Policy Gradients: Optimality
Do they PG methods globally converge to an optimal policy?

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu)$$
Summary/Today

• Do they PG methods globally converge to an optimal policy?
\[\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{(t)}(\mu) \]

• Recap:
 • Softmax policies with exact gradients today
 • Flat gradients could occur if we optimize \(V^{\pi_\theta}(s_0) \)
 • Coverage: considered optimizing \(\max_{\theta \in \Theta} V^{\pi_\theta}(\mu) \)
 • Convergence:
 asymptotic convergence for GD
 poly rate with GD+log barrier regularization
Do they PG methods globally converge to an optimal policy?

\[\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_\theta V^{(t)}(\mu) \]

Recap:
- Softmax policies with exact gradients today
- Flat gradients could occur if we optimize \(V^{\pi_\theta}(s_0) \)
- **Coverage:** considered optimizing \(\max_{\theta \in \Theta} V^{\pi_\theta}(\mu) \)
- **Convergence:**
 asymptotic convergence for GD
 poly rate with GD+log barrier regularization

Today:
- Wrap up Log Barrier Proof
- Natural policy gradient
Recap
Things to remember

For all π, π', s_0:

$$V^\pi(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^\pi} \mathbb{E}_{a \sim \pi(\cdot | s)} \left[A^{\pi'}(s, a) \right]$$

$$\nabla_{\theta} J(\theta) := \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\pi\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(a | s) Q^{\pi_{\theta}}(s, a) \right]$$

Today: we will use $d_{s_0}^\pi$ for a state distribution measure.

(it should be clear from context how we use it).

$$d_{s_0}^\pi(s) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s | s_0, \pi)$$

$$d_{s_0}^\pi(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}(s_h = s, a_h = a | s_0, \pi)$$

$$V^\pi(\mu) = E_{s \sim \mu}[V^\pi(s)]$$

$$d_{\mu}^\pi(s) = E_{s_0 \sim \mu}[d_{s_0}^\pi(s)]$$
Softmax Gradients

\[\pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \]
Softmax Gradients

- \(\pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'}\exp(\theta_{s,a'})} \),

- **Lemma:** For the softmax policy class, we have:

\[
\frac{\partial V^{\pi_\theta}(\mu)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^{\pi_\theta}(s) \pi_\theta(a \mid s) A^{\pi_\theta}(s, a)
\]
Stationarity and Optimality

• Log barrier regularized objective:

\[L_{\lambda}(\theta) = V^{\pi_{\theta}}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a | s) + \lambda \log A \]
Stationarity and Optimality

• Log barrier regularized objective:

\[L_\lambda(\theta) = V^{\pi_\theta}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_\theta(a | s) + \lambda \log A \]

• **Theorem:** (Log barrier regularization) Suppose \(\theta \) is such that:

\[||\nabla_\theta L_\lambda(\theta)||_2 \leq \epsilon_{opt} \quad \text{and} \quad \epsilon_{opt} \leq \lambda/(2SA) \]

then we have for all starting state distributions \(\rho \):

\[V^{\pi_\theta}(\rho) \geq V^*(\rho) - \frac{2\lambda}{1 - \gamma} \left\| \frac{d_{\rho}^{\pi^*}}{\mu} \right\|_\infty \]
Stationarity and Optimality

- Log barrier regularized objective:
 \[L_\lambda(\theta) = V^{\pi_\theta}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_\theta(a | s) + \lambda \log A \]

- **Theorem:** (Log barrier regularization) Suppose \(\theta \) is such that:
 \[\| \nabla_{\theta} L_\lambda(\theta) \|_2 \leq \epsilon_{opt} \]
 then we have for all starting state distributions \(\rho \):
 \[V^{\pi_\theta}(\rho) \geq V^*(\rho) - \frac{2\lambda}{1 - \gamma} \left\| \frac{d^{\pi^*}_\rho}{\mu} \right\|_\infty \]

- where the “distribution mismatch coefficient” is
 \[\left\| \frac{d^{\pi^*}_\rho}{\mu} \right\|_\infty = \max_s \left(\frac{d^{\pi^*}_\rho(s)}{\mu(s)} \right) \] (componentwise division notation)
Global Convergence with the Log Barrier

- The smoothness of $L_\lambda(\theta)$ is $\beta_\lambda := \frac{8\gamma}{(1 - \gamma)^3} + \frac{2\lambda}{S}$
Global Convergence with the Log Barrier

- The smoothness of $L_\lambda(\theta)$ is $eta_\lambda := \frac{8\gamma}{(1 - \gamma)^3} + \frac{2\lambda}{S}$

- **Corollary:** (Iteration complexity with log barrier regularization)

 Set $\lambda = \frac{\epsilon(1 - \gamma)}{2\|d^*_\rho\|_{\infty}^2}$ and $\eta = 1/\beta_\lambda$. Starting from any initial $\theta^{(0)}$, then for all starting state distributions ρ, we have

 $$\min_{t < T} \{V^*(\rho) - V^{(t)}(\rho)\} \leq \epsilon \quad \text{whenever} \quad T \geq c \frac{S^2A^2}{(1 - \gamma)^6 \epsilon^2} \left\| \frac{d^\pi_{\rho}}{\mu} \right\|_\infty^2$$

 (for constant c).
Wrapping up...
Proof, part 1

- The proof consists of showing that: \(\max_a A^\pi_{\theta}(s, a) \leq 2\lambda/(\mu(s)S) \) for all states \(s \).
Proof, part 1

- The proof consists of showing that: \(\max_a A^\pi_\theta(s, a) \leq 2\lambda/(\mu(s)S) \) for all states \(s \).

- To see that this is sufficient, observe that by the performance difference lemma:

\[
V^*(\rho) - V^{\pi_\theta}(\rho) = \frac{1}{1 - \gamma} \sum_{s,a} d^\pi_\rho^*(s)\pi^*(a \mid s)A^\pi_\theta(s, a)
\]

\[
\leq \frac{1}{1 - \gamma} \sum_s d^\pi_\rho^*(s) \max_{a \in A} A^\pi_\theta(s, a)
\]

\[
\leq \frac{1}{1 - \gamma} \sum_s 2d^\pi_\rho^*(s)\lambda/(\mu(s)S)
\]

\[
\leq \frac{2\lambda}{1 - \gamma} \max_s \left(\frac{d^\pi_\rho^*(s)}{\mu(s)} \right).
\]

which would then complete the proof.
Proof, part 2

• need to show $A^{\pi_0}(s, a) \leq 2\lambda / (\mu(s)S)$ for all (s, a). consider (s, a) where that $A^{\pi_0}(s, a) \geq 0$ (else claim is true).
Proof, part 2

- need to show $A^{\pi_\theta}(s, a) \leq 2\lambda/(\mu(s)S)$ for all (s, a). consider (s, a) where that $A^{\pi_\theta}(s, a) \geq 0$ (else claim is true).

- Recall
 \[
 \frac{\partial L_\lambda(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}(s|s)\pi_\theta(a|s)A^{\pi_\theta}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a|s) \right)
 \]
Proof, part 2

- need to show $A^{\pi_\theta}(s, a) \leq 2\lambda/(\mu(s)S)$ for all (s, a). consider (s, a) where that $A^{\pi_\theta}(s, a) \geq 0$ (else claim is true).

- Recall
$$\frac{\partial L_\lambda(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_\mu^{\pi_\theta}(s) \pi_\theta(a | s) A^{\pi_\theta}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a | s) \right)$$

- Solving for $A^{\pi_\theta}(s, a)$ in the first step and using $\|\nabla_\theta L_\lambda(\theta)\|_2 \leq c_{opt} \leq \lambda/(2SA)$,
$$A^{\pi_\theta}(s, a) = \frac{1 - \gamma}{d_\mu^{\pi_\theta}(s)} \left(\frac{1}{\pi_\theta(a | s)} \frac{\partial L_\lambda(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \left(1 - \frac{1}{\pi_\theta(a | s)A} \right) \right)$$
$$\leq \frac{1 - \gamma}{d_\mu^{\pi_\theta}(s)} \left(\frac{1}{\pi_\theta(a | s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)$$
$$\leq \frac{1}{\mu(s)} \left(\frac{1}{\pi_\theta(a | s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) \quad \text{using that} \quad d_\mu^{\pi_\theta}(s) \geq (1 - \gamma)\mu(s)$$
Proof, part 2

- need to show \(A^{\pi_\theta(s,a)} \leq 2\lambda / (\mu(s)S) \) for all \((s,a)\). consider \((s,a)\) where that \(A^{\pi_\theta(s,a)} \geq 0 \) (else claim is true).

Recall \(\frac{\partial \lambda(\theta)}{\partial \theta_{s,a}} = \frac{1}{1-\gamma} d_\mu^{\pi_\theta(s)} \pi_\theta(a \mid s) A^{\pi_\theta(s,a)} + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a \mid s) \right) \)

Solving for \(A^{\pi_\theta(s,a)} \) in the first step and using \(\| \nabla_\theta L_\lambda(\theta) \|_2 \leq c_{opt} \leq \lambda/(2SA) \),

\[
A^{\pi_\theta(s,a)} = \frac{1-\gamma}{d_\mu^{\pi_\theta(s)}} \left(\frac{1}{\pi_\theta(a \mid s)} \frac{\partial \lambda(\theta)}{\partial \theta_{s,a}} + \frac{\lambda}{S} \left(1 - \frac{1}{\pi_\theta(a \mid s)A} \right) \right)
\]

\[
\leq \frac{1-\gamma}{d_\mu^{\pi_\theta(s)}} \left(\frac{1}{\pi_\theta(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)
\]

\[
\leq \frac{1}{\mu(s)} \left(\frac{1}{\pi_\theta(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right)
\]

using that \(d_\mu^{\pi_\theta(s)} \geq (1-\gamma)\mu(s) \)

Suppose we could show that \(\pi_\theta(a \mid s) \geq 1/(2A) \), when \(A^{\pi_\theta(s,a)} \geq 0 \), then

\[
\frac{1}{\mu(s)} \left(\frac{1}{\pi_\theta(a \mid s)} \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) \leq \frac{1}{\mu(s)} \left(2A \frac{\lambda}{2SA} + \frac{\lambda}{S} \right) = \frac{2\lambda}{\mu(s)S}
\]

and the proof is done!
• for \((s, a)\) such that \(A^{\pi_0}(s, a) \geq 0\), we want show \(\pi_0(a \mid s) \geq 1/(2A)\).
Proof, part 3

• for \((s, a)\) such that \(A_{\pi_\theta}(s, a) \geq 0\), we want show \(\pi_\theta(a \mid s) \geq 1/(2A)\).

• The gradient norm assumption \(\|\nabla_\theta L_\lambda(\theta)\|_2 \leq \epsilon_{\text{opt}}\) implies that:

\[
\epsilon_{\text{opt}} \geq \frac{\partial L_\lambda(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu_\theta}(s) \pi_\theta(a \mid s) A_{\pi_\theta}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a \mid s) \right)
\]

\[
\geq 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a \mid s) \right) \quad \text{using} \quad A_{\pi_\theta}(s, a) \geq 0
\]
Proof, part 3

• for \((s, a)\) such that \(A^{\pi_\theta}(s, a) \geq 0\), we want show \(\pi_\theta(a \mid s) \geq 1/(2A)\).

• The gradient norm assumption \(\|\nabla_\theta L_{\lambda}(\theta)\|_2 \leq \epsilon_{opt}\) implies that:

\[
\epsilon_{opt} \geq \frac{\partial L_{\lambda}(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d_{\mu}^{\pi_\theta}(s) \pi_\theta(a \mid s) A^{\pi_\theta}(s, a) + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a \mid s) \right)
\]

\[
\geq 0 + \frac{\lambda}{S} \left(\frac{1}{A} - \pi_\theta(a \mid s) \right) \quad \text{using } A^{\pi_\theta}(s, a) \geq 0
\]

• Rearranging and using our assumption \(\epsilon_{opt} \leq \lambda/(2SA)\),

\[
\pi_\theta(a \mid s) \geq \frac{1}{A} - \frac{\epsilon_{opt} S}{\lambda} \geq \frac{1}{2A}.
\]
Today:
Natural Policy Gradient and Convergence
The Natural Policy Gradient

- Recall that the Fisher information matrix of a parameterized density \(p_\theta(x) \) is defined as:
 \[
 E_{x \sim p_\theta} \left[\nabla \log p_\theta(x) \nabla \log p_\theta(x)^\top \right]
 \]
The Natural Policy Gradient

- Recall that the Fisher information matrix of a parameterized density $p_\theta(x)$ is defined as $E_{x \sim p_\theta} \left[\nabla \log p_\theta(x) \nabla \log p_\theta(x)^\top \right]$
- Define \mathcal{F}_ρ^θ as the (average) Fisher matrix on the family of distributions $\{ \pi_\theta(\cdot | s) | s \in S \}$ as: $\mathcal{F}_\rho^\theta := E_{s \sim \mu_\rho} E_{a \sim \pi_\theta(\cdot | s)} \left[(\nabla \log \pi_\theta(a | s)) \nabla \log \pi_\theta(a | s)^\top \right]$.
The Natural Policy Gradient

• Recall that the Fisher information matrix of a parameterized density $p_\theta(x)$ is defined as
 $E_{x \sim p_\theta} \left[\nabla \log p_\theta(x) \nabla \log p_\theta(x)^\top \right]$

• Define \mathcal{F}_ρ^θ as the (average) Fisher matrix on the family of distributions $\{ \pi_\theta(\cdot | s) | s \in S \}$ as:
 $\mathcal{F}_\rho^\theta := E_{s \sim d_\rho^\pi} E_{a \sim \pi_\theta(\cdot | s)} \left[(\nabla \log \pi_\theta(a | s)) \nabla \log \pi_\theta(a | s)^\top \right]$.

• The NPG algorithm performs gradient updates in this induced geometry:
 $\theta^{(t+1)} = \theta^{(t)} + \eta F_\rho(\theta^{(t)})^\dagger \nabla_\theta V^{(t)}(\rho)$,
 where M^\dagger denotes the Moore-Penrose pseudoinverse of M.

The Natural Policy Gradient

- Recall that the Fisher information matrix of a parameterized density $p_{\theta}(x)$ is defined as
 $$E_{x \sim p_\theta} \left[\nabla \log p_\theta(x) \nabla \log p_\theta(x)^\top \right]$$
- Define \mathcal{F}_ρ^θ as the (average) Fisher matrix on the family of distributions $\{\pi_{\theta}(\cdot \mid s) \mid s \in S\}$ as:
 $$\mathcal{F}_\rho^\theta := E_{s \sim d^\pi_{\theta}} E_{a \sim \pi_{\theta}(\cdot \mid s)} \left[(\nabla \log \pi_{\theta}(a \mid s)) \nabla \log \pi_{\theta}(a \mid s)^\top \right] .$$
- The NPG algorithm performs gradient updates in this induced geometry:
 $$\theta^{(t+1)} = \theta^{(t)} + \eta F^\theta_{\rho}(\theta^{(t)})^\dagger \nabla_\theta V^{(t)}(\rho),$$
 where M^\dagger denotes the Moore-Penrose pseudoinverse of M.

- Idea:
 - ‘stretch’ the corners of the simplex out to travel faster
 (as opposed to the log-barrier which keeps us away)
NPG softmax case
(NPG as “soft” policy iteration)

• **Lemma:** (Softmax NPG as soft policy iteration) The NPG update is:
\[
\theta^{(t+1)} = \theta^{(t)} + \frac{\eta}{1 - \gamma} A^{(t)}
\]
NPG softmax case
(NPG as “soft” policy iteration)

• **Lemma:** (Softmax NPG as soft policy iteration) The NPG update is:
 \[\theta^{(t+1)} = \theta^{(t)} + \frac{\eta}{1 - \gamma} A^{(t)} \]

• and so:
 \[\pi^{(t+1)}(a \mid s) = \pi^{(t)}(a \mid s) \frac{\exp(\eta A^{(t)}(s, a)/(1 - \gamma))}{Z_t(s)}, \]

where \(Z_t(s) = \sum_a \pi^{(t)}(a \mid s) \exp(\eta A^{(t)}(s, a)/(1 - \gamma)). \)
NPG & Compatible Function Approximation

- Let w^* denote the following minimizer of the “compatible function approximation” error:

$$w^* \in E_{s \sim \mu} E_{a \sim \pi(a|s)} \left[(A^{\pi}(s, a) - w \cdot \nabla_{\theta} \log \pi(a|s))^2 \right]$$
NPG & Compatible Function Approximation

• Let w^* denote the following minimizer of the “compatible function approximation” error:

$$w^* \in E_{s \sim d^\pi_\mu}E_{a \sim \pi_\theta(\cdot | s)} \left[(A^\pi_\theta(s, a) - w \cdot \nabla_\theta \log \pi_\theta(a | s))^2 \right]$$

• Lemma: Let $\widehat{A}^\pi_\theta(s, a)$ be the best linear predictor of $A^\pi_\theta(s, a)$ using $\nabla_\theta \log \pi_\theta(a | s)$, i.e.

$$\widehat{A}^\pi_\theta(s, a) \triangleq w^* \cdot \nabla_\theta \log \pi_\theta(a | s)\ . \ \text{We have:}$$

$$\nabla_\theta V^\pi_\theta(\mu) = = \frac{1}{1 - \gamma} E_{s \sim d^\pi_\mu}E_{a \sim \pi_\theta(\cdot | s)} \left[\nabla_\theta \log \pi_\theta(a | s) \widehat{A}^\pi_\theta(s, a) \right]$$

We can use $\widehat{A}^\pi_\theta(s, a)$ instead of $A^\pi_\theta(s, a)$.
NPG & Compatible Function Approximation

Let \(w^* \) denote the following minimizer of the “compatible function approximation” error:

\[
 w^* \in E_{s \sim d_{\mu}^{\pi_\theta}}E_{a \sim \pi_\theta(\cdot|s)} \left[(A^{\pi_\theta}(s, a) - w \cdot \nabla_\theta \log \pi_\theta(a|s))^2 \right]
\]

Lemma: Let \(\widehat{A}^{\pi_\theta}(s, a) \) be the best linear predictor of \(A^{\pi_\theta}(s, a) \) using \(\nabla_\theta \log \pi_\theta(a|s) \), i.e.

\[
 \widehat{A}^{\pi_\theta}(s, a) := w^* \cdot \nabla_\theta \log \pi_\theta(a|s)
\]

We have:

\[
 \nabla_\theta V^{\pi_\theta}(\mu) = \frac{1}{1 - \gamma} E_{s \sim d_{\mu}^{\pi_\theta}}E_{a \sim \pi_\theta(\cdot|s)} \left[\nabla_\theta \log \pi_\theta(a|s) \widehat{A}^{\pi_\theta}(s, a) \right]
\]

We can use \(\widehat{A}^{\pi_\theta}(s, a) \) instead of \(A^{\pi_\theta}(s, a) \).

Lemma: We have that

\[
 F_{\rho}(\theta)^\dagger \nabla_\theta V^{\theta}(\rho) = \frac{1}{1 - \gamma} w^*,
\]

The NPG direction is the weights \(w^* \).
Proof

• The first order optimality conditions for w^* imply

$$E_{s \sim d_{\mu}^{\pi_\theta}} E_{a \sim \pi_{\theta}(\cdot | s)} \left[(A_{\pi_\theta}(s, a) - w^* \cdot \nabla_\theta \log \pi_\theta(a | s)) \nabla_\theta \log \pi_\theta(a | s) \right] = 0$$
Proof

• The first order optimality conditions for w^* imply
\[
E_{s \sim d_\mu}E_{a \sim \pi_\theta(\cdot|s)} \left[(A^\pi(s, a) - w^* \cdot \nabla_\theta \log \pi_\theta(a|s)) \nabla_\theta \log \pi_\theta(a|s) \right] = 0
\]

• (1st lemma proof) Rearranging and using the definition of $\hat{A}^\pi_\theta(s, a)$,
\[
\nabla_\theta V^\pi_\theta(\mu) = \frac{1}{1 - \gamma} E_{s \sim d_\mu}E_{a \sim \pi_\theta(\cdot|s)} \left[\nabla_\theta \log \pi_\theta(a|s) A^\pi_\theta(s, a) \right]
\]
\[
= \frac{1}{1 - \gamma} E_{s \sim d_\mu}E_{a \sim \pi_\theta(\cdot|s)} \left[\nabla_\theta \log \pi_\theta(a|s) \hat{A}^\pi_\theta(s, a) \right]
\]
Proof

• The first order optimality conditions for \(w^* \) imply
\[
E_{s \sim d^{\mu}_{\pi}} E_{a \sim \pi_{\theta}(\cdot | s)} \left[(A_{\pi_{\theta}}(s, a) - w^* \cdot \nabla_{\theta} \log \pi_{\theta}(a | s)) \nabla_{\theta} \log \pi_{\theta}(a | s) \right] = 0
\]

• (1st lemma proof) Rearranging and using the definition of \(\hat{A} \pi_{\theta}(s, a) \),
\[
\nabla_{\theta} V_{\pi_{\theta}}(\mu) = \frac{1}{1 - \gamma} E_{s \sim d^{\mu}_{\pi}} E_{a \sim \pi_{\theta}(\cdot | s)} \left[\nabla_{\theta} \log \pi_{\theta}(a | s) A_{\pi_{\theta}}(s, a) \right]
\]
\[
= \frac{1}{1 - \gamma} E_{s \sim d^{\mu}_{\pi}} E_{a \sim \pi_{\theta}(\cdot | s)} \left[\nabla_{\theta} \log \pi_{\theta}(a | s) \hat{A} \pi_{\theta}(s, a) \right]
\]

• (2nd lemma proof) Again by first order opt conditin + substitution of \(\nabla_{\theta} V^{\theta}(\rho) \) and \(F_{\rho}(\theta) \):
\[
(1 - \gamma) \nabla_{\theta} V^{\theta}(\rho) = F_{\rho}(\theta)w^* .
\]
Proof

• **Lemma**: The NPG update is:

\[
\theta^{(t+1)} = \theta^{(t)} + \frac{\eta}{1 - \gamma} A^{(t)}
\]
Proof

- **Lemma:** The NPG update is:
 \[\theta^{(t+1)} = \theta^{(t)} + \frac{\eta}{1 - \gamma} A^{(t)} \]

- **Proof:** Recall NPG update is \(\frac{1}{1 - \gamma} w^* \) where
 \[w^* \in E_{s \sim d_\mu^\theta} E_{a \sim \pi_\theta(\cdot | s)} \left[\left(A_\pi(s, a) - w \cdot \nabla_\theta \log \pi_\theta(a | s) \right)^2 \right] \]
Proof

- **Lemma:** The NPG update is:
 \[\theta^{(t+1)} = \theta^{(t)} + \frac{\eta}{1 - \gamma} A^{(t)} \]

- **Proof:** Recall NPG update is \(\frac{1}{1 - \gamma} w^* \) where
 \[w^* \in E_{s \sim d_{\mu}} E_{a \sim \pi_{\theta} \cdot | s} \left[(A^\pi_{\theta}(s, a) - w \cdot \nabla_{\theta} \log \pi_{\theta}(a | s))^2 \right] \]

- What is a minimizer for the the softmax?
Global convergence for NPG

• **Theorem:** Params: $\theta^{(0)} = 0$ and $\eta > 0$. For all ρ and $T > 0$, we have:

$$V^{(T)}(\rho) \geq V^*(\rho) - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}.$$
Global convergence for NPG

- **Theorem:** Params: $\theta^{(0)} = 0$ and $\eta > 0$. For all ρ and $T > 0$, we have:

$$V^{(T)}(\rho) \geq V^*(\rho) - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}.$$

- Setting $\eta \geq (1 - \gamma)^2 \log A$, NPG finds an ϵ-opt policy when $T \geq \frac{2}{(1 - \gamma)^2 \epsilon}$.
Global convergence for NPG

• **Theorem:** Params: $\theta^{(0)} = 0$ and $\eta > 0$. For all ρ and $T > 0$, we have:

$$V^{(T)}(\rho) \geq V^*(\rho) - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}.$$

• Setting $\eta \geq (1 - \gamma)^2 \log A$, NPG finds an ϵ-opt policy when $T \geq \frac{2}{(1 - \gamma)^2 \epsilon}$.

• Iteration complexity has:
 • No dimension dependence (no dependence on S, A)
 • No dependence on start state measure ρ (and no “dist mismatch factor”)
 • No ‘flat gradient’ problem
Global convergence for NPG

- **Theorem:** Params: $\theta^{(0)} = 0$ and $\eta > 0$. For all ρ and $T > 0$, we have:
 \[
 V(T)(\rho) \geq V^*(\rho) - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}.
 \]

 - Setting $\eta \geq (1 - \gamma)^2 \log A$, NPG finds an ϵ-opt policy when $T \geq \frac{2}{(1 - \gamma)^2 \epsilon}$.

- Iteration complexity has:
 - No dimension dependence (no dependence on S, A)
 - No dependence on start state measure ρ (and no “dist mismatch factor”)
 - No ‘flat gradient’ problem

- What about approx/estimation errors? (next lecture)
Improvement Lower Bound

- **Lemma:** For the iterates $\pi^{(t)}$ generated by the NPG, we have for all distributions μ:

$$ V^{(t+1)}(\mu) - V^{(t)}(\mu) \geq \frac{(1 - \gamma)}{\eta} E_{s \sim \mu} \log Z_t(s) \geq 0. $$
Improvement Lower Bound

• **Lemma:** For the iterates $\pi^{(t)}$ generated by the NPG, we have for all distributions μ:

$$V^{(t+1)}(\mu) - V^{(t)}(\mu) \geq \frac{(1 - \gamma)}{\eta} E_{s \sim \mu} \log Z_t(s) \geq 0.$$

• **Proof:** First, let us show that $\log Z_t(s) \geq 0$. To see this, observe:

$$\log Z_t(s) = \log \sum_a \pi^{(t)}(a \mid s) \exp(\eta A^{(t)}(s, a) / (1 - \gamma))$$

$$\geq \sum_a \pi^{(t)}(a \mid s) \log \exp(\eta A^{(t)}(s, a) / (1 - \gamma))$$

$$= \frac{\eta}{1 - \gamma} \sum_a \pi^{(t)}(a \mid s) A^{(t)}(s, a) = 0.$$
Improvement Lower Bound

• **Lemma:** For the iterates $\pi^{(t)}$ generated by the NPG, we have for all distributions μ:

$$V^{(t+1)}(\mu) - V^{(t)}(\mu) \geq \frac{(1 - \gamma)}{\eta} E_{s \sim \mu} \log Z_t(s) \geq 0.$$

• **Proof:** First, let us show that $\log Z_t(s) \geq 0$. To see this, observe:

$$\log Z_t(s) = \log \sum_a \pi^{(t)}(a \mid s) \exp(\eta A^{(t)}(s, a)/(1 - \gamma))$$

$$\geq \sum_a \pi^{(t)}(a \mid s) \log \exp(\eta A^{(t)}(s, a)/(1 - \gamma))$$

$$= \frac{\eta}{1 - \gamma} \sum_a \pi^{(t)}(a \mid s) A^{(t)}(s, a) = 0.$$

(using Jensen’s inequality on the concave function $\log x$.)
Lemma Proof: continued….

By the performance difference lemma,
\[V^{(t+1)}(\mu) - V^{(t)}(\mu) = \frac{1}{1 - \gamma} E_{s \sim d^{(t+1)}_{\mu}} \sum_a \pi^{(t+1)}(a | s) A^{(t)}(s, a) \]

\[= \frac{1}{\eta} E_{s \sim d^{(t+1)}_{\mu}} \sum_a \pi^{(t+1)}(a | s) \log \frac{\pi^{(t+1)}(a | s) Z_{t}(s)}{\pi^{(t)}(a | s)} \]

\[= \frac{1}{\eta} E_{s \sim d^{(t+1)}_{\mu}} \text{KL}(\pi^{(t+1)}_{s} | | \pi^{(t)}_{s}) + \frac{1}{\eta} E_{s \sim d^{(t+1)}_{\mu}} \log Z_{t}(s) \]

\[\geq \frac{1}{\eta} E_{s \sim d^{(t+1)}_{\mu}} \log Z_{t}(s) \geq \frac{1 - \gamma}{\eta} E_{s \sim \mu} \log Z_{t}(s), \]

where the last step uses that \(d^{(t+1)}_{\mu} \geq (1 - \gamma)\mu \) and that \(\log Z_{t}(s) \geq 0 \).
NPG Conv. Proof, Part 1

- d^* as shorthand for d_p^*; π_s as shorthand for the vector of $\pi(\cdot | s)$
NPG Conv. Proof, Part 1

- d^* as shorthand for d^*_p; π_s as shorthand for the vector of $\pi(\cdot|s)$
- By the performance difference lemma,

$$V^{\pi^*}(\rho) - V^{(t)}(\rho) = \frac{1}{1 - \gamma} E_{s \sim d^*} \sum_a \pi^*(a|s)A^{(t)}(s, a)$$

$$= \frac{1}{\eta} E_{s \sim d^*} \sum_a \pi^*(a|s) \log \frac{\pi^{(t+1)}(a|s)Z_t(s)}{\pi^{(t)}(a|s)}$$

$$= \frac{1}{\eta} E_{s \sim d^*} \left(KL(\pi^*_s || \pi^{(t)}_s) - KL(\pi^*_s || \pi^{(t+1)}_s) + \sum_a \pi^*(a|s) \log Z_t(s) \right)$$

$$= \frac{1}{\eta} E_{s \sim d^*} \left(KL(\pi^*_s || \pi^{(t)}_s) - KL(\pi^*_s || \pi^{(t+1)}_s) + \log Z_t(s) \right),$$
NPG Conv. Proof, Part 2

- By the improvement lemma $V^{(t+1)}(\rho) \geq V^{(t)}(\rho)$. Hence,

$$V^{\pi^*}(\rho) - V^{(T-1)}(\rho) \leq \frac{1}{T} \sum_{t=0}^{T-1} (V^{\pi^*}(\rho) - V^{(t)}(\rho))$$

$$= \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*}(KL(\pi_s^* \mid \pi_s^{(t)}) - KL(\pi_s^* \mid \pi_s^{(t+1)})) + \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*} \log Z_t(s)$$

$$\leq \frac{E_{s \sim d^*} KL(\pi_s^* \mid \pi_s^{(0)})}{\eta T} + \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*} \log Z_t(s).$$
NPG Conv. Proof, Part 2

• By the improvement lemma $V^{(t+1)}(\rho) \geq V^{(t)}(\rho)$. Hence,

$$V^{\pi^*}(\rho) - V^{(T-1)}(\rho) \leq \frac{1}{T} \sum_{t=0}^{T-1} (V^{\pi^*}(\rho) - V^{(t)}(\rho))$$

$$= \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*}(KL(\pi^*_s \| \pi^{(t)}_s) - KL(\pi^*_s \| \pi^{(t+1)}_s)) + \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*} \log Z_t(s)$$

$$\leq \frac{E_{s \sim d^*}KL(\pi^*_s \| \pi^{(0)}_s)}{\eta T} + \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*} \log Z_t(s).$$

• By the improvement lemma (applied with d^* as the distribution), we have:

$$\frac{1}{\eta} E_{s \sim d^*} \log Z_t(s) \leq \frac{1}{1 - \gamma} \left(V^{(t+1)}(d^*) - V^{(t)}(d^*) \right)$$

which gives us a bound on $E_{s \sim d^*} \log Z_t(s)$.
\[V^{\pi^*}(\rho) - V^{(T-1)}(\rho) \leq \frac{E_{s \sim d^*} \text{KL}(\pi_s^* || \pi^{(0)})}{\eta T} + \frac{1}{\eta T} \sum_{t=0}^{T-1} E_{s \sim d^*} \log Z_t(s) \]

\[\leq \frac{E_{s \sim d^*} \text{KL}(\pi_s^* || \pi^{(0)})}{\eta T} + \frac{1}{(1 - \gamma)T} \sum_{t=0}^{T-1} \left(V^{(t+1)}(d^*) - V^{(t)}(d^*) \right) \]

\[= \frac{E_{s \sim d^*} \text{KL}(\pi_s^* || \pi^{(0)})}{\eta T} + \frac{V^{(T)}(d^*) - V^{(0)}(d^*)}{(1 - \gamma)T} \]

\[\leq \frac{\log A}{\eta T} + \frac{1}{(1 - \gamma)^2 T}. \]