The Sample Complexity
with a Generative Model



Announcements

* Norms for class
* \ideo: please feel free to turn your video!
It’s nice to see some of you once in a while.
* Questions: by chat or just ask.

* Notes are posted in advance.
Notes/Book on hand can help during lectures.

« HW1 posted later this week (due in two weeks)



Today:

* Recap: computational complexity
 Question: Given an MDP.Z = (S, A, P, r,y) can we exactly compute

Q™ (or find 7*) in polynomial time?

» Today: statistical complexity
 Question: Given an MDP.Z = (S, A, P, r, y) how many observed

transitions do we need to estimate Q* (or find 7£*)?

» We consider an abstract model (a generative model) to study the
number of samples required for learning.



Recap



Summary Table

Value Iteration Policy Iteration LP-based Algorithms
Poly,. | s2a™Prlers (8% + 524) HEI e I SSAL(P,1,7)
2 Alog 52
Strongly Poly X 5+ 524 min {47, TS | statiog

« VI Per iteration complexity: S2A
« Pl Per iteration complexity: S° + S2A
« The LP approach is only logarithmicin 1 —y
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A Generative Model

A generative model provides us with a sample s" ~ P( - | s,a) upon input of
a state action pair (s, a).
most naive approach to learning: suppose we call our simulator N times
at each state action pair. Let P be our empirical model:
. count(s’, s, a)
P (s'|s,a) =
N
where count(s’, s, a) is the #times the state-action (s, a) transitions to state s".
Each “sample” calls the generative model SA times (for each state action pair).

The total number of calls to our generative model is SAN.

The generative model helps us disentangle the issue of fundamental statistical li
from exploration.




How many samples do we need to learn?
r\_///—/—\

* This is a reasonable abstraction to understand the statistical limit,
without having to directly address exploration.
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. Note that since P has a S?A parameters, a naive approach would be to
estimate P accurately (using O(S?A) samples) and then use P for planning.



How many samples do we need to learn?

* This is a reasonable abstraction to understand the statistical limit,
without having to directly address exploration.

. Note that since P has a S?A parameters, a naive approach would be to
estimate P accurately (using O(S?A) samples) and then use P for planning.
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Attempt 1:

the p’ai/ve model based approach
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Proposition: ¢ is an absolute constant. ¢ > 0. For N > i 5
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Model accuracy
cy Slog(cSA/o)

Proposition: ¢ is an absolute constant. € > 0. For N >
(1-p?* €?
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* Model accuracy: The transition m%e%s/e has error bounded as:/
max [|P(- |s,a) = P (-[s,a)ll; < (1 =7)%/2.

s,a

and with probability greater than 1 — 9,



( rewsodh > Model accuracy
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cy Slog(cSA/o)

Proposition: ¢ is an absolute constant. € > 0. For N >
1=y e

and with probability greater than 1 — 9,

* Model accuracy: The transition model is € has error bounded as:
max ||P( - |s,a) = P (-|s,a)ll; < (1 —y)%/2.
\

S,a
« Uniform value accuracy: For all policies 7,

107 — 07|, < e/2



Model accuracy (O 57 ) sau )l
cy Slog(cSA/o)

Proposition: ¢ is an absolute constant. € > 0. For N >
1=y e

and with probability greater than 1 — 9,

* Model accuracy: The transition model is € has error bounded as:

max ||P( - |s,a ~P( s,a)|l; < (1 =9)2%/2.
ax|P(- |s,.0) = P (s, @)l <1 =7 e o
H ' O(<c W& <€/)’L -
« Uniform value accuracy: For all policies , Abe  pOHEs

107~ 07l < e/2 fiﬁf@f : R
* Near optimal planning: Suppos hat 7 is the optimal pglicy in M .
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Matrix Expressions

 Define P” to be the transition matrix on state-action pairs (for deterministic 7):
Pr . =P('|s,a if a' = n(s’ i
G P(s’ls,a) | 9/\(} TS < S
0 if a’ # n(s’)
? W\ftqﬁ/\v SA XS



Matrix Expressions

 Define P” to be the transition matrix on state-action pairs (for deterministic 7):

P% oy =P('|s,a)  ifa = a(s)
0 if a’ # n(s’)
L ﬁé 7 e
* With this notation, \/54/1/ RENL yec >
Q" =rHKPV”

Qﬂ' — 7 +YP”Q”



Matrix Expressions

 Define P” to be the transition matrix on state-action pairs (for deterministic 7):

P?Z'

(s.a).(s) = = P(s'| s, a) if a’ = n(s’)

0 if a’ # n(s’)
e With this notation,
Q" =r HPV” _
Q" = r +P"Q" — C&“Y(\Dﬁ) K =y
« And that: L N
/ > @ o [(1:‘ P 3 Y~

Q"=U—-yP)'r =
(where one can show the inverse exists)




“Simulation” Lemma

(Simulation Lemma) For all 7, we have:
Q"— Q"=yI-yP")'((P- P)V"



“Simulation” Lemma

(Simulation Lemma) For all 7, we have:
Q"— Q"=yI-yP")'((P- P)V"

. {QO q[—w./@

proof: Usmg our matrix equallty for Q” we have/

07~ 07 = (=P r— (- Pyl — 0~ v D)
= U=y PN -7 PP = U= rP)Q" i
:y(l_y/P\ﬂ)—l(Pﬂ_/P\ﬂ)Qn UL\QV\ Md(”\!‘, QW
=y -y PP - PV



Proof: Claim 1

Concentration of a distribution in the £, norm: for a fixed s, a

P Slog(1/6
IP(-|s,a)— P('|S’a)||1$c\/ oii )

with pr greater than 1 — 6, with m samples used to estimate P ( - |s, a).

The first claim now follows by the union bound.
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For the second claim, we have that; destrl,

T_ n — . pmy—1 _ ph\y~n Y _ Dph\y~n
10" — Q7 |I7U%(P P)Vv IIOOS—I_ (P = PVl

Proof: Claim 2
Ol7y)

Y ) 7
S1—<maX”P('|Saa)_ P(-|S,Cl) 1 ”V ”oo Al

-7
max ||P( - |s,a) — P (- s, a)ll

<
A=pP sa

why is step 1 true? .
(why P ) T@%a}‘ \/gtf:@’}&a/l“

The proof for the Claim 3 immediately follows from the second claim.




Reference sheet (defs/notation)

- Remember: # samples from generative model = SAN

-P”is the transmon matrix on state-action pairs for a deterministic policy 7:
P(’; (s = = P(s'| s, a) if a’ = n(s’)
0 if a’ # 7(s’)
*With this notation,
Q"=r+PV", Q"=r+P"Q", Q"=I-yP")'r

N

(I — yP™)~ ! is a matrix whose rows are probability distributions (why?)

-I'éstimated transition P, optimal value in estimated model Q *,
A \ . P
optimal policy in optimal model 7, (true) value of estimated policy O”
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sublinear sample complexity!
idea: use concentration only on V*



Attempt 2: Sublinear Sample Complexity



Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) Let 6 > 0. With probability greater than 1 — 6,

”Q* - /Q\*” < 4 \/210g(25A/5) — /«FL 7««4//55 Z
T =p2 N (@% )
10* - 07| < —" \/ 2Tog(2SA75) Gt e
oo — (1 . },)2 N k\\/



Attempt 2: Sublinear Sample Complexity

Proposition: (Crude Value Bound) Let 6 > 0. With probability greater than 1 — 6,

~ 2 Tog(2SA/6 ]
N
. e y 2102(2SA/5) R 2 0 jjj
ler- 0= (1—y>2\/ N o=

Comnp bt o Frooq T
What about the value of the policy?

*x _ Rk Y 21og(25A/6)
107 = 2" = (1—}’)3\/ N
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Component-wise Bounds Lemma
E— =&’

Lemma: we have that:
Q* - 0*<yU—yP™)y\(P- P)V*

0* - 0* 2 /U—-yP*) (P PHV*
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Component-wise Bounds Lemma
Lemma: we have that:

[£-#107)
-0 o~ Py Sy
Q*— 0* <yI—-yP™)y'\(P- PHV*

/N
e . Py T “e
Q*— Q*2yI—-yP ™)y '(P- P)V* WVMN K %’w {VT
_ ZT% b?o
Q= Q

9
proof: . : T * : c—b <Loq—a
For the first claim, the optimality of 7™ in M implies:

Q* - 0*=0" - Q7 <" - Q" =yI—yP")\(P- P)V*,

using the simulation lemma in the final step.
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See notes for the proof of second claim. @
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Proof: (& key idea for sublinearity!)

For the first claim,

o~ }/ o~
10* — 0™l Sl——y”(P_ PV
Why?



Proof: (& key idea for sublinearity!)

For the first claim, Z —
—~ }/ o~

10% = 01l < T 1IP = PHVs 02F<= 1

Why?

By applying Hoeffding's inequality V* and the union bound,
1P = POVl = max | By pege [V = MMMWMH

1 \/ 210g(25A/5)
1y N
which holds with probability greater than 1 — ¢.



Attempt 3:

minimax optimal sample complexity
Idea: better variance control



(“near”) Minimax Optimal Sample Complexity

Theorem: (Azar et al. ’13) With probability greater than 1 — 9,

~ c log(cSA/9) cy log(cSA/o)
10" = O™l L7 +
(1 -y N (1-yp) N

where ¢ is an absolute constant.

b



(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13) With probability greater than 1 — 9,

N c log(cSA/9) cy log(cSA/o)
e 9\” \/(1—y>3 N a-p° N

where ¢ istan absolute cons
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(“near”) Minimax Optimal Sample Complexity

Theorem: (Azar et al. ’13) With probability greater than 1 — 9,
~ c log(cSA/9) cy log(cSA/o)
0™ - Q*IIOOSy\/ +

(1-y3 N 1-yp N
wboe |

where ¢ is an absolute constant. 0 a/%

¢ log(cSA/S) Q
then

(I-p)7 €
|0* — O *|| < € (with prob. greater than 1 — J)

Corollary: for € < 1, provided N >

Corollary: What about the policy? Need N/(1 — y)? samples.
We pay another factor of 1/(1 — y)2 samples. Is this real?



Minimax Optimal Sample Complexity
(on the policy)



Minimax Optimal Sample Complexity
(on the policy)

Theorem: (Agarwal et al. ’20) Fore < 4/1/(1 — ), provided

C log(cSA/9) _
N > then with prob. greater than 1 — 9),

S (1=p) €?
B = 0 (s )

10* = 0™l < B
e i e
fop(ai@% H Q — @ﬁ- ”W - %X
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Minimax Optimal Sample Complexity
(on the policy)

Theorem: (Agarwal et al. ’20) For e < 4/1/(1 — y), provided

C log(cSA/9) _
N > then with prob. greater than 1 — 9),
1-p3 €

10" — 0™l <€

Lower Bound: We can’t do better.



Proof sketch: part 1

* From “Component-wise Bounds” lemma, we want to bound:
10* = Ol <7 =y P7)' (P = PIVH||, <27
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Proof sketch: part 1

* From “Component-wise Bounds” lemma, we want to bound:
10* = Ol <7 =y P7)' (P = PIVH||, <27

« From Bernstein's ineq, with pr. greater than 1 — 6, we have (component-wise):

I 3 T0g(25A/5 I 21og(2SA/5)—
(P — PHV*| s\/ o8 )\/VarP(V*) + 0g(25470) 7
N 1 -y 3N

* Therefore

- 2 10g(2SA/0) e
I0* - 0%l Sy\/ =y Py Var(v)

+ "lower order term"




Bellman Equation for the Variance

- Variance: Varp(V)(s, a) := Varp; (V)
Component wise variance: Varp(V) = P(V)? — (PV)?



Bellman Equation for the Variance
- Variance: Varp(V)(s, a) := Varp; (V)
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» Let’s keep around the MDP M subscripts.
Define 2]’\[/1 as the (totoal) variance of the discounted reward:
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Bellman Equation for the Variance

- Variance: Varp(V)(s, a) := Varp; (V)
Component wise variance: Varp(V) = P(V)? — (PV)?

» Let’s keep around the MDP M subscripts.
Define 2]’\[/1 as the (totoal) variance of the discounted reward:

2
2V(s,a) = E ( Z y'r(s,a,) — (s, Cl)>

=0

SO=S,aO=Cl

* Bellman equation for the total variance:
T = y*Vary(VD) + y*P"E%,



Key Lemma

Lemma: For any policy 7 and MDP M,

H(l = Py Nar(Vp)

(0]

Proof idea: convexity + Bellman equations for the variance.
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Putting it all together

Proof: we have two MDPs M and M . need to bound:
1= 7 P Varp(V ) g, = 10 = 7P Varg (V)

_ 71'* -1 JT* n n
<|Ia-yP2) \/VarP(VM)+ lower order

2
< 4|— + "lower order"
1=y

First equality above: just notation
Second step: concentration -> need to say

\/VarP(VM ) & \/VarP(VM\)

Last step: previous slide




