
The Sample Complexity  
with a Generative Model
















































Announcements
• Norms for class

• Video: please feel free to turn your video!  

It’s nice to see some of you once in a while.

• Questions: by chat or just ask.


• Notes are posted in advance.  
Notes/Book on hand can help during lectures.  

• HW1 posted later this week (due in two weeks)
















































Today: 

• Recap: computational complexity

• Question: Given an MDP  can we exactly compute 

 (or find ) in polynomial time?


• Today: statistical complexity

• Question: Given an MDP  how many observed 

transitions do we need to estimate  (or find )?


• We consider an abstract model (a generative model) to study the 
number of samples required for learning.

ℳ = (S, A, P, r, γ)
Q⋆ π⋆

ℳ = (S, A, P, r, γ)
Q⋆ π⋆
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Summary Table

Value Iteration Policy Iteration LP-based Algorithms

Poly. S2A
L(P,r,�) log 1

1��

1�� (S3 + S2A)
L(P,r,�) log 1

1��

1�� S3AL(P, r, �)

Strongly Poly. X (S3 + S2A) ·min

⇢
AS

S ,
S2A log S2

1��

1��

�
S4A4 log S

1��

• VI Per iteration complexity: 

• PI Per iteration complexity: 

• The LP approach is only logarithmic in 

S2A
S3 + S2A

1 − γ
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A Generative Model
• A generative model provides us with a sample   upon input of 

a state action pair . 
s′ ∼ P( ⋅ |s, a)

(s, a)
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A Generative Model
• A generative model provides us with a sample   upon input of 

a state action pair . 
s′ ∼ P( ⋅ |s, a)

(s, a)
• most naive approach to learning: suppose we call our simulator N times  

at each state action pair. Let  be our empirical model:̂P
















































A Generative Model
• A generative model provides us with a sample   upon input of 

a state action pair . 
s′ ∼ P( ⋅ |s, a)

(s, a)
• most naive approach to learning: suppose we call our simulator N times  

at each state action pair. Let  be our empirical model:̂P

•  

where  is the #times the state-action  transitions to state . 

̂P (s′ |s, a) = count(s′ , s, a)
N

count(s′ , s, a) (s, a) s′ 
















































A Generative Model
• A generative model provides us with a sample   upon input of 

a state action pair . 
s′ ∼ P( ⋅ |s, a)

(s, a)
• most naive approach to learning: suppose we call our simulator N times  

at each state action pair. Let  be our empirical model:̂P

•  

where  is the #times the state-action  transitions to state . 

̂P (s′ |s, a) = count(s′ , s, a)
N

count(s′ , s, a) (s, a) s′ 

• Each “sample” calls the generative model  times (for each state action pair).  
The total number of calls to our generative model is .

SA
SAN
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A Generative Model
• A generative model provides us with a sample   upon input of 

a state action pair . 
s′ ∼ P( ⋅ |s, a)

(s, a)
• most naive approach to learning: suppose we call our simulator N times  

at each state action pair. Let  be our empirical model:̂P

•  

where  is the #times the state-action  transitions to state . 

̂P (s′ |s, a) = count(s′ , s, a)
N

count(s′ , s, a) (s, a) s′ 

• Each “sample” calls the generative model  times (for each state action pair).  
The total number of calls to our generative model is .

SA
SAN

• The generative model helps us disentangle the issue of fundamental statistical limits 
from exploration.
















































How many samples do we need to learn?

• This is a reasonable abstraction to understand the statistical limit,  
without having to directly address exploration.
















































How many samples do we need to learn?

• This is a reasonable abstraction to understand the statistical limit,  
without having to directly address exploration.

• Note that since  has a  parameters, a naive approach would be to  
estimate  accurately (using  samples) and then use  for planning. 

P S2A
P O(S2A) ̂P
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How many samples do we need to learn?

• This is a reasonable abstraction to understand the statistical limit,  
without having to directly address exploration.

• Note that since  has a  parameters, a naive approach would be to  
estimate  accurately (using  samples) and then use  for planning. 

P S2A
P O(S2A) ̂P

• Do we require an accurate model of the world in order to find a  
near optimal policy?
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Attempt 1:

the naive model based approach
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Model accuracy
Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥ cγ
(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ
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Model accuracy
Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥ cγ
(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ

• Model accuracy: The transition model is  has error bounded as:ϵ
max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ (1 − γ)2ϵ/2 .
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Model accuracy
Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥ cγ
(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ

• Model accuracy: The transition model is  has error bounded as:ϵ
max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ (1 − γ)2ϵ/2 .

• Uniform value accuracy: For all policies ,  π
∥Qπ − ̂Q π∥∞ ≤ ϵ/2
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Model accuracy
Proposition: c is an absolute constant. . For   

and with probability  greater than , 

ϵ > 0 N ≥ cγ
(1 − γ)4

S log(cSA/δ)
ϵ2

1 − δ

• Model accuracy: The transition model is  has error bounded as:ϵ
max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ (1 − γ)2ϵ/2 .

• Uniform value accuracy: For all policies ,  π
∥Qπ − ̂Q π∥∞ ≤ ϵ/2

• Near optimal planning: Suppose that  is the optimal policy in .  ̂π ̂M
∥ ̂Q π − Q⋆∥∞ ≤ ϵ
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Matrix Expressions
• Define  to be the transition matrix on state-action pairs (for deterministic ): 
 

 

Pπ π

Pπ
(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )

0 if a′ ≠ π(s′ )
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Matrix Expressions
• Define  to be the transition matrix on state-action pairs (for deterministic ): 
 

 

Pπ π

Pπ
(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )

0 if a′ ≠ π(s′ )

• With this notation, 
 

Qπ = r + PVπ

Qπ = r + PπQπ
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Matrix Expressions
• Define  to be the transition matrix on state-action pairs (for deterministic ): 
 

 

Pπ π

Pπ
(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )

0 if a′ ≠ π(s′ )

• With this notation, 
 

Qπ = r + PVπ

Qπ = r + PπQπ

• And that: 
 

(where one can show the inverse exists)
Qπ = (I − γPπ)−1r
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“Simulation” Lemma
(Simulation Lemma)  For all , we have: π
Qπ − ̂Q π = γ(I − γ ̂P π)−1(P − ̂P )Vπ
















































“Simulation” Lemma
(Simulation Lemma)  For all , we have: π
Qπ − ̂Q π = γ(I − γ ̂P π)−1(P − ̂P )Vπ

 
proof: Using our matrix equality for , we have: Qπ

Qπ − ̂Q π = (I − γPπ)−1r − (I − γ ̂P π)−1r
= (I − γ ̂P π)−1((I − γ ̂P π) − (I − γPπ))Qπ

= γ(I − γ ̂P π)−1(Pπ − ̂P π)Qπ

= γ(I − γ ̂P π)−1(P − ̂P )Vπ














































also true

EQ Ct rf T r

when molt Q



Proof: Claim 1

Concentration of a distribution in the  norm: for a fixed 


 

with pr greater than , with m samples used to estimate . 


 
The first claim now follows by the union bound.

ℓ1 s, a

∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1 ≤ c
S log(1/δ)

m
1 − δ ̂P ( ⋅ |s, a)
















































Proof: Claim 2
For the second claim, we have that:


 

(why is step 1 true?)


The proof for the Claim 3 immediately follows from the second claim.

∥Qπ − ̂Q π∥∞ = ∥γ(I − γ ̂P π)−1(P − ̂P )Vπ∥∞ ≤ γ
1 − γ

∥(P − ̂P )Vπ∥∞

≤ γ
1 − γ (max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1) ∥Vπ∥∞

≤ γ
(1 − γ)2 max

s,a
∥P( ⋅ |s, a) − ̂P ( ⋅ |s, a)∥1
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Reference sheet (defs/notation)
• Remember:  

•  is the transition matrix on state-action pairs for a deterministic policy : 

   


•With this notation, 
    

•  is a matrix whose rows are probability distributions (why?)


•Estimated transition  , optimal value in estimated model ,  
optimal policy in optimal model , (true) value of estimated policy 


# samples from generative model  = SAN

Pπ π
Pπ

(s,a),(s′ ,a′ ) := P(s′ |s, a) if a′ = π(s′ )
0 if a′ ≠ π(s′ )

Qπ = r + PVπ, Qπ = r + PπQπ, Qπ = (I − γPπ)−1r

1
1 − γ

(I − γPπ)−1

̂P ̂Q ⋆

̂π ⋆ Q ̂π ⋆
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Attempt 2:  
sublinear sample complexity! 

  idea: use concentration only on V⋆
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Attempt 2: Sublinear Sample Complexity















































Attempt 2: Sublinear Sample Complexity
Proposition: (Crude Value Bound) Let . With probability greater than ,

 

δ ≥ 0 1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
(1 − γ)2

2 log(2SA/δ)
N

∥Q⋆ − ̂Q π⋆∥∞ ≤ γ
(1 − γ)2

2 log(2SA/δ)
N
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Attempt 2: Sublinear Sample Complexity
Proposition: (Crude Value Bound) Let . With probability greater than ,

 

δ ≥ 0 1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
(1 − γ)2

2 log(2SA/δ)
N

∥Q⋆ − ̂Q π⋆∥∞ ≤ γ
(1 − γ)2

2 log(2SA/δ)
N

 
What about the value of the policy?  

∥Q⋆ − Q ̂π⋆∥∞ ≤ γ
(1 − γ)3

2 log(2SA/δ)
N
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Component-wise Bounds Lemma
Lemma: we have that:  
Q⋆ − ̂Q ⋆ ≤ γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆

Q⋆ − ̂Q ⋆ ≥ γ(I − γ ̂P ̂π ⋆)−1(P − ̂P )V⋆
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Component-wise Bounds Lemma
Lemma: we have that:  
Q⋆ − ̂Q ⋆ ≤ γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆

Q⋆ − ̂Q ⋆ ≥ γ(I − γ ̂P ̂π ⋆)−1(P − ̂P )V⋆
















































Component-wise Bounds Lemma
Lemma: we have that:  
Q⋆ − ̂Q ⋆ ≤ γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆

Q⋆ − ̂Q ⋆ ≥ γ(I − γ ̂P ̂π ⋆)−1(P − ̂P )V⋆

proof:  
For the first claim, the optimality of  in  implies: 

 
using the simulation lemma in the final step. 
 
See notes for the proof of second claim.

π⋆ M
Q⋆ − ̂Q ⋆ = Qπ⋆ − ̂Q ̂π ⋆ ≤ Qπ⋆ − ̂Q π⋆ = γ(I − γ ̂P π⋆)−1(P − ̂P )V⋆,
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Proof: (& key idea for sublinearity!)
For the first claim,  

 

Why?

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
1 − γ

∥(P − ̂P )V⋆∥∞
















































Proof: (& key idea for sublinearity!)
For the first claim,  

 

Why?

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
1 − γ

∥(P − ̂P )V⋆∥∞

 
By applying Hoeffding's inequality  and the union bound, 

 

which holds with probability greater than . 

V⋆

∥(P − ̂P )V⋆∥∞ = max
s,a

Es′ ∼P(⋅|s,a)[V⋆(s′ )] − Es′ ∼ ̂P (⋅|s,a)[V⋆(s′ )]

≤ 1
1 − γ

2 log(2SA/δ)
N

1 − δ
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Attempt 3:  
minimax optimal sample complexity 

idea: better variance control
















































(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13)  With probability greater than , 

 

where  is an absolute constant.  

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
c

(1 − γ)3
log(cSA/δ)

N
+ cγ

(1 − γ)3
log(cSA/δ)

N
,

c
















































(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13)  With probability greater than , 

 

where  is an absolute constant.  

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
c

(1 − γ)3
log(cSA/δ)

N
+ cγ

(1 − γ)3
log(cSA/δ)

N
,

c

Corollary: for , provided   then 

  (with prob. greater than ) 

ϵ < 1 N ≥ c
(1 − γ)3

log(cSA/δ)
ϵ2

∥Q⋆ − ̂Q ⋆∥∞ ≤ ϵ 1 − δ
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(“near”) Minimax Optimal Sample Complexity
Theorem: (Azar et al. ’13)  With probability greater than , 

 

where  is an absolute constant.  

1 − δ

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
c

(1 − γ)3
log(cSA/δ)

N
+ cγ

(1 − γ)3
log(cSA/δ)

N
,

c

Corollary: for , provided   then 

  (with prob. greater than ) 

ϵ < 1 N ≥ c
(1 − γ)3

log(cSA/δ)
ϵ2

∥Q⋆ − ̂Q ⋆∥∞ ≤ ϵ 1 − δ

Corollary: What about the policy?  Need   samples. 
We pay another factor of  samples. Is this real?

N/(1 − γ)2

1/(1 − γ)2

care about

Q



Minimax Optimal Sample Complexity  
(on the policy)



Minimax Optimal Sample Complexity  
(on the policy)

Theorem: (Agarwal et al. ’20)  For , provided 

  then with prob. greater than ),  

 
  

 

ϵ < 1/(1 − γ)
N ≥ c

(1 − γ)3
log(cSA/δ)

ϵ2 1 − δ

∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ OE e o e't
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Minimax Optimal Sample Complexity  
(on the policy)

Theorem: (Agarwal et al. ’20)  For , provided 

  then with prob. greater than ),  

 
  

 

ϵ < 1/(1 − γ)
N ≥ c

(1 − γ)3
log(cSA/δ)

ϵ2 1 − δ

∥Q⋆ − Q ̂π⋆∥∞ ≤ ϵ

Lower Bound: We can’t do better.



Proof sketch: part 1
• From “Component-wise Bounds” lemma, we want to bound:

 ∥Q⋆ − ̂Q ⋆∥∞ ≤ γ∥(I − γ ̂P π⋆)−1(P − ̂P )V⋆∥∞ ≤ ??



Proof sketch: part 1
• From “Component-wise Bounds” lemma, we want to bound:

 ∥Q⋆ − ̂Q ⋆∥∞ ≤ γ∥(I − γ ̂P π⋆)−1(P − ̂P )V⋆∥∞ ≤ ??

• From Bernstein's ineq, with pr.  greater than , we have (component-wise):

 

1 − δ

| (P − ̂P )V⋆ | ≤ 2 log(2SA/δ)
N

VarP(V⋆) + 1
1 − γ

2 log(2SA/δ)
3N

⃗1



Proof sketch: part 1
• From “Component-wise Bounds” lemma, we want to bound:

 ∥Q⋆ − ̂Q ⋆∥∞ ≤ γ∥(I − γ ̂P π⋆)−1(P − ̂P )V⋆∥∞ ≤ ??

• From Bernstein's ineq, with pr.  greater than , we have (component-wise):

 

1 − δ

| (P − ̂P )V⋆ | ≤ 2 log(2SA/δ)
N

VarP(V⋆) + 1
1 − γ

2 log(2SA/δ)
3N

⃗1

• Therefore 

∥Q⋆ − ̂Q ⋆∥∞ ≤ γ
2 log(2SA/δ)

N
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞

+"lower order term"



Bellman Equation for the Variance
• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2



Bellman Equation for the Variance
• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2

• Let’s keep around the MDP M subscripts.  
Define  as the (totoal) variance of the discounted reward:    

 

Σπ
M

Σπ
M(s, a) := E (

∞

∑
t=0

γtr(st, at) − Qπ
M(s, a))

2

s0 = s, a0 = a



Bellman Equation for the Variance
• Variance:  

Component wise variance:  
VarP(V)(s, a) := VarP(⋅|s,a)(V)

VarP(V) := P(V)2 − (PV)2

• Let’s keep around the MDP M subscripts.  
Define  as the (totoal) variance of the discounted reward:    

 

Σπ
M

Σπ
M(s, a) := E (

∞

∑
t=0

γtr(st, at) − Qπ
M(s, a))

2

s0 = s, a0 = a

• Bellman equation for the total variance:  
Σπ

M = γ2VarP(Vπ
M) + γ2PπΣπ

M



Key Lemma

Lemma: For any policy  and MDP , 




Proof idea:  convexity + Bellman equations for the variance.

π M

(I − γPπ)−1 VarP(Vπ
M)

∞
≤ 2

(1 − γ)3



Putting it all together 
Proof: we have two MDPs  and . need to bound:M ̂M



Putting it all together 
Proof: we have two MDPs  and . need to bound:M ̂M
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞ = ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

M )∥∞

≤ ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

̂M
) + "lower order"

≤ 2
(1 − γ)3 + "lower order"



Putting it all together 
Proof: we have two MDPs  and . need to bound:M ̂M
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞ = ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

M )∥∞

≤ ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

̂M
) + "lower order"

≤ 2
(1 − γ)3 + "lower order"

First equality above: just notation



Putting it all together 
Proof: we have two MDPs  and . need to bound:M ̂M
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞ = ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

M )∥∞

≤ ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

̂M
) + "lower order"

≤ 2
(1 − γ)3 + "lower order"

First equality above: just notation
Second step: concentration -> need to say 

VarP(Vπ⋆
M ) ≈ VarP(Vπ⋆

̂M
)



Putting it all together 
Proof: we have two MDPs  and . need to bound:M ̂M
∥(I − γ ̂P π⋆)−1 VarP(V⋆)∥∞ = ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

M )∥∞

≤ ∥(I − γPπ⋆

̂M
)−1 VarP(Vπ⋆

̂M
) + "lower order"

≤ 2
(1 − γ)3 + "lower order"

First equality above: just notation
Second step: concentration -> need to say 

VarP(Vπ⋆
M ) ≈ VarP(Vπ⋆

̂M
)

Last step: previous slide


