 ., 1 —y * ’ ’




Remember: The Performance Difference Lemma

For all , 7', 5

, 1 ,
Vi(sp) = V7 (sp) = T Doy Faatis A" (s, a))

di(s) = (1=7) ), 7"P(s, = 5|50, 7)
h=0



Proof

oV N
g [ Y 'V, In myal HA™G, a>]
[=

= E, _p [Z y'1[s, = s] (l[at = a]A™(s,a) — my(a|s)A"(s,, at))]

8

= ETNPr [Z y'1[(s,a) = (s,a)]A™(s, a)] + y(a|s) Z v'E TP ll[St = s]A"(s,, at)]

- Es 0ryamo [1[(S’, a’) = (s,a)]A%(s, a)] + 0O

d™(s,a)A™(s,a),
1=y



Global Convergence



Global Convergence

* The update rule for gradient ascent is:

9D = 90 4 v, V()



Global Convergence

The update rule for gradient ascent is:
O+ — g 4 r]VgV(t)(,u)

Concerns:
e Non-convex

» Flat gradients if 0, = oo

(7, becoming any deterministic policy implies &, approaches a stationary point)
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O+ — g 4 r]VQV(t)(,u)
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e Non-convex

» Flat gradients if 0, = oo

(7, becoming any deterministic policy implies &, approaches a stationary point)

. Theorem: Assume the / is strictly positive i.e. 1(s) > O for all states s. Forn < (1 — y)°/8,
then we have that for all states s,V”(s) — V*(s), ast — oo.



Global Convergence

The update rule for gradient ascent is:
O+ — g 4 r]VQV(t)(,u)

Concerns:
e Non-convex

» Flat gradients if 0, = oo
(7, becoming any deterministic policy implies &, approaches a stationary point)

Theorem: Assume the / is strictly positive i.e. u(s) > 0 for all states 5. For n < (1 — y)°/8,
then we have that for all states s,V”(s) — V*(s), ast — oo.

Comments:
* rate could be exponentially slow in S, H.

e need u > 0 is necessary.



PG+Log Barrier Regularization
(fc)r the softmax)



Log Barrier Regularization



Log Barrier Regularization

. Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].



Log Barrier Regularization

. Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].

« Consider the log barrier A-regularized objective:
Ly(0):= V() = L E, Unit, |KL(Unif, 7 - | 5))]

= V"(u) + — Z log my(a|s) + AlogA



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].

Consider the log barrier A-regularized objective:
L)(0):= V™(u) — A E,_nif. |KL(Unify, 5( - | 5))]

= V"(u) + — Z log my(a|s) + AlogA

Gradient Ascent:
Ot =00 + nV,L,0")



Log Barrier Regularization

Relative-entropy for distributions p,q is: KL(p, g) := Epr[—log qg(x)/p(x)].

Consider the log barrier A-regularized objective:
L)(0):= V™(u) — A E,_nif. |KL(Unify, 5( - | 5))]

= V"(u) + — Z log my(a|s) + AlogA

Gradient Ascent:
Ot =00 + nV,L,0")

Do small gradients imply a globally optimal policy?



Stationarity and Optimality



Stationarity and Optimality

* |Log barrier regulanzed objective:

L,(0) = V™(u) + — 2 log my(a|s) + AlogA



Stationarity and Optimality

* |Log barrier regulanzed objective:

L,(0) = V™(u) + — Z log my(a|s) + AlogA

 [heorem: (Log barrier regular|zat|on) Suppose @ is such that:
VoL (Ol < €,,, and €,,, < A/(25A)

then we have for all startlng state distributions p:

*
T
dp

V%(p) > V*(p) —
1=yl p Nl




Stationarity and Optimality

* |Log barrier regulanzed objective:

L,(0) = V™(u) + — 2 log my(a|s) + AlogA

 [heorem: (Log barrier regular|zat|on) Suppose @ is such that:
VoL (Ol < €,,, and €,,, < A/(25A)

then we have for all startlng state distributions p:

*
T
dp

] — y' U oo
e where the “distribution mismatch coefficient” is

dr (dg (s)

— IMax
p oo s p(s)

VZ3(p) 2 V*(p) —

) (componentwise division notation)




Global Convergence with the Log Barrier



Global Convergence with the Log Barrier

. % 24
. The smoothness of L,(0) is f, := =7 4 ~
—7




Global Convergence with the Log Barrier

. % 24
The smoothness of L,(0) is p, := + —

1-=y@ S

 Corollary: (Iteration complexity with log barrier regularization)

e(l —
Set A = ( ) and n = 1/f,. Starting from any initial 0©)

X
p) |

H 0
then for all starting state distributions p, we have

S2A2 ||dy |
min { V*(p) = V¥ <€ whenever 1 >c
nin {V*(p) = V() } Tl

(for constant c).




Remember: The Performance Difference Lemma

For all , 7', 5

, 1 ,
Vi(sp) = V7 (sp) = T Doy Faatis A" (s, a))

di(s) = (1 =7) ), 7"P(s, = 5|50, 7)
h=0



Proof, part 1



Proof, part 1

. The proof consists of showing that: max A"(s,a) < 2A/(u(s)S) for all states s.

A



Proof, part 1

. The proof consists of showing that: max A"(s,a) < 2A/(u(s)S) for all states s.

A

* Jo see that this is sufficient, observe that by the performance difference lemma:

1 *
V(o) = Vi) = 1 D, 4} () (al A5, 0

acA

| . _
< l—ygdp (s) max A”™(s, a)

IN

1 .
T Z 247" ()M (u(s)S)

d” (s)
2 lz—lymfx( /Z(S; )

which would then complete the proof.



Proof, part 2



Proof, part 2

* need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).



Proof, part 2

* need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

L0 _ d™(s)my(a | $)A™( >+i<1 (al >)
%0, —1_}/ﬂS7T(961S S, d s\ plal|s

. Recall



Proof, part 2

* need to show A™(s,a) < 24/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

Recall 1 A5\ | AR5, @) + = = — ma] >)
eca = ry(als s,a) + — y(als
' 00, l—yr 7° s\a Y
» Solving for A™(s, a) in the first step and using ||V, L,(0)||, < €,,, < A/(25A),
] — 1 oJL,O) A 1
Aﬂg(S,Cl) = — }’( /1( ) | (1 ))
d,’(s) \my(als) 90, S ry(a|s)A
1 —vy 1 A A
< 77| -5 )
d,(s) \my(a|s) 2SA S
< (——L 42 ngthat d7(s) > (1 = pp(s)
| using tha s) 2 (1 — S
~ u(s) \my(a|s) 2SA S > 3 E



Proof, part 2

need to show A”™(s,a) < 2A/(u(s)S) for all (s, a). consider (s, a) where that A™(s,a) > 0 (else claim is true).

Recall 1 A5\ | AR5, @) + = = — ma] >)
eca = ry(als s,a) + — yals
00, l—yr 7° s\a Y
Solving for A*(s, a) in the first step and using ||V L,(0)]|, < €,,, < 4/(25A),
] — 1 odL,(0) A 1
Aﬂg(S, Cl) = — y( /1( ) | (1 ))
d,’(s) \my(als) 90, S ry(a|s)A
1 —vy 1 A A
< 77| +5)
d,(s) \my(a|s) 2SA S
< (——L 42 ngthat d(s) > (1 — Pu(s)
| using tha s) 2 (1 — S
~ u(s) \my(a|s) 2SA S > 3 E

Suppose we could show that 7z,(a | s) > 1/(2A), when A"(s,a) > 0, then

| | A A | A A 24 |
( | ) < (ZA | ) = and the proof is done!
u(s) \my(al|s) 2SA S u(s) 2SA S u(s)S




Proof, part 3



Proof, part 3

» for (s, a) such that A™(s,a) > 0, we want show zy(a |s) = 1/(2A).



Proof, part 3

» for (s, a) such that A™(s,a) > 0, we want show zy(a |s) = 1/(2A).

« The gradient norm assumption ||V ,L,(0)||, < €,,, implies that:

opt

N\ d™(s)m,(a | s)A™( W G [ 5)
€ — S)TTa\A | S S, d — — — TTa\Ad | S
P00, 11—y F s\a
A /1
ZO+§<X—7T9(CZ|S)> using A”*(s,a) > 0



Proof, part 3

» for (s, a) such that A™(s,a) > 0, we want show zy(a |s) = 1/(2A).

« The gradient norm assumption ||V ,L,(0)||, < €,p; IMplies that:
€ = S)rpla| s S, d A AR
opt 96&61 1 }/ M 0 S q 0

A (1
> 0+ § (X — 71'(9(61 | S)) using A”*(s,a) > 0

» Rearranging and using our assumption €, < A/(25A),
€ .S 1
opt
Toals) =2 — — > —.
fals) 24 -—— 25




